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Abstract—Research networks are designed to support high
volume scientific data transfers that span multiple network
links. Like any other network, research networks experience
anomalies. Anomalies are deviations from profiles of normality
in a research network’s traffic levels. Diagnosing anomalies is
critical both for network operators and users (e.g., scientists).
In this paper we present Flowzilla, a general framework for
detecting and quantifying anomalies on scientific data transfers
of arbitrary size. Flowzilla incorporates Random Forest Regres-
sion(RFR) for predicting the size of data transfers and utilizes an
adaptive threshold mechanism for detecting outliers. Our results
demonstrate that our framework achieves up to 92.5% detection
accuracy. Furthermore, we are able to predict data transfer sizes
up to 10 weeks after training with accuracy above 90%.

Index Terms—network security, network performance mea-
surement, anomaly detection

I. INTRODUCTION

Modern science depends on high-performance research net-
works, just as it depends on high-performance computing
and storage, to make progress. For example, some of the
experiments at the Large Hadron Collider in Switzerland
and France require high-speed transfers of petabytes of data
across multiple sites located in different parts of the world.
The LSST [1] in the Chilean mountains has near-real-time
requirements on the order of seconds to transfer and analyze
data halfway around the world.

The research networks used for science (henceforth, just
"research networks") use similar technologies to the ones
present in commodity Internet; however, their workload and
requirements are very different. They service far fewer flows in
a day but, for some portion of those flows, must provide orders
of magnitude lower packet loss and better throughput [2].

Just as with any network, research networks experience
variations in traffic patterns. While some variations can be
ascribed to known causes, others should be classified as
anomalies. These anomalies can be associated with a variety
of factors, from malicious activities (e.g., data exfiltration
attempts, malicious uploads) to simple user errors, to network
device (e.g., router) misconfigurations.

Regardless of their source, real time detection and diagnosis
of these anomalies remains a challenge for network engineers
and is crucial from an operational standpoint. Undetected
anomalies can lead to network congestion and over-utilization

of network devices. Detecting anomalies is also important for
identification of components of the software and network stack
that are experiencing “soft failures” that degrade performance,
but do not generate explicit alerts.

There are two distinct approaches in detecting network
anomalies. The first is signature-based detection [3], which fo-
cuses on discovering pre-defined “signatures” (i.e. operational
patterns) of previously-identified malicious events in network
traffic. The second approach, anomaly-based detection [3],
identifies events that deviate from what is considered as
“normal” behavior of the monitored system and thus has the
potential to detect novel attacks.

Despite a large literature on anomaly-based detection that
incorporates machine learning techniques in order to detect
outliers in traffic datasets, effectively detecting most network
anomalies in most environments remains challenging [4].
These challenges can be attributed to numerous factors, includ-
ing: 1) the scarcity of training datasets that contain sufficient
amounts of flow data for generating accurate profiles of both
normal behavior and anomalous behavior; 2) most network
traffic inherently has high degrees of variability, causing the
signal of many anomalies to be lost in the noise of legitimate
traffic; 3) statistical techniques, such as machine learning, are
typically designed to discover similarities rather than detect
outliers [4]. Due to these factors, network operators and
scientists typically become aware of an anomalous event long
after the fact and often without actionable details about the
anomaly.

In this work, we focus on overcoming these limitations,
while leveraging the distinctive properties of research net-
works. In particular, our framework focuses on volume anoma-
lies, i.e., any positive or negative change in the size (volume)
of the data exchanged between two source and destination
endpoints. Since not all network anomalies are attributed to
malicious intent, a volume anomaly might well be related to
a simple erroneous user activity. For example, in the context
of a scientific network, a larger than usual download could
be related to a misconfigured automated script that starts
downloading large amounts of data from the host where it
was executed to the user’s local machine. On the other hand,
a large and fast download could indicate an attacker trying to
exfiltrate a large amount of scientific data. Regardless of their



underlying cause,volume anomalies are critical to understand
in research networks, as they can cause performance problems
to applications trying to use the same network components.

