
ECS-189A Special Topics in TCS April 25, 2023

Lecture 5
Lecturer: Slobodan Mitrović

1 Introduction
The next two lectures will investigate the computation of approximate maximum matching in MPC.
Similar to how we approached CC, we will first see an algorithm for computing maximal matching
in the super-linear regime, and then provide an approach that is applicable to the sub-linear regime
as well. This lecture is in large based on [LMSV11].

2 Preliminaries

2.1 Notation
We will use G = (V,E) to denote a graph on the vertex set V and edge set E. If not stated otherwise,
we will use n to denote |V | and m to denote |E|. We will use NG(v) to denote the neighborhood
of v in G; this neighborhood excludes v itself. When it is clear from the context, we will omit
the subscript G and use N(v) instead. We use d(v) to denote the degree of vertex v in G, i.e.,
d(v) = |N(v)|.

We will use the notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f ·poly log f).
By saying that an event E happens with high probability (whp), we mean that Pr [E] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Matchings
A matching M in a graph G = (V,E), is defined to be a set of pairwise non-adjacent edges. An
edge in a graph G is said to be a matched edge if it is in M , and a vertex in a graph is said to be
“matched” if it is an endpoint of any matched edge. Otherwise, the vertex is said to be “unmatched”.

In Figure 1, M = {1, 4, 5, 9} forms a matching of the given graph. Note that if we take any pair
of edges in M , then they do not share any endpoints

2.2.1 Maximal Matching

A matching M in a graph G = (V,E) is a maximal matching if every edge in G has a non-empty
intersection with at least one edge in M . In other words, a maximal matching is one which is not a
proper subset of any other matching, i.e., if M̃ is the set of all matchings of a graph G, then M is a
maximal matching if ∀M ′ ∈ M̃ , it holds that M ̸⊂M ′.

Note that in Figure 2, there can be two possible matching sets, M1 = {1, 3} and M2 = {2}. It
can be discerned that M1 ̸⊂ M2 and M2 ̸⊂ M1. Hence, both M1 and M2 are maximal matchings,
but we have only marked M2 in the aforementioned figure.

2.2.2 Maximum Matching

A matching M⋆ in a graph G = (V,E) is a maximum matching if it contains the largest possible
number of edges. In other words, it has the maximum cardinality amongst all maximal matchings
in a graph G. In a maximum matching problem, we want to find the matching with the largest
cardinality.

1

Figure 1: Edge set which forms a matching are circled in red.

Figure 2: The edge 2 is a maximal matching.

As explained in Section 2.2.1, both M1 and M2 are maximal matchings. But since |M1| =
max(|M1|, |M2|), thus, M⋆ = M1 is a maximum matching.

2.2.3 Maximum vs. Maximal matching

As mentioned in Sections 2.2.1 and 2.2.2, Figure 2 has two possible maximal matchings M1 and
M2. However, only M1 is a maximum matching, as demonstrated in Figure 3. Hence, a maximal
matching with the maximum number of edges is a maximum matching. Note: Every maximum
matching is a maximal matching, but not vice versa.

Lemma 1. Let G = (V,E) be a graph. If M is an arbitrary maximal matching, and M⋆ is a
maximum matching, then it holds that |M | ≤ |M⋆| ≤ 2|M |.

Proof. Note that since M is a maximal matching and M⋆ is a maximum matching. So, by definition,
the left inequality |M | ≤ |M⋆| holds.

Now, we want to prove |M⋆| ≤ 2|M |. Our proof goes by, in a sense, a counting argument. For a
moment, assume that the choice of M is the worst possible, i.e., by choosing an edge in M we are
ruling out choosing more than 1 edge in a matching. To illustrate this, consider Figure 4. Consider
edge by edge ẽi ∈M , and delete the red edges ej ∈M⋆ in which ẽi and ej share a common vertex.
Note that for each edge in M , either this edge exists in M⋆, or it has at most two incident edges in
M⋆. (As a side remark, it cannot be the case that ẽi /∈ M⋆ does not intersect M⋆ because in that
case, we can add ẽi ∈M to M⋆ and that contradicts with the definition of a maximum matching.)

2

Figure 3: Edge set M = {1, 3} forms a maximum matching in this graph.

Figure 4: Red edge set is a maximum matching M⋆ and Blue edge set is a maximal matching M .
We use this figure in the proof of Lemma 1.

Also, for any edge in M existence of more than two incident edges in M⋆ is not possible because
that results in having two edges sharing a common vertex. Accordingly, every edge in M removes
at most two edges in M⋆. If a red edge does not end up being removed, that would contradict
the definition of a maximal matching M – at least one of those leftover edges can be added to M .
Eventually, all edges in M⋆ are removed, and it is evident that the cardinality of the maximum
matching must be bounded by twice the cardinality of a maximal matching. Hence, it holds that
|M⋆| ≤ 2|M |.

