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Cascades, generating functions, and electric power grid networks



Sandpile cascades: “Self-organized criticality”

The classic Bak-Tang-Wiesenfeld sandpile model:

Finite square lattice in Z2

Drop grains of sand (“load”) randomly on nodes.

Each node has a threshold for sand = coordination
number.

Load > threshold  node topples = sheds sand to
neighbors.

These neighbors may topple. And their neighbors.
And so on.

Cascades of load/stress on a system.

Open boundaries prevent inundation



Sandpile model on networks

• Start with a network

• Drop units of load      randomly on nodes

• Each node has a threshold.
Here = degree.

• Load on a node ≥ threshold 
⇒ node topples, moves load to neighbors
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Sandpile model on networks

• Start with a network

• Drop units of load      randomly on nodes

• Each node has a threshold.
Here = degree.

• Load on a node ≥ threshold 
⇒ node topples, moves load to neighbors

• Neighbors may topple. Etc. 
Cascade (or avalanche) of topplings.
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Power law tails (Universal behavior)

Double limit: N →∞; dissipation ε→ 0

Avalance size follows power law distribution P(s) ∼ s−3/2

Power law tails seem to characterize the sizes of electrical
blackouts, financial fluctuations, neuronal avalanches, earthquakes,
landslides, overspill in water reservoirs, forest fires and solar flares.

Mean-field behavior is robust. (Goh et al. PRL 03, Phys. A
2004/2005, PRE 2005. PLRGs with 2 < γ < 3 not mean-field.)
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onset of a giant component (which happens at φ22 = 1�2 when
�→ 0). The rational numbers in Eq. (12b) are indicative only:
excluding φ00 and φ22, we have no reason to offer as to why
the φij should be close to relatively small ratios (and this may
well be accidental).

As � → 0, this analytical work indicates that φ22 converges
to 1�2 from below. In Monte Carlo simulations, Eq. (4b) re-
ports φ22 ≈ 0.53 for N = 106 and � = 10−3, which appears
to indicate convergence from above. This discrepancy is rec-
onciled by considering that our analytical work first takes the
limit N → ∞ and then takes the limit � → 0. For a fixed
0 < �� 1, Monte Carlo simulations support a convergence of
φ22 to values slightly below 1�2 when the network size is in-
creased, and the converged values are closer to 1�2 for smaller
fixed values of �.

VII. CONCLUSION

The BTW sandpile process is an archetypal example of self-
organized criticality (SOC), a term blanketing any system X
that has a critical point as an attractor. We argue that, although
this article focuses on the BTW sandpile process on networks,
the understanding and tools developed herein are applicable to
a vast array of models Y that approximate an SOC system X .

The first step is to acknowledge that X and Y are differ-
ent dynamical systems obeying different rules. Typically, the
system of interest X has many more degrees of freedom than
Y does. If X approaches a stable equilibrium, then intricate
correlations may emerge among its numerous degrees of free-
dom. When measurements of X’s equilibrium state are used
to fix Y ’s degrees of freedom, most of these correlations are
lost. For this reason, Y may not accurately approximate X .

This phenomenon likely occurs whenever quantities of in-
terest in X have a power law behavior due to SOC. For ex-
ample, if Y is a branching process predicting said quantity of
interest, then R0, the mean of its branching probability distri-
bution, should be close to unity if the resulting distribution is
to have a power law. This requirement is the lesson of the ap-
parent paradox surrounding Eqs. (2)–(3). Counterintuitively,
“better” assumptions can make a model worse, because ac-
counting for more correlations can break criticality.

What is impressive and surprising about the work of Goh et
al. [19–21] is that despite missing many important correlations

(that we demonstrated here) their approximation manages to
correctly predict the power law tail behavior. Specifically,
given the exponent of a power law degree distribution, their
approximation Y predicts the asymptotic behavior of the cas-
cade size distribution of the model X . We conjecture that this
success results from universality, i.e., that their model Y lies
in the same universality class as the system X (see Sec. III A
and mathematical justifications in Sec. S2 of the Supplemental
Material).