The goal of this paper is to describe methods for detect-
ing volume anomalies in large science flows for improving
security and reliability for the science that uses research
networks. By operating on research network flow data, our
approach addresses a fundamental impediment of machine-
learning intrusion detection: enormous variability of input
traffic data [4], [5]. Our work breaks anomaly detection into
three steps: First, we build a profile of normal traffic behavior
based on past traffic measurements representing scientific data
transfers of arbitrary size. Then, based on the profile, we detect
individual flows that deviate significantly in terms of total
volume of data being transferred. The deviation refers to either
positive or negative volume changes. These flows are labeled
as anomalous. Finally, we quantify the detected anomalies by
their size.

The contributions of the paper are:
1) A general framework, called Flowzilla, to detect volume

anomalies in large science flows. We build a profile of
normal traffic behavior based on past flow measurements.
Once the normal traffic profile has been constructed
Flowzilla uses an adaptive threshold mechanism to detect
outlier flows that deviate significantly from the normal
profile.

2) We evaluate Flowzilla in terms of detection capability
and temporal stability. In our evaluation process we
systematically inject anomalous network flows in order to
calculate the detection rate of our framework for different
anomaly sizes. Our results show that Flowzilla is able to
achieve a detection rate up to 92.5% for different anomaly
sizes.

The paper is organized as follows: In Section II we provide
the problem description. In Section III we discuss related
work on anomaly detection using different machine learning
techniques, while Section IV presents our proposed solution
and highlights key elements of our approach. Details of our
results and evaluation are described in Section V-A. Finally,
Section VI concludes the paper with key observations, recom-
mendations, and suggestions for future work.

II. BACKGROUND

In this section we advocate for the need of an adaptive
threshold mechanism for detecting volume anomalies. Further-
more, we describe our data sources and the data collection
process.

A. Adaptive threshold

An intuitive approach to volume anomaly detection would
be to build a normal profile for network flow sizes and
then flag any data transfer that deviates from that profile
(i.e., the size of the transfer exceeds a certain threshold)
as anomalous. Setting a constant volume threshold requires
careful consideration since setting the threshold value at a
relatively low number could lead to an increased number

of false positives while setting it too high could have the
opposite effect. Even if the anomaly detection system was
able to assign a reasonable threshold value automatically, this
approach has serious drawbacks. Scientific traffic has high
seasonal variability, e.g., large data transfers tend to occur
near major conference deadlines. This means that any static
threshold approach will regularly produce too many false
positives or negatives to be practically useful.
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Fig. 1: Flow sizes towards a Data Transfer Node (DTN) at
NERSC, on May 29th 2018. Majority of flow sizes are under
20GB.
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Fig. 2: Flow sizes towards a Data Transfer Node (DTN) at
NERSC, on June 5th 2018. Majority of flow sizes exceed
20GB.

Figures 1 and 2 represent the total volume of data transfers
towards the NERSC DTNs used for our experiments (see next
section for details), over a 24 hour period on two occasions
that are one week apart from each other. In the 05/06/2018
dataset, there is a much larger number of transfers exceeding
20GB (5-8 pm time window). As a result, a threshold value



that provides an acceptable detection rate in the 05/29/2018
dataset would result in an increased number of false positives
in the 05/06/2018 dataset.

To address this issue, we have designed an anomaly detec-
tion framework that periodically recomputes and calibrates the
threshold value in order to maintain an acceptable detection
rate.

B. Network Data

Our anomaly detection model operates on network traffic
data collected from 10 hosts referred to as Data Transfer
Nodes (DTNs) [2] located at the National Energy Research
Scientific Computing Center (NERSC) [6]. DTNs are explicitly
dedicated and fine tuned for performing large data transfers
between the NERSC scientific facility and the external scien-
tific community. They are configured with low-latency, high-
bandwidth network interface cards (NICs) and equally high-
bandwidth disk I/O subsystems designed to limit disk access
as a bottleneck. A variety of tools such as Globus online [7],
Aspera [8], and GridFTP [9] are typically used in order to
automate transfer of large datasets.

