
ECS-189A Special Topics in TCS May 30, 2023

Lecture 9
Lecturer: Slobodan Mitrović

1 Introduction
We are now turning to finding connected components in the semi-streaming setting. We will see two
algorithms, each for a specific setup in the streaming model.

2 Preliminaries

2.1 Notation
We will use the notation Õ(f) to hide poly-logarithmic factors in f , i.e., Õ(f) = O(f · poly log f).

By saying that an event E happens with high probability (whp), we refer that Pr [E ] ≥ 1 − n−c

for some constant c ≥ 1.

2.2 Streaming setting
An algorithm A for a problem P is said to be a streaming algorithm if:

• A scans the input of size N element by element, e.g., edge by edge of a graph or entry by the
entry of an array. We also say that element by element arrive.

• A outputs a solution to P while at any moment its memory consumption is poly logN bits.

There are studies of streaming algorithms concerning how many scans/passes over the input A can
make. In this class, we assume that A makes only one pass/scan over the inputs.

2.3 Semi-streaming setting
Many problems are incredibly challenging in the streaming setting. Moreover, output for many graph
problems cannot be stored in poly log n memory. That inspired several researchers to formalize a
semi-streaming setting [FKM+05]. In this setting, if we solve a problem on an n-vertex graph, the
algorithm can use O(npoly log n) bits of memory.

3 Connected components in the semi-streaming setting
A reasonably simple algorithm maintains the connected components for the so-far-seen edges. It is
outlined as Algorithm 1.

1



Input : A graph G = (V,E) given as a stream of edges. Assume that the vertices in V
are labeled 1 through n.

// At the end of the stream, the vector CC will represent the connected
components of G.

1 Initialize CCv = v for each v ∈ V .
2 for edge e = {u, v} on the stream do
3 if CCu ̸= CCv then
4 For each w such that CCw = CCu set CCw = CCv.

5 return CC

Algorithm 1: A streaming algorithm for finding connected components.
First, Algorithm 1 uses O(n log n) memory as its CCv is an integer in the 1 . . . n range. Hence,

CC uses O(n log n) bits of storage. Second, Line 4 is nothing else but merging two different connected
components when an edge e = {u, v} arrives. Hence, if we are not concerned with the running time,
Algorithm 1 is a semi-streaming algorithm that outputs connected components.

3.1 Running time
Although our main concern is not the running time of the algorithms we design, it can be insight-
ful – and certainly beneficial in practical terms – attempting to obtain running-time-wise efficient
algorithms. In light of that, how much time does Line 4 of Algorithm 1 take over the entire stream?
Consider the example in which the input graph is a path v1− v2− . . .− vn. Assume that the stream
presents edges {vi, vi+1} in the order of increasing i. In addition, assume that when {vi, vi+1} ar-
rives, then the algorithm updates the labels of vertices 1 through i. Then, the running time across
all the edges is O(n2), even if the number of edges is at most n.

Can we implement the idea described in Algorithm 1 faster? Yes, we can. Line 4 essentially
merges two connected components; to be precise, it merges the connected component of u to that
of v. If we would store those components in the union-find data structure, we could perform all the
merges in O(n log⋆ n) time. We can also obtain O(n log n) running time across all the merges if we
merge smaller to larger connected component. How do we prove that it takes O(n log n) time? Fix
vertex w. Whenever w merges to another connected component, the newly connected component
w belongs to is at least twice as large as the previously connected component w belonged to. Since
no connected component has a size more than n, the vertex w can be merged into other connected
components O(log n) times. Hence, if a smaller is merged to the larger connected component across
all the n vertices, the running time spent on merging is O(n log n).

4 The turnstile setting
We can think of a streaming setting as a set of updates on our object. For instance, when we
say that there is a stream of edges (e1, . . . , em), we can also think that we begin with an empty
graph. Then, the edge e1 is added, the edge e2, and so on. In this case, the edges are also inserted.
However, we can also think of settings where edges are deleted. An example of such a stream is
((e1, 1), (e2, 1), (e3,−1), . . .), where (e1, 1), (e2, 1) means that e1 and e2 are inserted, while (e3,−1)
means that e3 is removed.

4.1 L0 sampler
In Lecture 7, we saw an algorithm that samples an element from a stream in which only insertions
are allowed. Perhaps surprisingly, there exists a streaming algorithm that samples an element even
in the turnstile setting. We call these algorithms L0 samplers. Given a vector x ∈ Rd, let supp(x) be

2



the number of non-zero coordinates of x. It will be convenient to think of L0 sampling as outputting
an index in supp(x) such that the following holds

Pr [output equals j] =

{
1

supp(x) if xj ̸= 0

0 otherwise

Theorem 1 ([JST11], Section 2.1). Let x ∈ Rpolyn be a non-zero vector. For the turnstile setting,
there exists an L0 sampler algorithm that uses O(poly log n) bits and, with high probability, outputs
a coordinate j ∈ supp(x).