In general, when interested only in “macroscopic” objects
(here the asymptotic behaviors of the cascade size distribu-
tion), it may suffice to reproduce in a model Y the “symme-
tries” of a process X (here the branching number R0 = 1 and
the asymptotic behavior of the branching distribution). Other
details may not matter.

In other contexts, a macroscopic understanding may not
suffice. To calculate microscopic quantities, a microscopic
understanding of the process is likely required. In the con-
text of the BTW process, we studied the internal workings of
a cascade (Sec. IV), which enabled the possibility to distin-
guish cascade size and area (Sec. V). Our microscopic mod-
eling culminates in Sec. VI with our zero-parameter model:
we design a branching process (at the level of Y ) that itself
has SOC, and the critical point to which it converges is com-
patible with values observed in simulations (at the level of X).
We then used this model to explore the BTW process in ranges
prohibitively costly to simulate.

While we acknowledge that this last model was obtained in
a quite specific context, its success serves as a proof of con-
cept. More generally, this zero-parameter, critical approxi-
mation of an SOC system paves the road for powerful, self-
consistent and microscopically accurate models of real world
systems that self-organize to critical points.
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Motivation: Dynamics on interconnected networks
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Motivation: interconnected power grids

C. Brummitt, R. M. D’Souza and E. A. Leicht PNAS 109 (12), 2012.

Interconnects initially
built for emergency use.

Blackouts cascade from
one grid to another (in a

non-local manner).

How to assess impact of
increasing
interconnectivity?

Source: NPR

Synchronization another fundamental aspect:
• Motter, A. E., Myers, S. A., Anghel, M., & Nishikawa, T., Nature Physics, (2013).



Real power systems: a web of feedbacks

Brummitt, Hines, Dobson, Moore, R.D., PNAS July 23, 2013.

“Transdisciplinary electric power grid science”

electrical infrastructure

transmission grid

distribution
grid

information and communication

SCADA

PMUs

smart grid

human
controllers

weather

energy
markets

other infrastructures:
finance, transportation, water, health, gas, 
transportation, oil, health, supply chains

public policy &
public perceptionclimate change

solar
wind

hurricanes
droughts

forecasting

reliability, cost

Starting more simply: Stylized models of cascading transmission failure...



Real power grids – Non-local failures

(1996 Western blackout NERC report, 3 → 4 → 5; 7 → 8, etc.)

Sequence of outages in Western blackout, July 2 1996!

System Disturbances — 1996 
 

NERC 26 

 
 
 
Figure 1 
 

from NERC 1996 blackout report!

See also Hines, Cotilla-Sanchez, Blumsack, Chaos 20, (2010).
Failure of topological models to predict blackout size.

Need Kirchoff laws! Not epidemic spreading.
(Featured as Science Editor’s Choice, 2010.)



BTW sandpile cascades on sparsely coupled networks

C. Brummitt, R. M. D’Souza and E. A. Leicht PNAS 109 (12), 2012.

Two-type network: a and b
Impact of increased a-b links.

pa(ka, kb), pb(ka, kb)
(Configuration model)

Branching process treatment

qab(rba, rbb) := the branch
(children) distribution for

an ab-shedding .



Overview of the calculations

From degree distribution to avalanche size distribution:

Input: degree distributions pa(ka, kb), pb(ka, kb)

⇓ compute

shedding branching distributions qaa, qab, qba, qbb
⇓ compute

toppling branching distributions ua, ub
⇓ plug in

toppling branching generating functions Ua,Ub
⇓ plug in

equations for avalanche size generating functions Sa,Sb
⇓ solve numerically, asymptotically

Output: avalanche size distributions sa, sb



Shedding branch distributions qod
The crux of the derivation

qod(rda, rdb) := chance a grain of sand shed from network o to d
topples that node, sending rda, rdb many grains to networks a, b.

qod(rda, rdb) =
rdopd(rda, rdb)

〈kdo〉︸ ︷︷ ︸
I

1

rda + rdb︸ ︷︷ ︸
II

for rda + rdb > 0.