Data from each DTN is collected with the “tstat” network
monitoring tool [10]. Tstat is in many ways similar to the
more well-known NetFlow [11], but is, first and foremost, not
sampled. In addition, it is able to group packets into flows
and derive detailed statistics and performance metrics for each
flow. Grouping packets into flows is particularly useful for
optimizing efficiency in processing large amounts of network
data. In addition, tstat records include 52 features per flow,
including some not collected by NetFlow, such as a count
of retransmits. The full list of the computed performance
metrics can be found here [10]. Furthermore, as opposed to
NetFlow solutions, where several analyzers need to be placed
at strategic monitoring points (such as exchange points), tstat
is a much less invasive approach that analyzes flow traces at
end hosts focusing at end-to-end flow statistics.

III. RELATED WORK

A variety of statistical anomaly detection methods have been
previously investigated in order to detect network anomalies
that span across multiple links. Gu et al. [12] used a behavior-
based anomaly detection method based on maximum entropy
for establishing a baseline distribution for benign, “normal”
traffic. Packets are divided into different classes based on
characteristics like port number, protocol, etc. The baseline
distribution is then compared with the relative entropy of
new network traces. The dataset analyzed includes one week
of flow data collected from a UMASS gateway. Although
the authors are able to identify specific packet classes that
are more prone to cause anomalies, they did not validate
their approach on multiple datasets. Furthermore, the traces
analyzed exclude small sized flows.

Lakhina et al. [13] were able to identify different anomaly
categories, from flash crowds to denial of service (DoS) attacks
and massive data transfers, by aggregating traffic flows at
an origin-destination level and applying subspace methods on

sampled traffic data from the Abilene Network [14]. Although
the analyzed data represent flows from a research network,
the authors use a significantly smaller data set (4 weeks of
sampled only data) for training. Furthermore, their analysis
was performed on NetFlow-type data derived from routers
and not end hosts. Lu et al. [15] used wavelet analysis in
order to detect outliers in network flows. The authors used
DARPA intrusion detection dataset [16] in order to evaluate
their solution. The obtained results show a relatively high
detection rate (up to 75% in identifying attack classes) but
their solution has only been tested on significantly narrower
datasets, containing up to a single day’s worth of training data
that do not focus on scientific data transfers.

Hu et al. [17] use robust support vector machines (SVM) in
order to perform anomaly detection over noisy and potentially
tainted data. The authors use the 1998 DARPA intrusion
detection dataset [16] both for training and evaluation of their
solution. Their solution is able to achieve satisfactory detection
rates but has only been tested in a relatively outdated dataset
with single host data as opposed to multiple end-host data
from a research network. Khan et al. [18] describe a scalable
SVM-based solution focusing on hierarchical clustering for
reducing SVM’s training time. Their solution was evaluated
on generic internet traffic datasets that did not include high
volume scientific data transfers.

Network traffic has high-dimensionality because of the
plethora of available feature measurements along with the
different distribution and dispersion of each measurement.
Lakhina et al. [19] use Principal Component Analysis (PCA)
for reducing network traffic dimensionality and for success-
fully detecting volume-related anomalies. Furthermore, they
were able to identify the actual flow(s) that are involved in
the anomalous event. The approach used three datasets, each
containing a weeks worth of origin-destination (OD) NetFlow
data from the European backbone of Sprint network [20]
and Abilene network [14]. Although the proposed framework
is able to quantify the anomalous events in terms of traffic
volume, it is as sensitive to the presence of outliers in the
analyzed traffic data as most of the PCA-based methods [21].
Furthermore, the proposed solution is applied to sampled
NetFlow-like data, as opposed to complete flow records.

Chhabra et al. [22] investigate both unsupervised and su-
pervised machine learning techniques for classification of
scientific flows based on their size (elephant and mice flows).
Although this work constitutes the first step towards predicting
flow size in research data transfers, it only focuses on flow size
prediction rather than identification of potentially anomalous
flows. Furthermore, the training dataset contains NetFlow data
from exchange points as opposed to our solution which trains
on end-host non-sampled data.

