Lecture 9

Lecturer: Slobodan Mitrović

1 Introduction

We are now turning to finding connected components in the semi-streaming setting. We will see two algorithms, each for a specific setup in the streaming model.

2 Preliminaries

2.1 Notation

We will use the notation $\tilde{O}(f)$ to hide poly-logarithmic factors in f, i.e., $\tilde{O}(f) = O(f \cdot \text{poly} \log f)$. By saying that an event \mathcal{E} happens with high probability (whp), we refer that $\Pr[\mathcal{E}] \ge 1 - n^{-c}$ for some constant $c \ge 1$.

2.2 Streaming setting

An algorithm \mathcal{A} for a problem \mathcal{P} is said to be a *streaming algorithm* if:

- \mathcal{A} scans the input of size N element by element, e.g., edge by edge of a graph or entry by the entry of an array. We also say that element by element *arrive*.
- \mathcal{A} outputs a solution to \mathcal{P} while at any moment its memory consumption is poly log N bits.

There are studies of streaming algorithms concerning how many scans/passes over the input \mathcal{A} can make. In this class, we assume that \mathcal{A} makes only one pass/scan over the inputs.

2.3 Semi-streaming setting

Many problems are incredibly challenging in the streaming setting. Moreover, output for many graph problems cannot be stored in poly $\log n$ memory. That inspired several researchers to formalize a *semi-streaming* setting [FKM⁺05]. In this setting, if we solve a problem on an *n*-vertex graph, the algorithm can use $O(n \operatorname{poly} \log n)$ bits of memory.

3 Connected components in the semi-streaming setting

A reasonably simple algorithm maintains the connected components for the so-far-seen edges. It is outlined as Algorithm 1.

Input : A graph G = (V, E) given as a stream of edges. Assume that the vertices in V are labeled 1 through n.
// At the end of the stream, the vector CC will represent the connected components of G.
1 Initialize CC_v = v for each v ∈ V.
2 for edge e = {u, v} on the stream do
3 if CC_u ≠ CC_v then
4 For each w such that CC_w = CC_u set CC_w = CC_v.
5 return CC

Algorithm 1: A streaming algorithm for finding connected components.

First, Algorithm 1 uses $O(n \log n)$ memory as its CC_v is an integer in the $1 \dots n$ range. Hence, CC uses $O(n \log n)$ bits of storage. Second, Line 4 is nothing else but merging two different connected components when an edge $e = \{u, v\}$ arrives. Hence, if we are not concerned with the running time, Algorithm 1 is a semi-streaming algorithm that outputs connected components.

3.1 Running time

Although our main concern is not the running time of the algorithms we design, it can be insightful – and certainly beneficial in practical terms – attempting to obtain running-time-wise efficient algorithms. In light of that, how much time does Line 4 of Algorithm 1 take over the entire stream? Consider the example in which the input graph is a path $v_1 - v_2 - \ldots - v_n$. Assume that the stream presents edges $\{v_i, v_{i+1}\}$ in the order of increasing *i*. In addition, assume that when $\{v_i, v_{i+1}\}$ arrives, then the algorithm updates the labels of vertices 1 through *i*. Then, the running time across all the edges is $O(n^2)$, even if the number of edges is at most *n*.

Can we implement the idea described in Algorithm 1 faster? Yes, we can. Line 4 essentially merges two connected components; to be precise, it merges the connected component of u to that of v. If we would store those components in the union-find data structure, we could perform all the merges in $O(n \log^* n)$ time. We can also obtain $O(n \log n)$ running time across all the merges if we merge *smaller* to *larger* connected component. How do we prove that it takes $O(n \log n)$ time? Fix vertex w. Whenever w merges to another connected component, the newly connected component w belongs to is at least twice as large as the previously connected component w belonged to. Since no connected component has a size more than n, the vertex w can be merged into other connected component across all the n vertices, the running time spent on merging is $O(n \log n)$.

4 The turnstile setting

We can think of a streaming setting as a set of updates on our object. For instance, when we say that there is a stream of edges (e_1, \ldots, e_m) , we can also think that we begin with an empty graph. Then, the edge e_1 is added, the edge e_2 , and so on. In this case, the edges are also inserted. However, we can also think of settings where edges are deleted. An example of such a stream is $((e_1, 1), (e_2, 1), (e_3, -1), \ldots)$, where $(e_1, 1), (e_2, 1)$ means that e_1 and e_2 are inserted, while $(e_3, -1)$ means that e_3 is removed.