I: chance the grain lands on a node with degree pd(rda, rdb)
(Edge following: rdo edges leading from network o.)

II: “1/k assumption”, sand on nodes is ∼
Uniform{0, ..., k − 1}

Chance of no children = qod(0, 0) := 1−
∑

rda+rdb>0 qod(rda, rdb)

(Probability a neighbor of any degree sheds, properly weighted.)

Chance at least one child = 1− qod(0, 0).



Toppling branch distributions ua, ub
shedding branch distributions qod  toppling branch distributions ua, ub

Key: a node topples iff it sheds at least one grain of sand.

Probability an o to d shedding leads to at least one other
shedding: 1− qod(0, 0). Probability a single shedding from an
a-node yields ta, tb topplings:

ua(ta, tb) =
∞∑

ka=ta,kb=tb

pa(ka, kb)Binomial [ta; ka, 1− qaa(0, 0)]·

· Binomial [tb; kb, 1− qab(0, 0)].

(e.g., ka neighbors, ta of them topple, each topples with prob

1− qaa(0, 0).)

Associated generating functions: Ua(τa, τb),Ub(τa, τb).



Summary of distributions and their generating functions

distribution generating function

degree pa(ka, kb), pb(ka, kb) Ga(ωa, ωb),Gb(ωa, ωb)

shedding branch qod(rda, rdb)

toppling branch ua(ta, tb), ub(ta, tb) Ua(τa, τb),Ub(τa, τb)

toppling size sa(ta, tb), sb(ta, tb) Sa(τa, τb),Sb(τa, τb)

Self-consistency equations:

Sa = τa Ua(Sa,Sb), (1)

Sb = τb Ub(Sa,Sb). (2)

Want to solve (??), (??) for Sa(τa, τb),Sb(τa, τb).
Coefficients of Sa,Sb = avalanche size distributions sa, sb.

In practice, Eqs. (??), (??) are transcendental and difficult to
invert.



Basic definition of a G.F.

G (x) =
∑

k pkx
k

The pk ’s are the probability of event of size k .

Build more complex G.F.s from the pk ’s and solve for the
coefficients to get the probablities of the more complex events!

Note on HW5 you will use FFT to solve for the coefficients of a
simpler G.F.



Plugging in degree distributions to the GFs

Two geographically nearby power grids in the southeastern US.

Grid c Grid d

# nodes 439 504

〈kint〉 2.4 2.9

〈kext〉 0.02 0.01

clustering 0.01 0.08

Idealization, random regular graphs:

za = 3

zb = 4p = 0.1

Ua(τa, τb) =
(p − pτa + (za + 1)(τa + za − 1))za(1 + p(τb − 1) + zb)

(za + 1)zazzaa (zb + 1)



Main findings: For an individual network, optimal p∗

• (Blue curve) self-inflicted cascades (second network is reservoir).

• (Red curve) inflicted from the second network

• (Gold curve) Neglecting the origin of the cascade

Effects balance at a stable critical point, p∗ ≈ 0.1.



Main findings: Increased systemic risk

• More interconnections fuel larger system-wide cascades.
– Each new interconnection adds capacity and load to the system
(Here capacity is a node’s degree, interconnections increase degree)
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• Suppressing largest cascades amplifies small and
intermediate ones



Optimal interdependence

“Some networking is good. Too much is overwhelming.”How interdependent should X be?

Financial networks
Andrew Haldane/Bank of England

and conclusions established in this study will be relevant to the
systemic investigations of global economic problems.

