
ECS-189A Special Topics in TCS April 18, 2023

Lecture 4
Lecturer: Slobodan Mitrović

1 Introduction
We are continuing to study graph algorithms in the context of the MPC model. We are shifting
our focus to the maximal independent set problem, which is one of the most fundamental graph
algorithmic questions with a long history in distributed and parallel computation. In this lecture,
our focus is on the sub-linear MPC memory regime.

2 Preliminaries

2.1 Notation
We will use G = (V,E) to denote a graph on the vertex set V and edge set E. If not stated otherwise,
we will use n to denote |V | and m to denote |E|. We will use NG(v) to denote the neighborhood
of v in G; this neighborhood excludes v itself. When it is clear from the context, we will omit
the subscript G and use N(v) instead. We use d(v) to denote the degree of vertex v in G, i.e.,
d(v) = |N(v)|.

We will use the notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f ·poly log f).
By saying that an event E happens with high probability (whp), we refer that Pr [E] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Independent sets
Definition 1 (Independent set (IS)). Given a graph G = (V,E), a set I ⊆ V is an independent set
if no two vertices of I are neighbors in G.

Definition 2 (Maximal independent set (MIS)). Given a graph G = (V,E), a set I ⊆ V is a maximal
independent set if I is an IS and if I can not be augmented by another vertex while remaining IS.

Definition 3 (Maximum independent set). Given a graph G = (V,E), a set I ⊆ V is a maximum
independent set if I is an MIS and if the cardinality of I is maximum over all MISes.

Observe that each maximum IS is also a maximal IS, while the converse is not true. To see that,
consider a star graph. Then, the center of the star is an MIS but it is not a maximum IS. The only
maximum IS in this case is the set of all the leaves.

2.3 Probability tools
Theorem 4 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr [X ≥ a] ≤ E [X]

a
.

3 Computing MIS

3.1 Centralized setting
We first recall a well-known centralized algorithm for computing MIS, it is given as Algorithm 1.

1

Input : Graph G = (V,E)
1 I ← ∅
/* The vertices of V in the loop below can be visited in any order. */

2 for u ∈ V do
3 I ← I ∪ {u}
4 Remove u and all its neighbors from G.

5 return I

Algorithm 1: A centralized algorithm for finding an MIS.

3.2 Sub-linear memory regime of MPC
This section presents an algorithm for finding an MIS in the sub-linear MPC memory regime.
Although at first it might seem that for finding an MIS it is needed to coordinate decisions of
different vertices globally, it turns out that there is a highly local procedure for solving the MIS
problem. One such procedure we provide is Algorithm 2, and it corresponds to work [Lub85]. That
procedure itself is designed independently of the model of computation and has been applied to
various computational settings. In Section 3.2.2 we discuss how to execute it in MPC.

Input : Graph G = (V,E)
Space per machine S

1 I ← ∅
2 while G is non-empty do
3 Each vertex u ∈ V (G) in parallel samples an integer iu from the range [1, n4] uniformly

at random and independently of other vertices.
4 For each vertex u whose value iu is smaller than the values of its neighbors:

• I ← I ∪ {u}

• Remove u and all its neighbors from G.

5 return I

Algorithm 2: An algorithm for finding an MIS. In Section 3.2.2 we outline its implemen-
tation in the sub-linear memory regime of MPC.

3.2.1 Correctness

Algorithm 2 outputs an MIS by design. That is, each time a vertex u is added to I it is ensured that
no u’s neighbor will be included in I. Also, the algorithm performs computation as long as there is
at least one vertex that can be added to I.

3.2.2 Implementation in MPC

We are again not going to dive into MPC implementation of low-level steps; in this case, it includes
computing the minimum chosen number in the neighborhood of a vertex and removing all the
neighbors of a vertex added to I. We again point out that such operations are easy to implement if
one has access to a segment-tree-interval-like structure. Implementation of such structures in O(1/c)
rounds is provided in [GSZ11, Section 4]. In particular, the following are two powerful claims shown
in [GSZ11].

2

Theorem 5 ([GSZ11]). Given a binary search tree T of size n, we can perform a multi-search of n
queries in the sub-linear regime of the MPC model in O(1/c) rounds and O(n/c) total communication
with high probability.

Note that the theorem provides round complexity of O(1) for constant c, as opposed to O(log n).
Also, this theorem supports n searches at the same time.