Self learning techniques about the system’s normal behav-
ior have been the basis for many machine-learning based
anomaly detection solutions. However, as Sommer and Paxson
report [4], network traffic fundamentally exhibits considerable
variability making it hard to establish a notion of normality. In
addition, the base-rate fallacy [23] affects the ability of IDS to



detect truly malicious activity. Our work leverages the distinct
properties of research networks for overcoming the normality
establishment limitation, and the relative frequency of volume
anomalies (as we define them) mediates the difficulties intro-
duced by the base-rate fallacy.

We have described different machine learning and statis-
tical approaches for anomaly detection on different types of
network data. To our knowledge our work distinguishes itself
from other solutions in the following manner: we perform
anomaly detection using machine learning on non-sampled
science traffic data from a research network and our datasets
include data transfers of arbitrary size.

IV. ARCHITECTURE

Figure 3 shows the architecture of Flowzilla. Our framework
consists of four main components: the Feature Extraction
Filter, the Model, the Threshold Calculator and the Detector.
The tstat tool is responsible for collecting data from the DTNs
and placing them in a database. The Feature Extraction filter
securely connects to the tstat database and extracts the desired
subset of features. This subset of features is sent, as training
data, to the Model. Once the model is built, it is stored for later
use in the threshold calculation and detection phases. Flowzilla
can periodically retrain the Model depending on changes on
the overall network load. For example, during periods with
high frequency large data transfers network operators can opt
for retraining in order to increase flow size prediction accuracy.
The Threshold Calculator is responsible for calculating the
detection threshold value based on previous flow data (see
Subsection IV-B for a detailed explanation of the threshold
calculation mechanism). The threshold value is periodically
recalculated to reflect changes in the volume of scientific data
transfers. The Detector detects anomalous flows based on the
Model’s predicted flow sizes and the threshold value. The
Detector stores details of anomalous flows and their individual
features for further analysis.

There are two phases in our approach: training and detec-
tion. During the training phase, we use the training dataset
in order to build the model for flow size prediction and
calculate the threshold value (steps 1,2 and 3 in Figure 3).
Then, the threshold is communicated to the detector (step 4).
During the detection phase (steps 5 and 6) we use the Feature
Extraction Filter to extract the necessary subset of features
from new, previously unseen data (step 5). Then, the new
data is forwarded to the detector for testing and detection of
anomalous events.

Our approach is based on using history based flow size
prediction as a tool for detecting volume-related anomalies
in research networks. The task of flow size prediction can
be formulated as a regression problem, i.e., predicting a real
valued number (in our case the flow size) based on multiple
real valued input features.

A. Feature Selection

A complete tstat flow entry contains 52 features, each of
which has varied distribution across datasets. In order to

derive meaningful results when predicting the desired feature,
we carefully investigate the relationship between the size
of the flow and different combinations of tstat flow entries.
Furthermore, by selecting an approximately-best subset of
features, we reduce the training time of our model while
simultaneously maintaining sufficient information per flow.

Input feature Abbr. Tstat field

Network throughput T bits_per_second,
throughput_Mbps

Flow duration D duration
Source IP SIP src_geoip
Destination IP DIP dst_geoip

TABLE I: Input features and their tstat representation

The subset of features can be found in Table I. All features
are weighted equally. Note that we do not use port numbers
in our model since we are targeting an application-agnostic
prediction. In our model each flow (F ) is represented as a
set of the features F = {T,D, SIP , DIP } at time t. Given
F we want to predict y where y is the amount of data (i.e.
volume) being transferred on F . This is achieved by training
a regression function f and applying f to F . The function f
is trained using training data i.e., collected data from previous
flows with known feature sets and the corresponding measured
volume.

To predict the size of the data transfers we use Random
Forest Regression (RFR) [24] an established machine learning
tool for multi-feature regression. We select RFR for the
following reasons: 1) It can accept multiple features and show
their importance when generating a prediction regarding the
size of the data transfers [25]. 2) The computational cost as
well as the training time for RFR remains low for datasets
containing hundreds of thousands of scientific network flows.

B. Threshold definition

Before describing our adaptive threshold mechanism, we
denote the actual volume of a flow i as V i

real and the
predicted volume as V i

pred. Our approach relies on whether the
difference between the real volume and the predicted volume,
over a given time interval, exceeds a certain threshold. Namely,

|V i
real − V i

pred| > T (1)

In order to account for seasonal (weekly and daily) trends
the value of T is set adaptively based on the mean value of
|Vreal − Vpred| which is computed over the full set of flows
1, ...,m from recent (e.g. previous week) flow records.