Discussion

We have studied the crisis spreading dynamics on global
economic system using a simple toy model of crisis spreading on
top of the global macroeconomic network built from the
international trade data. Focusing on the role of the network
topology at the local and global level, we have shown that the
impact of a country to the spread of crisis is not fully captured by
its simple macroeconomic index such as GDP, but its connectivity
profile is also instrumental for a better understanding. Beyond the

direct impact, the indirect impacts propagating through weak links
form a significant part of the avalanche process of crisis spreading.
At the local or regional scale, we have shown that the strong
regional blocs leading to clustering of weak links can aggravate the
crisis spreading, by accumulating impact through the dense
multilateral connectivity within the blocs. At the same time, on
the global scale, the current structure of global macroeconomic
network harbors higher tolerance to extreme crises than the more
‘‘globalized’’ network structures obtained by randomized global
networks. These results may have an interesting implication on the
hidden cost of the ongoing globalization movement: In a more
globalized macroeconomic network in which the regional and
continental clustering continues to become untangled via estab-

Figure 11. Results of the modified crisis spreading model with CAB. Displayed are (A) the cumulative counts of avalanche sizes, (B) the
avalanche profile of countries with the ten largest avalanche sizes, and (C) the avalanche network of the modified model. One may note that similarity
of the overall results to those of the original model (Figs. 2, 6, and 8B, respectively), despite some quantitative changes in the numeric values. In the
modified model, we recover the power-law-like P(A) at f/t<7; the indirect avalanches constitute the dominant part of the avalanche profiles; and the
avalanche network maintains the continental clustering pattern.
doi:10.1371/journal.pone.0018443.g011

Crisis Spreading in Global Macroeconomic Network

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e18443

Economies

Lee et al., PLoS ONE 2010

Infrastructures
L. Dueñas-Osorio

Saturday, May 19, 12

Financial markets: Battiston, et al., J. of Econ. Dyn. & Control 36 (2012).

Synchronization: Hunt., Korniss, Szymanski. PRL, 2010.

“Islanding” in power grids: Andersson, et al. IEEE Trans. Power Systems, 2005.

“Islanding” among traders: Saavedra, Hagerty, Uzzi, PNAS, 2011, PLoS ONE

2011.



More realism in BTW network cascades

SOC equilibrium “1/k assumption”: Each node of degree k
has uniform probability to have between 0 and k − 1 grains of
sand in steady-state. (Perfectily fine for an “annealed” network.)

But, by inspection, a node that just toppled has 0 grains
w.h.p., (i.e., 1/k overestimates topplings)
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FIG. 3. (Color online) Neither Formulation A nor Formulation B
of the 1�k-assumption holds for random k-regular graphs (here 3-
regular). Instead, a degree-k child node receiving sand for the first
time in a cascade at generation g is at capacity (and hence topples)
with probability converging to 1�(k − 1) (here 1�2, dashed line) as g
increases. Simulations performed on a random 3-regular graph with
N = 106 nodes (all of which belong to the same connected compo-
nent) with dissipation rate � = 10−3. We drop 107 grains without
collecting statistics, and then collect statistics for the next 2 × 106

grains dropped.

Material provides mathematical justifications for this conclu-
sion.

A natural first step to better understand the process is to
study the joint probability distribution of the degrees and the
amounts of sand on neighboring nodes of the network. In
Sec. III B, we study such correlations for a random k-regular
graph, in the hope that this simpler system is easier to un-
derstand. We do confirm nontrivial correlations between the
amounts of sand on neighboring nodes, but surprisingly For-
mulation B breaks down in such a homogeneous network, and
another formulation of the 1�k-assumption is required.

B. Different formulation of the 1�k-assumption for a random
k-regular network

We now study the BTW sandpile process on a random k-
regular network, the simplicity of which enables considerable
analysis (Secs. V and VI). Note that for degree distributions
with such light tails, the cascade size and area distributions
follow the mean-field behavior, a power law with exponent−3�2 (see Fig. S1 in the Supplemental Material) [17, 19–21].

Figure 3, the counterpart to Fig. 2 for a k-regular graph,
reveals that a node receiving sand for the first time at gener-
ation g does not have a flat 1�k probability to be i-sand for
i ∈ {0,1, . . . , k − 1}. In particular, the probability for the node
to be at capacity instead converges to the much larger value
1�(k − 1) as g increases. This behavior directly violates both
Formulation A and Formulation B of the 1�k-assumption.