4.1 L_0 sampler

In Lecture 7, we saw an algorithm that samples an element from a stream in which only insertions are allowed. Perhaps surprisingly, there exists a streaming algorithm that samples an element even in the turnstile setting. We call these algorithms L_0 samplers. Given a vector $x \in \mathbb{R}^d$, let supp(x) be

the number of non-zero coordinates of x. It will be convenient to think of L_0 sampling as outputting an index in supp(x) such that the following holds

$$\Pr\left[\text{output equals } j\right] = \begin{cases} \frac{1}{\text{supp}(x)} & \text{if } x_j \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Theorem 1 ([JST11], Section 2.1). Let $x \in \mathbb{R}^{\text{poly} n}$ be a non-zero vector. For the turnstile setting, there exists an L_0 sampler algorithm that uses $O(\text{poly} \log n)$ bits and, with high probability, outputs a coordinate $j \in \text{supp}(x)$.

It is important to note that Theorem 1 does not require x to be stored in the memory; instead, its entries are updated in the streaming fashion. The memory the stated L_0 uses includes all the information it stores about x.

A handy feature of some of the existing L_0 samplers, like the one described in [JST11], is that the algorithm performs a set of *linear measurements* of x, and then uses those measurements to output the desired index. This technique has had a significant impact on designing streaming algorithms. By a linear measurement, we typically refer to a matrix $M \in \mathbb{R}^{k \times d}$ and the fact that the algorithm computes Mx; typically, $k \in O(\text{poly} \log n)$. $S_x = Mx$ is called a *linear sketch*. Linear sketches are so powerful as they are additive. In particular,

$$S_x + S_y = Mx + My = M(x+y).$$

In other words, taking the sum of linear sketches computed on two distinct vectors is the same as computing a linear sketch on the sum of those two vectors. We will next see how those properties can be highly beneficial in solving problems.

4.2 Connected components

We now phrase the problem of computing connected components in the language that fits well into applying the L_0 sampler results we mentioned. As the first step, we talk about graph representation. As the second step, we describe a turnstile semi-streaming algorithm that whp outputs connected components.

4.2.1 Graph representation

Our algorithm constructs several L_0 samples for the neighborhood of each vertex. To apply Theorem 1, it is convenient to think about the neighbors of a vertex as a vector. To that end, for each vertex v, we define vector $x^v \in \mathbb{R}^{n^2}$ as follows

$$x_{(a,b)}^{v} = \begin{cases} 1 & \text{if } v = a < b \text{ and } \{a,b\} \in E \\ -1 & \text{if } a < b = v \text{ and } \{a,b\} \in E \\ 0 & \text{otherwise} \end{cases}$$

One might wonder why some entries in x^v are positive while some negative. This representation has a very convenient property. Namely, consider any subset of vertices $U \subseteq V$. Then, $\operatorname{supp}\left(\sum_{w \in U} x^w\right)$ contains the edges incident to U but excluding the edges within U. That is, for two neighboring vertices a and b such that a < b, we have that $(x^a + x^b)_{(a,b)} = 0$. We build on these observations to design our algorithm.

4.2.2 Algorithm

We are almost ready to provide our algorithm. Before that, we mention that the matrix M discussed below Theorem 1 depends on a set of random bits r. So, to emphasize that it is a function of a string of random bits, instead of L_0 sampler only, we write L_0^r sampler in our algorithm.

Algorithm 2 is inspired by the following simple process for computing CC. Initially, each vertex is a singleton component. Then, for $\log n$ steps, we perform the following. Each current CC Csamples an edge C_e that connects C to another CC; this sampling is done simultaneously for all the components. Then, each component C – one after another – merges with the component connected to it by C_e . Algorithm 2 uses L_0 sampling to implement this idea.

Algorithm 2: A turnstile algorithm for finding connected components.

Success probability. To analyze the algorithm, we first recall that each of the L_0 samplers provides correct output with high probability, i.e., with probability at least $1 - n^{-c}$ for any arbitrary large constant c. So, by the union bound over all the samplers, we have that they provide correct output whp.

Number of samplers. Why did we use $O(\log n) L_0$ samplers instead of only 1 per vertex? The reason is that once we use a sampler $L_0^{r_1}(v)$ to sample an edge incident to a component C that contains vertex v, we have revealed a part of $L_0^{r_1}(v)$'s randomness, so it is not clear that $L_0^{r_1}(v)$ can be used again to provide the desired output.

Number of iterations. Why $\log n$ iterations on Line 7 suffice? Because each time we perform an iteration, the smallest non-maximal CC at least doubles in size.

Memory complexity. Since each vertex maintains $O(\log n)$ samplers, and each sampler uses poly log *n* bits of memory, the total memory consumption of Algorithm 2 is $O(n \operatorname{poly} \log n)$ bits.

References

- [FKM⁺05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. *Theoretical Computer Science*, 348(2-3):207–216, 2005.
- [JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 49– 58, 2011.