If µ is the mean value of the differences between the real
and the predicted volume at times less than t we set T as:

T = µ+ x (2)

For a flow i occurring at time t if Equation 1 holds then
flow i is considered to be anomalous. In Equation 2, x denotes
the distance from the mean value µ which we consider to be
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an indicator of an anomaly. Allowing the user to arbitrarily set
x would significantly affect the detection rate of our approach.
Setting a high value would yield some anomalies to remain
undetected while setting x at a low percentage would increase
the number of false positives.

We formulate the problem in Equation 3 where f(x, µ, i) =
0 implies the presence of an anomaly where as f(x, µ, i) = 1
corresponds to a legitimate flow.

f(x, µ, i) =

{
1, if |V i

real − V i
pred| ≤ µ+ x

0, otherwise
(3)

To address the issue of increased false positives, we set x
such that the sum of f over all flows is 90% of the total
number of flows.

Once an anomalous flow is detected, the whole set of
features F = {T,D, SIP , DIP } is extracted from the record
and the actual volume of the flow (i.e. Vreal) is recorded.

Aside from adapting the threshold based on seasonal trends,
our framework offers the possibility of re-calibrating the
threshold value based on the detection rate over a past time
window. For example, if a particular value of x resulted in an
increased number of flows that were erroneously considered
anomalous (i.e. false positives) then Flowzilla increases x

while in the opposite case (i.e. increase in false positives) x
is decreased.

V. EVALUATION

In this section we describe our evaluation methodology,
our experimental setup and the composition of our evaluation
datasets. Finally, we discuss obtained results.

A. Methodology

Our evaluation approach is centered around answering four
questions: How well does our method perform in detecting
volume anomalies in scientific data transfers?, Does Flowzilla
detect anomalous flows regardless of their size and time of
occurrence? Furthermore, does the direction of the anomalous
flow (upload or download) affect our detector’s capabilities? Is
the quality of our model’s predictions in terms of size of data
being transferred after a certain period of time stable or does
it degrade? This question is crucial for selecting an optimal
strategy for retraining frequency.

We answer the first three questions presented by using
the following methodology: Since it is impossible to obtain
ground truth about which of the previous data transfers were
anomalous (remember that we consider all flows belonging
to the training set — Dataset1 — as clean), we perform our



own anomalous data transfers, from now on referred to as
synthetic anomalies, and evaluate the ability of our framework
to detect and quantify them. For the fourth question, we
evaluate the temporal stability and the quality of predictions
of our model by testing it on new data obtained weeks after
training (Datasets 2 to 5) and we record its accuracy in terms
of data transfer size prediction.

Quantifying the ability of a system to successfully identify
anomalous events (i.e. events that significantly deviate from a
“normal” profile) is an inherently challenging problem [26].
For the scope of this work we use detection rate for our
framework as presented in equation 4.

Detection Rate =
True Positives

True Positives + False Negatives
(4)

B. Synthetic Anomalies

Since we investigate volume-related anomalies, we focus on
injecting anomalous events that demonstrate variation only in
the size of the data being transferred. For injecting synthetic
anomalies in normal traffic we first select two injection sizes
large and average. The large anomalies include flow sizes
of 10GB while the average anomalies include flow sizes
between 1 and 5GB. Each synthetic anomaly is represented
as a file transfer between an external source and one of
the ten NERSC DTNs. The file transfer can either be an
upload or a download. We opt for bi-directional anomalies
in order to cover semantically both aspects of misuse: either
a malicious user which would be attempting to exfiltrate
sensitive scientific data or a simple user error and/or a network
device misconfiguration.