Focusing on the special case of a random 3-regular graph,
we define ψi as the probability that a node selected uniformly
at random is i-sand, and we define φij as the probability that
a uniformly random neighbor of a uniformly random i-sand

node is j-sand. Formulation A of the 1�k-assumption would
lead one to estimate ψi ≡ 1�3 and φij ≡ 1�3. However, numer-
ical simulations (with the same parameters as Fig. 3: N = 106,
� = 10−3) provide quite different values

�ψ0 ψ1 ψ2� ≈ �0.084 0.33 0.58� ≠ �1�3 1�3 1�3� , (4a)

���
φ00 φ01 φ02

φ10 φ11 φ12

φ20 φ21 φ22

��� ≈
���
0.00050 0.25 0.75
0.063 0.31 0.62
0.11 0.36 0.53

��� ≠
���
1�3 1�3 1�3
1�3 1�3 1�3
1�3 1�3 1�3

��� .

(4b)

Two major differences between previous understanding and
the simulation results are noteworthy. First, Eq. (4a) shows
that the numbers of 0-sand and 2-sand nodes completely dis-
agree with Formulation A of the 1�k-assumption. Conse-
quently, the average amount of sand per node, 0ψ0+1ψ1+2ψ2,
is 1.5 grains per nodes in the simulations, in contrast with the
1 grain per node predicted by Formulation A (a 50% differ-
ence).

Second, Eq. (4b) indicates that the correlations in the
amounts of sand on nearby nodes, which we envisioned in the
discussion following Eq. (3), do occur in the random 3-regular
graph. If the network structure were annealed, then we would
expect that φij would be identically equal to ψj . By contrast,
the quenched structure of the network introduces correlations
in the amounts of sand on adjacent nodes. Thus, φij deviates
from ψj by amounts ranging from 7% to 33%, except for φ00,
which deviates from ψ0 by a factor of about 170. The reason
why φ00 is so low is intuitive: sand dissipates with small prob-
ability � (e.g., � = 10−3 in the above simulation), and 00-sand
links can appear only when a grain of sand dissipates as it is
sent from a node to a 0-sand neighbor.

Despite all these correlations, a different “weak” formula-
tion of the 1�k-assumption holds for random k-regular graphs.

Formulation C of the 1�k assumption. (Weak; agrees with
simulations for k-regular networks.) At equilibrium, a degree-
k node of large generation receiving sand for the first time in a
particular cascade has probability approximately 1�(k−1) to
be i-sand for 0 ≤ i < k. A degree-k node of large generation
receiving sand for the second time or more is unlikely to be(k − 1)-sand. Overall, a degree-k node receiving sand in a
cascade has probability very close to 1�k to be i-sand.

What happens in a k-regular network is much more intuitive
than what happens in an heterogeneous one. First, as in het-
erogeneous networks, a grain sent by a node to its parent is
unlikely to make that parent topple because the parent just
toppled. Second, each parent has k − 1 children nodes. Be-
cause the branching factor should be close to unity (due to the
self-organization), each children has probability 1�(k − 1) to
topple.

Despite the simplicity of the system, additional correlations
emerge in the φij [Eq. (4b)] that cannot be explained by For-
mulation C of the 1�k-assumption. Section VI presents a
mechanistic modeling approach that estimates these correla-
tions without the need for any “1�k-assumptions”. Instead,
it considers only correlations captured in ψi and φij , and it

Put in the correct microscopic probabilities into
generating functions and loose power law tail!



Capturing the self-organizing mechanisms underlying SOC

P.-A. Noël, C. D. Brummitt, R.D.
Phys. Rev. Lett. 111 0780701, Aug 12 2013.

“Controlling self-organizing dynamics on networks using models
that self-organize”.
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Controlling the BTW model away from the SOC state

Noël, Brummitt, R.D., Phys. Rev. Lett. 111 0780701, 2013

Control parameter µ:
probability grain lands on a node at threshold∗ 3
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FIG. 1. (Color online) Controlling the frequency of cascades µ sig-
nificantly affects the cascade size distribution. The chance of no
cascade (i.e., a size-0 cascade) is 1 − µ, while the chance of a cas-
cade of size ≥ 1 is the control parameter µ. In the original BTW
model, µ is set to ψ2, the fraction of 2-sand (at capacity) nodes.
Symbols denote results of simulations on random 3-regular graphs
with � = 0.05,N = 106, while dashed and plain lines show the pre-
dictions of the intermediate model Iµ

BTW and of the self-organizing
modelMµ

BTW, respectively.