Theorem 6 ([GSZ11]). A set of n elements can be sorted in the sub-linear regime of the MPC model
in O(1/c) rounds and O(n/c) total communication with high probability.

3.2.3 Round complexity

Theorem 7. Algorithm 2 runs in O(log n) rounds whp.

To show Theorem 7, we first prove the following claim.

Lemma 8. In a given iteration of the while-loop of Algorithm 2, values iu across all the vertices
are distinct with probability 1− n−2 at least.

Proof. For two fixed vertices u and v we have Pr [iv = iu] = n−4. Since there are
(
n
2

)
pairs of vertices,

we have that any two of them have the same i values with probability at most
(
n
2

)
· n−4 ≤ n−2.

Lemma 9. Consider a single iteration of the while-loop of Algorithm 2. Assume that the values iu
across all vertices u are distinct. Let z be the number of edges at the beginning of the loop and z̃ the
number of edges in G at the end of that loop. Then,

E [z̃] ≤ 1

2
z.

Proof. In this proof, if we say (u, v) then we refer to an arc, but if we say {u, v} then we refer to an
edge.

In this analysis, perhaps the most challenging part is defining appropriate random variables. For
every arc (u, v), we define a random variable Xu→v that means

Xu→v =

{
1 if ∀w ∈ N(u) ∪N(v) it holds iu ≤ iw

0 otherwise

Observe that if Xu→v = 1, then e = {u, v} gets removed from the graph as: Xu→v = 1 implies u is
added to I and hence v is removed from G.

Let Y be a random variable denoting the number of edges removed from G, i.e., Y = z − z̃. In
addition, let Yu→v be an indicator random variable which equals 1 only if the arc (u, v) is removed
from G, i.e., 2Y =

∑
(u,v)∈E Yu→v. We switched from considering arcs as opposed to edges since X

random variables are also defined in a directed way and defining Yu→v random variables in the same
way will simplify calculation.

We would like now to tie random variables X and Y . To that end, observe that for a fixed v,
across all u ∈ N(v) at most one of Xu→v equals 1, i.e.,

∑
u∈N(v) Xu→v ≤ 1. This holds by definition.

On the other hand, if Xu→v = 1, then all the edges {w, v}, for all w ∈ N(v), get removed from
G. So, this implies ∑

(u,v)∈E

Xu→v · d(v) ≤
∑

(u,v)∈E

Yu→v = 2Y.

This further implies

E [2Y] ≥ E

 ∑
(u,v)∈E

Xu→v · d(v)

 =
∑

(u,v)∈E

E [Xu→v] · d(v). (1)

3

Recall that Xu,v = 1 iff iu is the minimum value among at most d(u) + d(v) values, each chosen
uniformly at random from the same range and with the guarantee that no two of them are the same.
Hence, Pr [Xu→v = 1] ≥ 1

d(u)+d(v) and E [Xu→v] ≥ 1
d(u)+d(v) . Note: |N(v)∪N(u)| might be smaller

than d(v) + d(u) as u and v might share neighbors.
From Eq. (1) we have

E [2Y] ≥
∑

(u,v)∈E

E [Xu→v] · d(v)

=
∑

(u,v)∈E : u<v

(E [Xu→v] · d(v) + E [Xv→u] · d(u))

≥
∑

(u,v)∈E : u<v

(
1

d(u) + d(v)
· d(v) + 1

d(u) + d(v)
· d(u)

)
=

∑
(u,v)∈E : u<v

1

=|E(G)|
=z.

This now implies that E [Y] ≥ z/2 and hence E [z̃] ≤ z/2.

Application of Lemma 9 in proving Theorem 7 is left as homework. Note that Lemma 9 assumes
that all the values iv are distinct, so in the proof of Theorem 7 you probably want to use Lemma 8
as well.

References
[GSZ11] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation

in the mapreduce framework. In ISAAC, volume 7074, pages 374–383. Springer, 2011.

[Lub85] Michael Luby. A simple parallel algorithm for the maximal independent set problem. In
Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
1–10, 1985.

4

	Introduction
	Preliminaries
	Notation
	Independent sets
	Probability tools

	Computing MIS
	Centralized setting
	Sub-linear memory regime of MPC
	Correctness
	Implementation in MPC
	Round complexity