C. Experimental Setup

We used 8 nodes from Grid5000 experimental testbed [27]
acting as the sources/destinations of the file transfers. Two sets
of experiments were performed: In the first experiment, each
Grid5000 node performs five transfers of 10GB each (large
anomaly) towards or from one of the ten NERSC DTNs. The
waiting time between transfers is set to one hour interval.
In the second experiment, each Grid5000 node performs five
transfers of size between 1 and 5GB (average anomaly)
towards or from one of the ten NERSC DTNs. The waiting
time between transfers in the second experiment is randomly
selected between one minute and one hour intervals. In both
experiments the destination is selected randomly among a
list containing the ten NERSC DTNs. The total number of
transfers per experiment (i.e. anomalous flows) is 40.

D. Datasets

The datasets used for our experiments with their collection
period and number of flows in each dataset are shown in
Table II. Dataset 1 was used only for training our model.
Datasets 2 to 5 were used to test the accuracy of our model
in predicting flow sizes on previously unseen data. Datasets 6
and 7 include the injected anomalous flows and were used to
test the detection capabilities of Flowzilla.

Dataset Number of
Flows Duration Year

Dataset1 368,041 Oct 1 – Nov 30 2017
Dataset2 86,814 Jan 1 – Jan 15 2018
Dataset3 103,590 Jan 15 – Jan 31 2018
Dataset4 Feb 1 – Feb 15 2018
Dataset5 Feb 16 – Feb 28 2018
Dataset6 12,810 Mar 30 – Mar 31 2018
Dataset7 30,595 June 5 2018

TABLE II: Dataset composition

Since our training datasets only include scientific data
tranfers rather than generic internet traffic, the variability
in the input data is significantly lower [5]. As a result,
anomalous events exhibit stronger signals that are more easily
distinguishable.

E. Injected Anomalies Detection Results

Results for the synthetic anomalies experiments (datasets 6
and 7) are shown in Table III.

Experiment Total
Anomalies

Anomaly
Size

True
Positives

False
Negatives

Large 40 10 GB 37 3
Average 40 1–5 GB 34 6

TABLE III: Results for synthetic anomalies

Our results show that for both experiments our framework is
able to achieve a detection rate above 80% (92.5% and 85% for
large and average anomalies respectively). However, in both
experiments, our system erroneously identified a number of
legitimate flows as anomalous (false positives).

Refining the threshold calculation mechanism by assigning
weights on in µ (see Equation 2) could reduce the number of
false positives and achieve higher detection rate.

Figure 4 shows the estimated (i.e., our model’s prediction
for the size of the flow) and actual size for the large anomalous
flows that were injected in the first experiment. Obtained
results show that our model is able to predict reasonably well
the size of the anomalous transfers. However, the difference
between the real and the predicted size of the anomalous flow
needs to be bigger than the threshold value in order for the
anomalies to be detected.

F. Cross Dataset Accuracy Results

Our model is designed to predict the size of scientific data
transfers (i.e., flows) over a period of time. For evaluating
the quality of our predictions, we test our model on new
data obtained weeks and months after training and record the
accuracy of the predictions. The datasets used for testing are
Dataset2 to Dataset5. Results over a tenfold validation are
shown in Figure 5.

We observe that the accuracy for three of the four datasets is
maintained above 90% while for the dataset that was collected
6 weeks after training (Dataset3 in Table II) time the accuracy



Fig. 4: Comparison of estimated (predicted by model) and
actual sizes for 40 anomalous flows injected in the first
experiment. Flowzilla is able to predict anomalous flow sizes
reasonably well.
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Fig. 5: Flow size prediction accuracy in datasets obtained up
to 10 weeks after training. Flowzilla’s accuracy remains above
85%.

is 84%. This is due to the fact that this particular dataset
contains traffic collected between 15th to the 30th of January
2018 where the data volume towards the NERSC DTNs was
significantly lower. However even in the case of unusual data
transfer behavior our model’s predictions are still more than
80% accurate. Overall, our results demonstrate that our model
is able to provide accurate predictions over a 10 week period
without requiring any retraining or dynamic update.

Fig. 6: Mean absolute error (mae) in datasets obtained up to 10
weeks after training. Mae is maximized 6 weeks after training
where accuracy (see Figure 5) is lower.

The mean absolute error for the different datasets is shown
in Figure 6. Again, for the dataset collected 6 weeks after
training (Dataset2 in Table II), the average distance between
our prediction and the test traffic is maximized (356 MB).