FIG. 2. (Color online) Phase diagram of the controlled system Iµ
BTW,

an approximation of Sµ
BTW (similar to the diagram in Ref. [23] except

with control). Dashed lines are the system’s attractors φ22 = (1 −
3�µ)�[(1 − �)(3�µ + 2)]. For µ > 0, the system is critical only
when � → 0, but as µ → 0 the system approaches the critical line
φcritical

22 = 1�[2(1−�)]. In the subcritical regime, darker shades denote
proximity to criticality.

state collapses to φ22 = 1�2 for all fixed µ ∈ (0,1] and for the
uncontrolled system (µ ∶= ψ2). However, for � > 0, decreas-
ing µ brings the system closer to criticality (darker shade of
background) and reaches criticality when µ→ 0. Thus, avoid-
ing cascades leads to power-law distributed event sizes (see
Fig. 1, squares). However, for � > 0, the system approaches
criticality as µ decreases (see darker shade of background in
Fig. 2 and squares in Fig. 1) and becomes critical when µ→ 0.

Both µ > ψ2 and µ < ψ2 have tradeoffs; under what condi-
tions is one strategy better? Because sand input equals aver-
age dissipation (1 = 3��s�), we cannot control average cascade
size �s� using the control parameter µ. However, the cost of

FIG. 3. (Color online) If size-0 cascades confer benefit 1 and if, as
justified in the text, costs increase nonlinearly, such as with tipping
points (left inset, thick lines) or as cascade size raised to a power
α > 1 (right inset, dashed lines), then there may exist a nontrivial,
optimal control parameter µ∗ that minimizes the expected cost in the
equilibrium state Ŝ µ

BTW of the controlled SOC system Sµ
BTW. (Here,

� = 0.05 and mOK = .07,mbad = .5, stip = 104; c = 0.005, α = 1.5.)

a cascade may grow nonlinearly with cascade size, in which
case the average cost depends on µ.

Here we consider two concave cost functions illustrated in
Fig. 3 (inset). First, motivated by idea that small catastrophes
in infrastructure are inexpensive to handle but that large dis-
asters become expensive, we define a cost function with slope
mOK for events of size smaller than a tipping point stip and
steeper slope mbad for events larger than stip. Our other cost
function grows smoothly as the cascade size raised to a power
α > 1. [Both cost functions could arise from risk-aversion (ex-
tra disutility to bad outcomes) [24], government penalties for
starting cascading failures, herd-like loss of consumer confi-
dence, or indirect costs of disasters due to interdependencies
with human health and with other infrastructures.] Finally,
both cost functions assign a benefit of 1 for size-0 cascades
(in which no nodes topple); this benefit defines the scale of
costs. (Managers of investments or of infrastructure, for in-
stance, may earn salaries for uneventful days but suffer penal-
ties when catastrophes occur.)

For many parameters, these two concave cost functions
have a nontrivial, optimal control parameter µ∗ that minimizes
the expected cost of cascades in the equilibrium state Ŝ µ

BTW
(see Fig. 3). Increasing µ above µ∗ mitigates large cascades
but exacerbates small ones that accrue costs, while decreasing
µ below µ∗ makes cascades more rare but enables especially
costly, massive cascades. The SM shows evidence that opti-
mal µ∗ is generic for heavy-tailed event distributions [18].

Of course, finding or avoiding 2-sand nodes becomes diffi-
cult when they become rare or widespread, respectively. To
model this, the controller could use her budget to apply a
force f to achieve a µ given by, e.g., µ(ψ2, f) ∶= tan−1 (((f −
cot(πψ2))))�π + 1�2, so that f = 0 recovers SBTW, and push-
ing µ to 1 or 0 requires infinite force f . But Iµ

BTW does not
provide ψ2, so a closed model is needed.