2.2.4 Approximate maximum matching

Given a matching M , if it holds that |M⋆| ≤ c|M | we say that M is a c-approximate maximum
matching. In particular, in light of Lemma 1, a maximal matching is a 2-approximate maximum
one.

2.3 Probability tools
Theorem 2 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr [X ≥ a] ≤ E [X]

a
.

Theorem 3 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values in
[0, 1]. Let X def

=
∑k

i=1 Xi and µ
def
= E [X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [|X − µ| ≥ δµ] ≤ 2 exp
(
−δ2µ/3

)
.

(B) For any δ ∈ [0, 1] it holds Pr [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

(C) For any δ ∈ [0, 1] it holds Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
.

(D) For any δ ≥ 1 it holds Pr [X ≥ (1 + δ)µ] ≤ exp (−δµ/3).

3

3 Computing Maximal Matchings

3.1 Centralized setting
We first recall a well-known centralized algorithm for computing a maximal matching, it is given as
Algorithm 1.

Input : Graph G = (V,E)
1 M ← ∅
/* The edges of E in the loop below can be visited in any order. */

2 for e = {u, v} ∈ E do
3 M ←M ∪ {e}
4 Remove u and v from G.

5 return M

Algorithm 1: A centralized algorithm for finding a maximal matching.

3.2 Super-linear memory regime of MPC
In this section, we present an algorithm for finding a maximal matching in the super-linear MPC
memory regime. Our algorithm is given as Algorithm 2, and it corresponds to work [LMSV11].

Input : Graph G = (V,E)
Space per machine S = n1+c

1 Let M ← ∅
2 Let E0 ← E
3 Let i← 0
4 while Ei ̸= ∅ do
5 Let E′ be a set of edges sampled from Ei such that each edge is sampled uniformly at

random with probability pi =
S

10|Ei| . Gather these edges on Machine 1.
6 if |E′| > S then
7 The algorithm fails.
8 else
9 Let M ′ be a maximal matching computed on E′.

10 M ←M ∪M ′

11 Let Vi be the set of unmatched vertices in G.
12 Ei+1 = E(G[Vi])

13 i← i+ 1

14 return M

Algorithm 2: An algorithm for finding a maximal matching in the super-linear memory
regime of MPC.

3.3 Correctness
If Algorithm 2 does not fail on Line 7, it outputs a maximal matching by design. We now analyze
the failure probability.

Lemma 4. Algorithm 2 does not fail with high probability.
We will not cover this in class.

4

Proof. We now compute E [|E′|] in the i-th round. For an edge e ∈ Ei, let Xe be an indicator
variable

Xe =

{
1, if e is sampled
0, otherwise

Then, we have E [Xe] = pi. Also, it holds that |E′| =
∑

e∈Ei
Xe, and hence

E [|E′|] = E

[∑
e∈Ei

Xe

]
=

∑
e∈Ei

E [Xe] = |Ei| · pi =
S

10
.

Note that all the edges are sampled independently, and hence Xe random variables are independent.
Hence, we can apply the Chernoff bound, Theorem 3, to argue about the concentration of |E′|.
Specifically, we have

Pr [|E′| ≥ 2E [|E′|]] = Pr

[
|E′| ≥ S

5

]
≤ exp

(
−E [|E′|]

3

)
≤ 2−n.

Hence, with an exponentially small probability in n the algorithm fails in a single round. As we will
show, the algorithm takes O(1/c) rounds. Taking union bound over all the rounds, the algorithm
fails with probability at most O (2−n/c).

3.4 Implementation in MPC
We, again, are not going to dive into MPC implementation of low-level steps. The non-trivial step
is ignoring edges that are incident to matched vertices; this is needed for Line 11. Some of the prior
works explain how to achieve that by using [GSZ11]; one such publication is [CŁM+18].

Obtaining set E′ can be done by simply sampling edges locally, and then sending all sampled
ones to machine 1.

3.5 Round complexity
Theorem 5. Algorithm 2 runs in O(1/c) rounds and outputs a maximal matching whp.

The failure probability of Algorithm 2 is analyzed by Lemma 4. If the algorithm does not fail,
then it outputs a maximal matching.

Our proof of Theorem 5 consists of two parts. First, we will argue about a certain measure of
progress the algorithm makes in each round/iteration. Second, we will derive from that claim the
round complexity.

