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1 Introduction
In this lecture, we continue studying the computation of approximate maximum matchings in MPC,
but this time in the sub-linear memory regime. The algorithm we present is a version of the so-
called peeling algorithm that, with particular adaptations, has been used in numerous research
articles [II86, IS86, OR10, CŁM+18, GGK+18, GU19]. We will see a simplified version of that
approach, where simplification comes at the expense of the approximation factor. Nevertheless, this
approximation factor remains constant and, in your homework, you will show that such an algorithm
can be in a black-box manner used to construct a (2 + ε) -approximate maximum matching with a
relatively small overhead in the round complexity.

2 Preliminaries

2.1 Notation
We will use G = (V,E) to denote a graph on the vertex set V and edge set E. If not stated otherwise,
we will use n to denote |V | and m to denote |E|. We will use NG(v) to denote the neighborhood
of v in G; this neighborhood excludes v itself. When it is clear from the context, we will omit
the subscript G and use N(v) instead. We use d(v) to denote the degree of vertex v in G, i.e.,
d(v) = |N(v)|.

We will use the notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f ·poly log f).
By saying that an event E happens with high probability (whp), we refer that Pr [E ] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Matchings
A matching M in a graph G = (V,E), is defined to be a set of pairwise non-adjacent edges. An
edge in a graph G is a “matched” edge if it is in M , and a vertex in a graph is said to be “matched”
if it is an endpoint of any matched edge. Otherwise, the vertex is said to be “unmatched”.

2.2.1 Maximal Matching

A matching M in a graph G = (V,E) is a maximal matching if every edge in G has a non-empty
intersection with at least one edge in M . In other words, a maximal matching is not a proper subset
of any other matching, i.e., if M̃ is the set of all matchings of a graph G, then M is a maximal
matching if ∀M ′ ∈ M̃ , it holds that M ̸⊂M ′.

2.2.2 Maximum Matching

A matching M⋆ in a graph G = (V,E) is a maximum matching if it contains the largest possible
number of edges. In other words, it has the maximum cardinality amongst all maximal matchings
in a graph G. In a maximum matching problem, we want to find the matching with the largest
cardinality.
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As explained in Section 2.2.1, both M1 and M2 are maximal matchings. But since |M1| =
max(|M1|, |M2|), thus, M⋆ = M1 is a maximum matching.

2.2.3 Maximum vs. Maximal matching

Every maximum matching is a maximal matching, but not vice versa. Proof of the following claim
is given in the previous lecture.

Lemma 1. Let G = (V,E) be a graph. If M is an arbitrary maximal matching, and M⋆ is a
maximum matching, then it holds that |M | ≤ |M⋆| ≤ 2|M |.

2.3 Probability tools
Theorem 2 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr [X ≥ a] ≤ E [X]

a
.

Theorem 3 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values in
[0, 1]. Let X def

=
∑k

i=1 Xi and µ
def
= E [X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [|X − µ| ≥ δµ] ≤ 2 exp
(
−δ2µ/3

)
.

(B) For any δ ∈ [0, 1] it holds Pr [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

(C) For any δ ∈ [0, 1] it holds Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
.

(D) For any δ ≥ 1 it holds Pr [X ≥ (1 + δ)µ] ≤ exp (−δµ/3).

3 Computing Approximate Maximum Matchings in the Sub-
linear Memory Regime

3.1 Maximal matching and MIS
In Lecture 4, we saw an algorithm for computing a maximal independent set of vertices in the sub-
linear regime. Maximal matching is a maximal independent set of edges in a graph. So, it is natural
to wonder whether we can use the algorithm from Lecture 4 to find a maximal matching in MPC –
in this version, each edge would select a number uniformly at random. At first sight, it might seem
that such an algorithm would require too much memory. Namely, an edge e = {u, v} would need
to learn the minimum value among all the edges incident to e. If edge e gets information from all
its incident edges, that amounts to O(d(u) + d(v)) messages. Summing up the number of messages
that have to be exchanged between all the edges by using this approach, it amounts to

∑
v∈V d2(v)

many of them, which can be significantly larger than 2m =
∑

v∈V d(v). Also, recall that a standard
assumption we are making is that the total memory across all the machines is O(m poly log n), which
also upper-bounds the total size of messages the machines can exchange.

Fortunately, finding the minimum value among the edges incident to e = {u, v} can be done much
more efficiently. Namely, each vertex w first computes the minimum value among the edges incident
to w; call this value yw. This computation can be performed using O(m) total communication in the
same way as we did in Lecture 4. Then, the minimum value among the edges incident to e equals
min{yu, yv}.
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3.2 Our main algorithm
Even though we could re-use the algorithm seen in Lecture 4 to compute a maximal matching in the
sublinear regime, we will study another approach, given as Algorithm 1. Variants of that algorithm
have applications in many settings, including dynamic, streaming, MPC linear memory regime, and
local computation algorithms. Approaches akin to Algorithm 1 are sometimes also called peeling
algorithms – Algorithm 1 “peels” the graph step by step by removing the highest degree vertices.

