ECS/MAE 253 Lecture 15

Cascades, generating functions, and electric power grid networks



Sandpile cascades: “Self-organized criticality”

The classic Bak-Tang-Wiesenfeld sandpile model:

e Finite square lattice in Z?
@ Drop grains of sand (“load") randomly on nodes.

@ Each node has a threshold for sand = coordination
number.

@ Load > threshold ~» node topples = sheds sand to
neighbors.

@ These neighbors may topple. And their neighbors.
And so on.

e Cascades of load/stress on a system.

@ Open boundaries prevent inundation



Sandpile model on networks

Start with a network
Drop units of load () randomly on nodes

Each node has a threshold.
Here = degree.

Load on a node = threshold
= node topples, moves load to neighbors




Sandpile model on networks

Start with a network
Drop units of load () randomly on nodes

Each node has a threshold.
Here = degree.

Load on a node = threshold
= node topples, moves load to neighbors

Neighbors may topple. Etc.
Cascade (or avalanche) of topplings.




Power law tails (Universal behavior)

Double limit: N — oo; dissipation € — 0

Avalance size follows power law distribution P(s) ~ s~

3/2

Power law tails seem to characterize the sizes of electrical
blackouts, financial fluctuations, neuronal avalanches, earthquakes,
landslides, overspill in water reservoirs, forest fires and solar flares.

Mean-field behavior is robust. (Goh et al. PRL 03, Phys. A
2004 /2005, PRE 2005. PLRGs with 2 < v < 3 not mean-field.)
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Motivation: interconnected power grids
C. Brummitt, R. M. D'Souza and E. A. Leicht PNAS 109 (12), 2012.

Interconnects initially
built for emergency use.

Blackouts cascade from
one grid to another (in a
non-local manner).

How to assess impact of
increasing
interconnectivity?

Source: NPR

Synchronization another fundamental aspect:
e Motter, A. E., Myers, S. A, Anghel, M., & Nishikawa, T., Nature Physics, (2013).



Real power systems: a web of feedbacks

Brummitt, Hines, Dobson, Moore, R.D., PNAS July 23, 2013.
“Transdisciplinary electric power grid science”
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Starting more simply: Stylized models of cascading transmission failure...



Real power grids — Non-local failures

@ See also Hines, Cotilla-Sanchez, Blumsack, Chaos 20, (2010).
Failure of topological models to predict blackout size.
Need Kirchoff laws! Not epidemic spreading.
(Featured as Science Editor’'s Choice, 2010.)



BTW sandpile cascades on sparsely coupled networks

C. Brummitt, R. M. D'Souza and E. A. Leicht PNAS 109 (12), 2012.

Two-type network: a and b
Impact of increased a-b links. Branching process treatment

Gab(rbay rop) := the branch
(children) distribution for
an ab-shedding.

pa(ka7 kb)a Pb(kaa kb)
(Configuration model)



Overview of the calculations

From degree distribution to avalanche size distribution:

Input: degree distributions p,(ka, kp), pp(ka, k)
| compute

shedding branching distributions q.., gap, Gpa, Gbb
| compute
toppling branching distributions wu,, up,
U plug in
toppling branching generating functions 4, U,
| plug in
equations for avalanche size generating functions S,, Sy,

|} solve numerically, asymptotically

Output: avalanche size distributions s,, s,



Shedding branch distributions goq

The crux of the derivation

God(rda, rdp) := chance a grain of sand shed from network o to d
topples that node, sending ry4,, ryp many grains to networks a, b.

rdoPd(rdas rdb) 1

Fda, Fdp) = for r, rqp > 0.
God(rda, rdb) ko) Py da + rdb
1 I

@ I: chance the grain lands on a node with degree py(rqa, rap)
(Edge following: r4, edges leading from network o.)

e II: “1/k assumption”, sand on nodes is ~
Uniform{0, ..., k — 1}

@ Chance of no children = g,4(0,0) :=1— > s tray>0 God(Fdas Fdb)
(Probability a neighbor of any degree sheds, properly weighted.)

@ Chance at least one child = 1 — g,4(0,0).



Toppling branch distributions u,, up

shedding branch distributions goqs ~~ toppling branch distributions u,, up

Key: a node topples iff it sheds at least one grain of sand.

Probability an o to d shedding leads to at least one other
shedding: 1 — q,4(0,0). Probability a single shedding from an
a-node yields t,, t, topplings:

o0

us(ta, tp) = Z pa(ka, kp) Binomial[t,; ka, 1 — q,4(0,0)]:
ka=ta,kp=tp

- Binomial[tp; kp, 1 — q.5(0,0)].

(e.g., ks neighbors, t, of them topple, each topples with prob
1- qaa(ovo)')

Associated generating functions: U,(7a, 7p), Up(Ta, Tp)-



Summary of distributions and their generating functions

distribution generating function
degree Pa(ka, kb), po(kas kp)  Ga(wa, wp), Gp(wa, wp)
shedding branch God (rda, rdb)
toppling branch | wuu(ta, tp), up(ta, ty)  Ua(Ta, ), Up(Ta, Th)
toppling size Sa(taa tb)7 Sb(ta, tb) Sa(Ta7 Tb)v Sb(Taa Tb)

Self-consistency equations:
S, = Taua(’saygb)? (1)
Sb = Tbub(Sa,Sb). (2)

Want to solve (??), (??) for Sa(7a, 7b), Sp(Ta, Tb)-
Coefficients of S5, Sp = avalanche size distributions s, sp.