Theorem 6 (Union Bound). Boole’s Inequality or Union Bound states that for at most countable set
of events, the probability of one of the events happening is no greater than the sum of the probabilities
of each individual event. Mathematically, if E1, E2, E3 · · · are the events, then it holds that

Pr

 ∞⋃
j=1

Ei

 ≤ ∞∑
j=1

Pr [Ei] .

Lemma 7. Let E′ ⊆ E be a set of edges chosen independently with probability p. Then with
probability at least 1− e−n, for all I ⊆ V , either |E[I]| < 2n/p or E[I] ∩ E′ ̸= ∅.1

1For the sake of brevity, we use E[I] to denote E(G[I]), i.e., E[I] refers to the edges in the subgraph induced on a
vertex subset I.

5

Proof. Consider one such subgraph, G[I] = (I, E[I]) with |E[I]| ≥ 2n/p. The probability that none
of the edges in E[I] were chosen to be in E′ equals

Pr [E[I] ∩ E′ = ∅] =
∏

e∈E[I]

Pr [e /∈ E′] = (1− p)|E[I]| ≤ (1− p)2n/p. (1)

Next, from Taylor’s expansion it follows e−1 ≥ (1−x)1/x for |x| < 1. Applying this to Eq. (1) yields

Pr [E[I] ∩ E′ = ∅] ≤ (1− p)2n/p ≤ e−2n.

Since there are at most 2n total induced subgraphs G[I], the probability that there exists one
such that |E[I]| ≥ 2n/p and G[I] does not have an edge in E′ is at most 2ne−2n; this probability
is calculated by using Union bound (Theorem 6) over all the subgraphs. Note that 2ne−2n =(
2
e

)n
e−n ≤ 1 · e−n.

Next, we employ Lemma 7 to conclude the proof of Theorem 5. Consider iteration i. Lemma 7
essentially claims that if an induced subgraph G[I] has at least 2n/pi edges, then whp it intersects
E′. If G[I] intersects E′, e.g., e = {u, v} ∈ E(G[I]) ∩ E′, and since Algorithm 2 finds a maximal
matching in E′, that maximal matching contains at least one of u and v. It in turn means that whp
only a proper subset of I will remain among the unmatched vertices. That is, whp it holds that
|E(G[Vi])| < 2n/pi. From this and from the definition of pi given on Line 5, we further derive that
whp it holds

|Ei+1| = |E(G[Vi])| ≤
2n

pi
=

2n · 10|Ei|
S

=
20|Ei|
nc

.

This implies that the number of edges among unmatched vertices from iteration to iteration whp
drops by a factor of nc/20 at least; we are assuming that our graph is large and hence nc ≫ 20.
Therefore, the number of edges between unmatched vertices whp becomes at most n1+c within
O(1/c) many rounds.

This completes the analysis.

3.6 Further discussion
This discussion is inspired by an excellent question posed by your peer, Gaash David.

You might wonder why we could not find a maximal matching the same way as we found con-
nected components in Lecture 2. That is, what goes wrong if we perform the following: each machine
among its n1+c edges finds a maximal matching; all these maximal matchings are sent to nc fewer
machines; we repeat this?

Let X be the number of machines. To see what can go wrong, assume that machine k = 1 . . . X
has edges: {c, ak} and {ak, bk}. Moreover, assume that machine k outputs maximal matching
{c, ak} and removes {ak, bk} from further computation. This scenario is bad because among the
edges {c, ak}, for all k = 1 . . . X, a maximum matching has size 1. On the other hand, a maximum
matching among the edges {c, ak} and {ak, bk} for all k = 1 . . . X has size X. In other words, if we
adopt the algorithm from the paragraph above, in the process we might significantly reduce the size
of the final matching. This example is just to illustrate that matchings do not have the properties
we relied on while designing our algorithm for connectivity.

This example can be generalized in a way so that the underlying graph is much more dense.

References
[CŁM+18] Artur Czumaj, Jakub Łącki, Aleksander Mądry, Slobodan Mitrović, Krzysztof Onak, and

Piotr Sankowski. Round compression for parallel matching algorithms. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 471–484,
2018.

6

[GSZ11] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simu-
lation in the mapreduce framework. In ISAAC, volume 7074, pages 374–383. Springer,
2011.

[LMSV11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering:
a method for solving graph problems in mapreduce. In Proceedings of the twenty-third
annual ACM symposium on Parallelism in algorithms and architectures, pages 85–94,
2011.

7

	Introduction
	Preliminaries
	Notation
	Matchings
	Maximal Matching
	Maximum Matching
	Maximum vs. Maximal matching
	Approximate maximum matching

	Probability tools

	Computing Maximal Matchings
	Centralized setting
	Super-linear memory regime of MPC
	Correctness
	Implementation in MPC
	Round complexity
	Further discussion