Input :
A graph G = (V,E)
Space per machine S = nc

1 M ← ∅
2 for i = 1 . . . log n do
3 Let A be the set of edges of G such that each edge is sampled with probability 2i

2n and
independently of other vertices.

4 Let Ã be the subset of all edges of A which do not share endpoints with any other edge
in A.

5 M ←M ∪ Ã

6 Remove from G all the vertices with endpoints in Ã and all the vertices whose degree is
at least n

2i .
7 return M

Algorithm 1: An algorithm for finding an approximate maximum matching.

3.3 Correctness
Algorithm 1 outputs a matching as (1) the set Ã added to M on Line 5 consists of edges which are
a matching themselves, and (2) after an edge is added to M its endpoints are removed from G on
Line 6.

3.4 Implementation in MPC
We are again not going to dive into MPC implementation of low-level steps. The non-trivial step
is removing vertices, computing the degree of a vertex, and obtaining Ã from A on Line 4. Some
of the prior works explain how to achieve that by using [GSZ11]; some of those publications are
[CŁM+18, ASS+18].

3.5 Round complexity
The algorithm uses O(log n) iterations by design. Each iteration can be implemented in O(1) MPC
rounds.

3.6 Approximation guarantee
The most challenging part of this algorithm is showing that it outputs a reasonably good approxi-
mation. We will approach that task by showing that, in expectation, the number of vertices removed
on Line 6 is a constant factor of the number of vertices in Ã.

For the analysis, we will need the following fact.

Fact 4. For any 0 ≤ x ≤ 1, it holds 1− x/2 ≥ e−x.

3



Proof. This is a calculus exercise that can be proved via Taylor’s expansion. Namely,

e−x =
∑
i≥0

xi

i!
.

The first several terms of this expansion are 1 − x + x2/2 − x3/6, which can be rewritten as 1 −
x/2− x/2 + x2/2− x3/6 ≤ 1− x/2− x3/6 ≤ 1− x/2, where we are using that x2 ≤ x for x ∈ [0, 1].
Our claim follows since x3/6 dominates the remainder of the expansion.

We first state this invariant that follows from Line 6.

Invariant 1. At the beginning of iteration i, the maximum vertex degree is n/2i−1.

Lemma 5. There is an absolute constant c such that, given a graph G, Algorithm 1 outputs a
matching M whose size in expectation is at most c smaller than the maximum matching size in G.

Proof. Fix iteration i of Algorithm 1, assuming that iterations 1 . . . i− 1 are already executed. For
an edge e = {u, v}, let Xe be an indicator random variable which equals 1 if edge e is added to M in
iteration i. Note that our definition of Xe conditions on iterations 1 . . . i−1 already being executed.
We have

Pr [Xe = 1] = Pr [e is sampled and no other edges incident to u and v is sampled] .

Due to the independence of edge sampling, this implies

Pr [Xe = 1] = Pr [e is sampled] · Pr [no edge other than e incident to u and v is sampled]

=
2i

2n
·
(
1− 2i

2n

)2· n

2i−1

=
2i

2n
·
(
1− 2i

2n

)4· n

2i by Fact 4
≥ 2i

2n
· e−4,

where we used Invariant 1 to upper-bound the degree of u and v by 2 · n/2i−1.
To continue with the analysis, let Ri be the vertices removed on Line 6 whose degree is at least

n/2i, and let Ãi be the edges in iteration i added to our output matching M . Since we are considering
iteration i after iterations 1 . . . i− 1 have happened, note that Ri is not a random variable. We have

E
[
|Ãi|

]
=E

[∑
e

Xe

]

≥
∑
v∈Ri

1

2

∑
e={u,v}

E [Xe]


≥

∑
v∈Ri

1

2

∑
e={u,v}

2i

2n
· e−4


=

∑
v∈Ri

(
1

2
d(v)

2i

2n
· e−4

)

≥
∑
v∈Ri

(
1

2

n

2i
2i

2n
· e−4

)

=|Ri|
e−4

4
.

The 1/2 in the analysis comes from the fact that an edge {u, v} can have both endpoints in Ri,
so Xe might be counted twice in the summation. From this sequence of inequalities, and summing
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up over all possible executions of iterations 1 . . . i − 1, we have that the final matching size is in
expectation at least e−4/4 fraction of the number of vertices removed on Line 6 whose degree is
above the corresponding threshold. Observe that after the algorithm is over, G has no edge. Hence,
removing M and ∪iRi from G the graph becomes empty. So, there is a maximal matching of size
at most E [|M |] +

∑
i E [|Ri|] in G.1 This implies that, in expectation, |M | is at most 2 ·

(
1 + 4e4

)
times smaller than a maximum matching in G.

Note that Lemma 5 provides an expectation guarantee instead of whp. This guarantee can be
turned into a whp one if we execute O(log n) instances of Algorithm 1 simultaneously and output
the largest matching among those O(log n) executions. We will not dive there.
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