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1 Introduction
In the last lecture, we discussed an algorithm for computing connected components (CC) in MPC
when the memory per machine is n1+c for a constant c > 0. That algorithm solves the problem in
O(1/c) = O(1) many MPC rounds. However, when the memory per machine is 2n, one can show
that the same algorithm takes O(log n) rounds. On the other hand, when the memory per machine
is sublinear in n, the algorithm we discussed last lecture might not even terminate.

In this lecture, we will design a different algorithm that counts CC in O(log n) rounds even when
the memory per machine is less than n. The algorithm we design can easily be turned into one
finding CC as well.

2 Preliminaries

2.1 Notation
We will use G = (V,E) to denote a graph on vertex set V and edge set E. If not stated otherwise,
we will use n to denote |V | and m to denote |E|.

We will use notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f · poly log f).
By saying that an event E happens with high probability (whp), we refer that Pr [E ] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Probability tools
Theorem 1 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr [X ≥ a] ≤ E [X]

a
.

3 Leader-Contraction
In this section, we will present an algorithm for counting connected components in the sub-linear
MPC memory regime. We point out that this algorithm can easily be extended to outputting the
corresponding connected components as well.

Observe that counting the number of connected components when there is no edge is trivial –
the number of CC equals the number of vertices. Inspired by this, given an input graph G, our
algorithm will produce a graph H such that H has fewer edges than G, but the number of CC
in G and H are identical. More specifically, we will obtain connected components by iteratively
contracting some neighboring vertices. That algorithm is called Leader-Contraction, and the
complete pseudo-code is outlined as Algorithm 1. The algorithm itself does not dive into details of
MPC implementation; instead, an outline of MPC implementation is given in Section 3.4.
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Input : Graph G = (V,E)
Space per machine S

1 Function Leader-Contraction(G = (V,E)):
2 H ← G
3 Independently of other vertices, each vertex of H is marked as a leader with probability

1/2.
4 Contract each non-leader vertex of H to its adjacent leader, if there is any. In case of

ties, choose the leader with the largest label.
5 return H

6 G̃← G

7 while there is an edge in G̃ do
8 G̃← Leader-Contraction(G̃)

9 return the number of vertices in G̃

Algorithm 1: An algorithm for computing connected components. In Section 3.4 we outline
its implementation in the sub-linear memory regime of MPC.

Before we proceed with the analysis of Algorithm 1, we provide several examples.

3.1 Example 1
• Round 1 (leaders are marked in yellow)

1 2 3 4 5 6 7

8

9

10

→ →

↓

↑

(a) Before contraction.
→

1 8 4 6 7

10

(b) After contraction.

• Round 2

1 8 4 6 7

10

←

↓

(a)
→

1 4 10 7

(b)

• Round 3

2



1 4 10 7
→ ←

(a)
→

4 10

(b)

• Round 4

4 10
→

(a)
→

10

(b)

3.2 Example 2
• Round 1 (leaders are marked in yellow)

1 2 3 4 5 6 7

8

9

10

(a)
→

8 10

(b)

• Round 2

8 10

(a)
→

8

(b)

3.3 Correctness
Showing that Algorithm 1 outputs the number of CC is almost direct from the algorithm design.
Observe that the final version of G̃ has no edge, so outputting the number of vertices it has is indeed
the number of CC that graph has. To see that it corresponds to the number of CC in the input graph
G, observe that contracting a non-leader vertex to u to a leader vertex v can be seen as re-labeling
all the vertices with label u to label v. This re-labeling process is then performed while at least two
or more different labels are in a CC of G.

3.4 Implementation in MPC
The only non-trivial part needed to implement Algorithm 1 is a method that contracts a non-leader
vertex to a leader one. We will skip those technicalities in this lecture and only provide a high-level
idea.
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To contract vertex u to vertex v, we would like to take every edge {u,w} and re-label it to {v, w}.
In MPC, this can be done by sorting all the edges with respect to one of the endpoints and then
applying all needed re-labels simultaneously using a data structure similar to an interval/segment
tree. The same process is then applied to the other endpoint of each edge.

Procedures for sorting and performing search/updates in the corresponding data structure in
O(1/c) rounds can be found in [GSZ11, Section 4].

3.5 Round complexity
Theorem 2. Algorithm 1 runs in O(log n) rounds whp.

To show Theorem 2, we first prove the following claim.

Lemma 3. Let G be an input to Leader-Contraction and G̃ be its output. Let z and z̃ be the
number of non-isolated vertices in G and G̃, respectively. Then,

E [z̃] ≤ 3

4
z.

Proof. Let A be the set of z non-isolated vertices in G. Let Xv be an indicator variable equal 1 if a
non-isolated vertex v ∈ A is not contracted. Then, we have

E [z̃] = E

[∑
v∈A

Xv

]
=

∑
v∈A

E [Xv] .

A vertex v is contracted if (1) v is not chosen as a leader, and (2) at least one of its neighbors is chosen
as a leader. We have Pr [v is chosen as a leader] = 1/2. Since all leader/non-leader choices are made
independently across vertices, we also have Pr [at least one neighbor of v is chosen as a leader] =
1− (1/2)d(v) ≥ 1/2; recall that d(v) ≥ 1 as v is not isolated. This now implies

Pr [v is contracted] ≥ 1

2
· 1
2
=

1

4
.

Hence,

Pr [v is not contracted] = 1− Pr [v is contracted] ≤ 3

4
.

This implies that

E [Xv] ≤
3

4
,

and hence our claim follows.

We want to use Lemma 3 to prove Theorem 2. Let z̃t be the number of non-isolated vertices in G̃
after t invocations of Leader-Contraction. By repeatedly applying Lemma 3, for k = 2 log2 n

log2 (4/3)

we have E [z̃k] ≤
(
3
4

)k
n = n−1.

By applying Markov’s inequality, i.e., Theorem 1, we have that

Pr [z̃k ≥ 1] ≤ 1

n
.

So, with high probability, we have that z̃k < 1, which proves Theorem 2. Remark: By replacing
the multiplicative factor 2 by d we would get the probability of failure to be n−(d−1) instead of n−1.
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