
ECS-189A Special Topics in TCS April 6, 2023

Lecture 2
Lecturer: Slobodan Mitrović

1 Introduction
Over the last couple of decades, we have witnessed a massive increase in volumes of generated
data. To cope with this influx of information, a number of frameworks for parallel and dis-
tributed computation have been deployed. Among the most famous frameworks are MapReduce,
Flume, Spark, Hadoop, and Dryad. To rigorously study the capabilities of systems for large-scale
computation, the scientific community developed a model called Massively Parallel Computation
(MPC) [KSV10, GSZ11, BKS17].

MPC is now a de facto standard for analyzing large-scale computation from a theoretical per-
spective. We will study the MPC algorithm for graph algorithmic problems in the following lectures.
The goal is to equip students with some fundamentals of MPC algorithms design.

2 Preliminaries

2.1 Notation
We will use G = (V,E) to denote a graph on vertex set V and edge set E. If not stated otherwise,
we will use n to denote |V | and m to denote |E|.

We will use notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f · poly log f).

2.2 The MPC model
In the MPC model, when discussing a problem on an input graph G = (V,E), we assume that the
graph G, which has n = |V | vertices, is partitioned among M machines and each machine knows
only some of the edges and vertices. A key parameter of the model is the memory S per machine.
Since the machines should be able to hold the graph together, we have that M ·S ≥ (|V |+ |E|), and
it is common to assume that this is tight up to logarithmic factors, i.e., M · S = Õ(|V |+ |E|). We
usually refer to M · S as global memory or total memory, while the memory per machine S is often
called local memory.

Initially, the input consisting of the edges and vertices of the graph is divided arbitrarily among all
machines, subject to the constraint that each machine holds at most S words. Computation proceeds
in synchronous rounds, where per round, a machine executes (usually polynomial-time) computation
on the data it holds. Afterward, there is a round of communication where each machine can send
some data to every other machine – thus, the communication network among the machines is the
complete graph. The only restriction on the communication is that the total amount of data that
one machine sends and receives cannot exceed its local memory S. The primary complexity measure
is the number of rounds used to solve a given graph problem, where the fewer, the better.

MPC regimes: For many problems, the local memory parameter S impacts the difficulty of the
problem significantly — problems get harder as we reduce S. Considering this, throughout the
literature, the focus has been primarily on three regimes of this MPC:

(A) super-linear memory regime, when S = n1+c for some positive constant c > 0,

1

(B) near-linear memory regime, when S = Õ(n), and

(C) sub-linear memory regime, when S = n1−c for some positive constant c > 0.

Often the algorithms in the strongly super-linear regime or strongly sub-linear regime do not depend
on the exact value of the constant c, and their complexity degrades by only a constant factor if we
change c.

Machine IDs: Without loss of generality, we will assume that each machine knows M and that
the IDs of the machines are 1 through M .

3 Connected Components in the MPC Super-linear Memory
Regime

We will now design an algorithm for computing connected components (CC) in undirected graphs
in the super-linear memory regime of MPC. The classical textbook algorithm for CC designed to
run on a single machine employs depth-first-search graph traversal. Surely, that algorithm can also
be simulated in MPC, but it is unclear how to simulate DFS efficiently in MPC. We will see how to
solve the CC problem in O(1/c) many MPC rounds when S = n1+c.

When faced with a distributed computation, it is typically required to partition the input data
somehow. Our partitioning scheme will partition the current graph arbitrarily onto the smallest
possible number of machines while ensuring that no machine is sent more than S edges. After that,
each machine performs some data reduction, i.e., our graph will gradually shrink. This process is
repeated as long as our graph does not fit on a single machine. The entire process is described as
Algorithm 1.

Input : Graph G = (V,E)
Space per machine S

1 M̂ ←
⌈
m
S

⌉
/* We assume that originally edges are distributed across the

machines with IDs 1, . . . , M̂. Note that m/S machines suffice to hold all the
edges. */

2 Label each edge e ∈ E as “active”.
3 while M̂ > 1 do
4 for ID i ∈

{
1, . . . , M̂

}
independently do

5 Compute a spanning forest Fi on the “active” edges that machine i contains.
6 All edges on machine i not in Fi are labeled as “inactive”.
7 Send all the active edges on machine i to machine with ID equal to

⌈
i
nc

⌉
.

