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1 Introduction
We are now switching gears to the streaming model of computation. The history of the first streaming
algorithms can be traced back to the late seventies and the early eighties, attributed to works
[Mor78, MP80, FM85]. This research direction was popularized thanks to the seminal work by Noga
Alon, Yossi Matias, and Mario Szegedy [AMS96]. “For their foundational contribution to streaming
algorithms”, to quote, these authors even received a Gödel Prize in 2005. Since then, streaming
algorithms have become one of the typical playgrounds for theoretical computer scientists. Being
tailored for settings where the available memory is scarce, the streaming setting got significant
attention in practice as well.

2 Preliminaries

2.1 Notation
We will use the notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f · poly log f).

By saying that an event E happens with high probability (whp), we refer that Pr [E ] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Streaming setting
An algorithm A for a problem P is said to be a streaming algorithm if:

• A scans the input of size N element by element, e.g., edge by edge of a graph or entry by the
entry of an array. We also say that element by element arrive.

• A outputs a solution to P while at any moment its memory consumption is poly logN bits.

There are studies of streaming algorithms concerning how many scans/passes over the input A can
make. In this class, we assume that A makes only one pass/scan over the inputs.

2.3 Semi-streaming setting
Many problems are incredibly challenging in the streaming setting. Moreover, output for many
graph problems cannot be stored in poly log n memory. That inspired a number of researchers to
formalize a semi-streaming setting [FKM+05]. In this setting, if we are solving a problem on an
n-vertex graph, the algorithm can use O(n poly log n) bits of memory.

2.4 Probability tools
Theorem 1 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr [X ≥ a] ≤ E [X]

a
.
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3 Toy problems
As a warm-up, we will see two examples of simple streaming algorithms.

3.1 Sum of the input values
Problem: Given a stream of integers, we aim to compute their sum.

Solution: Initialize S ← 0. Scan integer by integer. When an integer x is scanned, update S ←
S + x. After processing the stream, output S.

This is a trivial streaming algorithm that also illustrates that we have never stored any of the actual
elements from the stream of integers.

3.2 Computing a maximal matching in semi-streaming
We now provide a semi-streaming algorithm (Algorithm 1) for finding a maximal matching. Algo-
rithm 1 simulates the classical greedy one.

Input : A graph G = (V,E) presented as a stream of edges
1 M ← ∅
2 Label each vertex as “free”.
3 for edge e = {u, v} on the stream do
4 if both u and v are “free” then
5 Label u and v as “taken”.
6 M ←M ∪ {e}

7 return M

Algorithm 1: A streaming algorithm for finding a maximal matching.

It is easy to maintain M and the labels of the vertices in O(n log n) memory.

4 Sampling an element from a stream
Consider a stream of elements, each represented by O(B) bits. Our goal is to uniformly at random
sample precisely one element from this stream by using only O(B + log n) bits of memory. The
idea we use is quite simple: we ensure that for a given prefix of length t of the stream containing
elements x1, . . . , xt, our algorithm in its memory stores only a single element chosen uniformly at
random from that prefix. An algorithm following this idea is presented as Algorithm 2.

Input : A sequence of elements (x1, . . . , xn) presented as a stream
1 e← x1

2 for i = 2 . . . n do
3 With probability 1/i replace e by xi.

4 return e

Algorithm 2: A streaming algorithm for sampling an element from a stream.

4.1 Memory complexity
Algorithm 2 maintains only a single element that by our assumption fits into B bits.
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4.2 Correctness
Our goal is to show that it holds Pr [e = xi] = 1/n. This can be proved by induction. Let et be the
value of element e after seeing {x1, . . . , xt}. For i ∈ {1, . . . , t}, we will prove that Pr [et = xi] = 1/t.

The base case holds trivially as e1 = x1 and hence Pr [e1 = x1] = 1.
Now, consider et+1 and assume that Pr [et = xi] = 1/t for i ∈ {1, . . . , t}. Then, we have by the

construction of our algorithm

Pr [et+1 = xt+1] = Pr [Algorithm 2 replaces et by xt+1] =
1

t+ 1
.

For i ∈ {1, . . . , t} we have

Pr [et+1 = xi] = Pr [Algorithm 2 does not replace et by xt+1 and et = xi] =
t

t+ 1
· 1
t
=

1

t+ 1
,

as desired.

5 The majority element
Consider a stream of elements {x1, . . . , xn}, where each element is represented by O(B) bits. Assume
that an element appears more than n/2 times in the stream; we call such an element majority. We
aim to design an algorithm that outputs the majority element using O(B + log n) bits of memory.

Input : A sequence of elements (x1, . . . , xn) is presented as a stream.
1 e← ∅
2 c← 0 /* A counter. */
3 for i = 1 . . . n do
4 if e = xi then
5 c← c+ 1
6 else if c > 0 then
7 c← c− 1
8 else
9 c← 1

10 e = xi

11 return e

Algorithm 3: A streaming algorithm for finding the majority element, if there exists one.

5.1 Memory complexity
Algorithm 3 maintains two numbers: an element e that fits into B bits and a non-negative counter
c that counts up to n. That counter uses O(log n) bits.

5.2 Correctness
Let m be the majority element. We want to show that under the assumption that m appears in the
stream more than n/2 it holds that Algorithm 3 returns e = m.

This can be proved inductively on the length of the stream. When n = 1, the algorithm outputs
m. Assume that Algorithm 3 outputs m for any stream of length less than n. Consider a stream of
length n.
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Assume that x1 ̸= m. Then, at some point after scanning x1, the counter c has to reach 0 as
x1 is not the majority. Consider the first such moment. Assume that the algorithm saw x1 for k
times before c reached 0. It means the algorithm scanned k elements different than x1, and hence
the rest of the stream has length n− 2k. The rest of the stream has more than n/2− k elements m,
and hence m is the majority in the rest of the stream so, by the inductive hypothesis, Algorithm 3
outputs m as desired.

Now assume that x1 = m. If c is never again 0 after x1 is scanned, then the algorithm trivially
outputs m. Otherwise, c reaches 0 before the end of the stream. In that case, as in the prior case,
Algorithm 3 scanned k times element m and k times elements different than m. Note that n > 2k
since m is the majority. In the rest of the stream of length n− 2k ≥ 1, there are more than n/2− k
appearances of m, which again by induction proves that Algorithm 3 outputs m in this case as well.
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