• Avoid cascades,

µ = 0.05→ larger

cascades when they do

occur.

• Ignite cascades,
µ = 0.99→ smaller
cascades, but more

frequent.

Becomes more costly to find an eligible grain as µ→ 0.

∗Others have examined: topology interventions, increasing ε, altering

cascade mechanism, etc.



Accounting for costs: Optimal control levels

Too much control can be detrimental.

Accounting for costs with
larger events more costly.

Optimal µ∗
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• Frequently triggering
cascades mitigates

large events but
sacrifices short-term

profit.

• Avoiding cascades
maximizes short-term
profit but suffers from
rare, massive events.
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Complex systems—like sandpiles prone to avalanches—may become uncontrollable if too much e�ort
is put into controlling them.
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While driving along a desert highway, we can easily
predict the consequences of turning the wheel and chang-
ing lanes. However, in heavy tra�c this is not the case.
Tra�c dynamics is complex and the response to any in-
dividual change depends on how the other drivers ac-
commodate it [1]. This type of cooperative dynamics in
complex systems makes controlling them a scientific and
technological challenge [2]. Now, writing in Physical Re-
view Letters, Pierre-André Noël and colleagues from the
University of California, Davis, show that the control of
complexity requires special care, as unexpected outputs
can result from external intervention [3]. In particular,
they show that attempts to avoid catastrophe can, in
fact, push the system towards it.

In many real-world situations, one would want to de-
vise simple schemes that can drive a system towards a
desired state by applying a small perturbation [4]. For
example, Youn and co-workers have shown that closing
a few key roads in Boston, London, and New York can
paradoxically improve the overall tra�c in those cities
[5]. A framework to describe many complex dynamical
systems is o�ered by the theory of self-organized critical-
ity (SOC). Since it was first introduced by Bak, Tang,
and Weisenfeld [6], this framework has been applied to
study diverse systems such as earthquakes [7], neural dy-
namics [8], electric grids [9], water reservoirs [10], and
snow avalanches [11].

As a prototype for SOC, Bak et al. studied a model of a
sandpile to which grains are constantly being added (Fig.
1). The model consists of a lattice in which each site rep-
resents a pile of grains, and at some threshold number of
grains, this pile becomes unstable and topples. Itera-
tively, one pile is randomly chosen and one grain added
to its top. When the pile topples, its total load is evenly
distributed among neighbors, increasing their load. This
load shedding might trigger an avalanche as neighboring
piles also topple, eventually cascading further, until all

FIG. 1: Schematic representation of the sandpile model used
by Noël et al. When one grain falls on top of a pile with
three grains (a), the pile becomes unstable and topples. While
toppling, all grains in the pile are evenly distributed among
the four neighbors (b). The toppling cascades further as one
neighboring pile becomes unstable (four grains) and also top-
ples (c). (APS/Alan Stonebraker)

piles are below the threshold.
Bak et al. calculated the avalanche size defined as the

number of toppling piles in each cascade. They found
that sandpiles self-organize into critical states, with many
tiny avalanches and a handful of large avalanches span-
ning the entire system, thereby yielding a power-law
avalanche-size distribution. These systems are called
critical because they are reminiscent of the critical points
in a second-order phase transition (e.g., a ferromagnetic
transition), also characterized by power-law distributions
of certain parameters. But there is an important di�er-
ence. In a phase transition, a control parameter (e.g.,
temperature) typically drives the system from one phase
to another across the critical point. By contrast, in SOC
there is no control parameter and the dynamics naturally
evolves towards criticality, which is why this sort of crit-
icality is called “self-organized.” This well-studied sand-
pile model can only be critical in the limit of vanishing

DOI: 10.1103/Physics.6.90
URL: http://link.aps.org/doi/10.1103/Physics.6.90

c• 2013 American Physical Society



Popular Press

“When Networks Network”,
Science News, Sept 22, 2012

“The mathematics of averting the
next big network failure”, Wired,
Mar 19, 2013.