8 M̂ ←
⌈
M̂
nc

⌉
9 Output the connected components of the “active” edge-set on the machine with ID = 1.
Algorithm 1: An algorithm for computing connected components in the super-linear mem-
ory regime of MPC.

In Algorithm 1, the variable M̂ should be thought of as the number of machines used to distribute
the currently “active” edges. Observe that M̂ decreases from step to step. Intuitively, this makes
sense as Line 6 reduces the number of “active” edges, and hence fewer machines are needed to store
them. When only a single machine suffices to store all the active edges, we can simply output the
connected components of those edges, as done by Line 9.

2

We will now analyze the correctness and efficiency of Algorithm 1. To analyze correctness, we
need to address the following: no machine will send more than S words of data in a single round; no
machine will receive more than S words of data in a single round; and the output indeed corresponds
to the connected components of the input graph G. To analyze efficiency, it suffices to comment on
the number of rounds.

3.1 Round complexity
Lemma 1. Algorithm 1 can be executed in O(1/c) MPC rounds.

Proof. First, each iteration of the while-loop can be executed in O(1) rounds. To see that, observe
that Lines 5 and 6 are done locally on each machine, so it can be executed in a single round of
computation. Line 7 is done in the same round of computation as the previous two lines – each
machine creates a message that it wants to send to other machines and then sends those messages
at once.

Second, it remains to analyze the number of iterations of the while-loop. Note that the value of
M̂ drives it. Since M̂ is initialized to O(m/S) ∈ O(n2/S) and in each iteration it gets reduced by
a factor of Θ(nc), we have that within O(2/c) = O(1/c) iterations the value of M̂ will become 1 or
less.

3.2 Outgoing and incoming message sizes
It is trivial to argue that no machine sends more than the number of edges it has in its memory –
it directly follows from Line 7 and the fact that a spanning forest has at most n− 1 ≪ n1+c many
edges.

It remains to show that no machine receives more than n1+c edges. The machines that send
edges to machine j have IDs i such that j = ⌈i/nc⌉. It means that i/nc ≤ j < i/nc+1. This further
implies that (j − 1)nc < i ≤ jnc. That is, there are at most nc machines that send a message to
machine j. Each such machine sends at most n − 1 edges, which amounts to at most n1+c edges
sent to machine j.

3.3 Correctness
It remains to show that the final output represents CCs of G.

Lemma 2. Let CCfinal be the CC output by Line 9 of Algorithm 1 for an input graph G. CCfinal

are the CCs of G as well.

Proof. The statement of this claim is equivalent to: vertices u and v are in the same CC of G iff
they are in the same CC of CCfinal. We prove the two directions of “iff” separately.

Direction: If u and v are in the same CC of CCfinal, then they are in the same CC of
G. If u and v are in the same CC of CCfinal, then machine 1 after the while-loop contains a path
P between u and v. Since each of the edges of P belong to G, a path in G connects u and v. Hence,
they belong to the same CC of G.

Direction: If u and v are in the same CC of G, then they are in the same CC of CCfinal.
Toward a contradiction, assume that u and v are not in the same CC of CCfinal.

Let iteration t be the last one of the while-loop in whose beginning u and v were in the same
connected component if one considers only “active” edges. Let P be a u − v path among “active”
edges at the beginning of iteration t. Since we are assuming u and v are not connected via “active”

3

edges in iteration t+ 1, there exists at least one edge of P which became “inactive” during iteration
t. Consider each such edge e = {x, y} of P separately.

Let machine i have e at the beginning of iteration t. Recall that each machine is finding a
spanning forest on its set of edges, and each of the edges in the spanning forest remains “active”
throughout that iteration. So, if machine i marks as “inactive” the edge e, its spanning forest will
contain a path between x and y, i.e., between the endpoints of e, consisting of “active” edges only.
But this implies that even after marking some edges as “inactive” in iteration t, the vertices u and
v will remain connected via “active” edges and hence connected at the beginning of iteration t+ 1.
This contradicts our assumption that there exists t which is the last such iteration, and hence proves
that u and v are in the same CC of CCfinal as well.

References
[BKS17] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query

processing. Journal of the ACM (JACM), 64(6):1–58, 2017.

[GSZ11] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In ISAAC, volume 7074, pages 374–383. Springer, 2011.

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 938–948. SIAM, 2010.

4

	Introduction
	Preliminaries
	Notation
	The MPC model

	Connected Components in the MPC Super-linear Memory Regime
	Round complexity
	Outgoing and incoming message sizes
	Correctness