VI. SUMMARY AND FUTURE WORK

In this paper, we have addressed the problem of detecting
volume-related anomalies in scientific data transfers. Our
solution, Flowzilla, uses past data transfers in order to build
a normal profile for data transfer volume. Then, using an
adaptive threshold mechanism it flags flows that deviate sig-
nificantly from the normal profile as anomalous and stores
them in store/destination pairs. Flowzilla is able to provide
an estimate for the amount of data being transferred in each
anomalous flow.

We have evaluated the accuracy of our framework on
network flows that represent real scientific data transfers. We
injected anomalous flows of two different size classes and
our results show that Flowzilla can detect volume related
anomalies with a 92.5% detection rate. Our results show that
a high percentage of detection rate is achievable in the context
of scientific data transfers that exhibit lower variability than
generic Internet traffic. We have demonstrated that anomaly
detection is possible in the specific domain of scientific traffic.
Flowzilla stores detected anomalous events and facilitates
further analysis from network operators (e.g. NERSC).



Furthermore, Flowzilla can provide a reasonably accurate
estimation of the size of the anomalous flows. Lastly, by
testing the accuracy of our predictions on different datasets
obtained up to 10 weeks after training, we have demonstrated
that our solution is temporally stable.

Our ongoing work is centered around expanding our frame-
work to cases which a specific anomaly involves multiple flows
with different volume sizes. We plan to expand our evaluation
process by calculating the detection rate of Flowzilla on
datasets covering several weeks of scientific data transfers.
Furthermore we would like to expand our solution in order to
detect different types of anomalies in scientific data transfers
by incorporating additional metrics in our model. For example,
looking at the number of SYN packets packets over a specific
flow would allow us to detect SYN-flooding attacks.We plan
to evaluate the robustness of our solution in terms of detection
accuracy with more detailed simulated anomalies, such as
scraping a database or intentionally adding a misconfiguration
in the path. Finally, we would like to experiment with different
strategies regarding retraining frequency, including confidence
intervals between the predicted and the actual data transfer
volume.
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APPENDIX

Submission and reviewing guidelines, and methodology:
http://submissions.supercomputing.org/reproducibility

A. Abstract

Research networks are designed to support high volume
scientific data transfers that span multiple network links. Like
any other network, research networks experience anomalies.
Anomalies are deviations from profiles of normality in a
science network’s traffic levels. Diagnosing anomalies is crit-
ical both for network operators and scientists. In this paper
we present Flowzilla, a general framework for detecting and
quantifying anomalies on scientific data transfers of arbitrary
size. Flowzilla incorporates Random Forest Regression (RFR)
for predicting the size of data transfers and utilizes an adaptive

threshold mechanism for detecting outliers. Our results demon-
strate that our framework achieves up to 92.5% detection
accuracy. Furthermore, we are able to predict data transfer
sizes up to 10 weeks after training with accuracy above 90%.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Anomaly detection leveraging the Random Forest

Regression (RFR) algorithm from scikit-learn
• Program: Python
• Compilation: None needed
• Data set: Dataset description in Section V-D
• Experiment customization: None
• Publicly available?: Code can be made available upon request

by contacting the authors of this paper, subject to export control
review by Lawrence Berkeley National Lab (pending). The tstat
data used was collected and provided by the NERSC computing
facility at LBNL. The tstat data contains source and destination
IP addresses, and so is not publicly available for privacy reasons.
However, NERSC periodically makes data available to qualified
researchers. Inquiries should be directed to security@nersc.gov.

2) How software can be obtained (if available): Code can
be made available upon request

3) Hardware dependencies: None
4) Software dependencies: Required python packages: re-

quests, sockets, elasticsearch, json, sys, os, re, datetile,
ipaddress, numpy, sklearn.metrics, pandas, sklearn.ensemble.
sklearn,model_selection, pandas

5) Datasets: See section V-D for detailed description

C. Installation

No installation for python script

D. Experiment workflow

See sections V-B, V-C

E. Evaluation and expected result

See Section V-E

F. Experiment customization

None needed

G. Notes

n/a
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