It is important to note that Theorem 1 does not require x to be stored in the memory; instead,
its entries are updated in the streaming fashion. The memory the stated L0 uses includes all the
information it stores about x.

A handy feature of some of the existing L0 samplers, like the one described in [JST11], is that the
algorithm performs a set of linear measurements of x, and then uses those measurements to output
the desired index. This technique has had a significant impact on designing streaming algorithms.
By a linear measurement, we typically refer to a matrix M ∈ Rk×d and the fact that the algorithm
computes Mx; typically, k ∈ O(poly log n). Sx = Mx is called a linear sketch. Linear sketches are
so powerful as they are additive. In particular,

Sx + Sy = Mx+My = M(x+ y).

In other words, taking the sum of linear sketches computed on two distinct vectors is the same as
computing a linear sketch on the sum of those two vectors. We will next see how those properties
can be highly beneficial in solving problems.

4.2 Connected components
We now phrase the problem of computing connected components in the language that fits well into
applying the L0 sampler results we mentioned. As the first step, we talk about graph representation.
As the second step, we describe a turnstile semi-streaming algorithm that whp outputs connected
components.

4.2.1 Graph representation

Our algorithm constructs several L0 samples for the neighborhood of each vertex. To apply Theo-
rem 1, it is convenient to think about the neighbors of a vertex as a vector. To that end, for each
vertex v, we define vector xv ∈ Rn2

as follows

xv
(a,b) =


1 if v = a < b and {a, b} ∈ E

−1 if a < b = v and {a, b} ∈ E

0 otherwise

One might wonder why some entries in xv are positive while some negative. This representation has
a very convenient property. Namely, consider any subset of vertices U ⊆ V . Then, supp

(∑
w∈U xw

)
contains the edges incident to U but excluding the edges within U . That is, for two neighboring
vertices a and b such that a < b, we have that (xa + xb)(a,b) = 0. We build on these observations to
design our algorithm.

3



4.2.2 Algorithm

We are almost ready to provide our algorithm. Before that, we mention that the matrix M discussed
below Theorem 1 depends on a set of random bits r. So, to emphasize that it is a function of a
string of random bits, instead of L0 sampler only, we write Lr

0 sampler in our algorithm.
Algorithm 2 is inspired by the following simple process for computing CC. Initially, each vertex

is a singleton component. Then, for log n steps, we perform the following. Each current CC C
samples an edge Ce that connects C to another CC; this sampling is done simultaneously for all the
components. Then, each component C – one after another – merges with the component connected
to it by Ce. Algorithm 2 uses L0 sampling to implement this idea.

Input : A graph G = (V,E) given as a stream of edges. Assume that the vertices in V
are labeled 1 through n.

/* Initialization. */
1 Fix r1, . . . , rlogn random-bit strings that will be used for computing L0 samplers.
2 For each vertex v and each random-bit string ri, we will maintain an Lri

0 (v) sampler for xv.
/* Stream processing. */

3 for edge (e = {u, v}, flag) on the stream do
// If flag equals true, then e is added to the graph, and otherwise e is

removed from the graph. An edge is removed only if it was previously
added.

4 for i = 1 . . . log n do
5 Update Lri

0 (u) and Lri
0 (v) based on (e, flag).

/* Stream post-processing. */
6 Mark each vertex as a singleton CC.
7 for i = 1 . . . log n do
8 For each current connected component C obtain an Lri

0 (C) sampler for supp
(∑

w∈C xw
)

by combining the linear sketches of Lri
0 (w) for all w ∈ C.

9 If such an edge exists, using Lri
0 (C) sample an edge e incident to C. Merge the two

connected components incident to e.
10 return the computed connected components

Algorithm 2: A turnstile algorithm for finding connected components.

Success probability. To analyze the algorithm, we first recall that each of the L0 samplers
provides correct output with high probability, i.e., with probability at least 1−n−c for any arbitrary
large constant c. So, by the union bound over all the samplers, we have that they provide correct
output whp.

Number of samplers. Why did we use O(log n) L0 samplers instead of only 1 per vertex? The
reason is that once we use a sampler Lr1

0 (v) to sample an edge incident to a component C that
contains vertex v, we have revealed a part of Lr1

0 (v)’s randomness, so it is not clear that Lr1
0 (v) can

be used again to provide the desired output.

Number of iterations. Why log n iterations on Line 7 suffice? Because each time we perform an
iteration, the smallest non-maximal CC at least doubles in size.

Memory complexity. Since each vertex maintains O(log n) samplers, and each sampler uses
poly log n bits of memory, the total memory consumption of Algorithm 2 is O(npoly log n) bits.

4



References
[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. On graph problems in a semi-streaming model. Theoretical Computer Science,
348(2-3):207–216, 2005.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, find-
ing duplicates in streams, and related problems. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 49–
58, 2011.

5


	Introduction
	Preliminaries
	Notation
	Streaming setting
	Semi-streaming setting

	Connected components in the semi-streaming setting
	Running time

	The turnstile setting
	L0 sampler
	Connected components
	Graph representation
	Algorithm