In practice, Eqs. (??), (??) are transcendental and difficult to
invert.



Basic definition of a G.F.

G(x) = 2ok prx*
The px's are the probability of event of size k.

Build more complex G.F.s from the px's and solve for the
coefficients to get the probablities of the more complex events!

Note on HW5 you will use FFT to solve for the coefficients of a
simpler G.F.



Plugging in degree distributions to the GFs

Two geographically nearby power grids in the southeastern US.

‘ Grid ¢ Grid d

# nodes 439 504
(Kint) 2.4 2.9
(kext) 0.02 0.01

clustering | 0.01 0.08

Idealization, random regular graphs:

(p—prat(za+1)(ra+ 22— 1))%(1+ p(7p — 1) + zp)

Us(7a:75) = (zo+ 1)%27(2z + 1)
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Main findings: For an individual network, optimal p
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Effects balance at a stable critical point, p* ~ 0.1.



Main findings: Increased systemic risk

¢ More interconnections fuel larger system-wide cascades.
— Each new interconnection adds capacity and load to the system
(Here capacity is a node's degree, interconnections increase degree)

-o Pr(T,>500)
= Pr(Tp>500)
-+ Pr(T,>500)

risk

interdependencee

Frustrated equilibria

B ——
inflicted cascades

L L _ p
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— So an individual operator adding edges to achieve p* may inadvertantly
cause larger global cascades.

e Suppressing largest cascades amplifies small and
intermediate ones



Optimal interdependence

‘ “Some networking is good. Too much is overwhelming.” ‘

Ancrew HaldanaBank o Engind

Financial networks

f/’ \/\ /’@;W}D
L li?Z// Infrastructures

L Dusias O

Financial markets: Battiston, et al., J. of Econ. Dyn. & Control 36 (2012).
Synchronization: Hunt., Korniss, Szymanski. PRL, 2010.

“Islanding” in power grids: Andersson, et al. IEEE Trans. Power Systems, 2005.
“Islanding” among traders: Saavedra, Hagerty, Uzzi, PNAS, 2011, PLoS ONE

2011.



More realism in BTW network cascades

@ SOC equilibrium “1/k assumption”: Each node of degree k
has uniform probability to have between 0 and k — 1 grains of
sand in steady-state. (Perfectily fine for an “annealed” network.)

@ But, by inspection, a node that just toppled has 0 grains
w.h.p., (i.e., 1/k overestimates topplings)

probability
08

@ 0-sand
o o0 O 1-sand

1 2 5 0 0 50 100 200 @ 2-sand

@ Put in the correct microscopic probabilities into
generating functions and loose power law tail!



Capturing the self-organizing mechanisms underlying SOC

P-A. Noél, C. D. Brummitt, R.D.
Phys. Rev. Lett. 111 0780701, Aug 12 2013.

“Controlling self-organizing dynamics on networks using models
that self-organize”.

sandpile .
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Controlling the BTW model away from the SOC state

Noél, Brummitt, R.D., Phys. Rev. Lett. 111 0780701, 2013

Control parameter u:

probability grain lands on a node at threshold* e Avoid cascades,

© = 0.05 — larger

O uncontrolled (4 = ¥» ~ 0.53) cascades when they do
= controlled w¥th ©n=0.05 occur.
4 controlled with ¢ = 0.99 1

0.001 ¢

probability

Pf°b¢(*)b_ﬂilly of o Ignite cascades,

107 F size0is 1—pu

@ =0.99 — smaller
cascades, but more

o " frequent.

cascade size (number of topplings)

107" by . . A
01 10 10? 10°

Becomes more costly to find an eligible grain as x — 0.

*Others have examined: topology interventions, increasing €, altering
cascade mechanism, etc.



Accounting for costs: Optimal control levels

Too much control can be detrimental.

Accounting for costs with
larger events more costly. e Frequently triggering
cascades mitigates
large events but
sacrifices short-term
profit.

Optimal p*

(cost) cost cost

. @ //
c [size]”?,
e

/ e Avoiding cascades
‘ Ty, maximizes short-term

' ' profit but suffers from
rare, massive events.




Accompanying “Viewpoint” by N. Araujo

Physics Physics 6, 90 (2013)

Viewpoint
Getting Out of Control

Nuno A. M. Aratjo
Computational Physics for Engineering Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich,
Switzerland

Published August 12, 2013

dpiles prone to lanch nay become uncontrollable if too much effort

Complex systems—Tlike
is put into controlling them.

Subject Areas: Complex Systems, Statistical Physics

A Viewpoint on:

Controlling Self-Organizing Dynamics on Networks Using Models that Self-Organize
Pierre-André Noél, Charles D. Brummitt, and Raissa M. D’Souza

Phys. Rev. Lett. 111, 2013 — Published August 12, 2013

While driving along a desert highway, we can easily
predict the consequences of turning the wheel and chang-
ing lanes. However, in heavy traffic this is not the case.
Traffic dynamics is complex and the response to any in-
dividual change depends on how the other drivers ac-
commodate it [1]. This type of cooperative dynamics in
complex systems makes controlling them a scientific and
technological challenge [2]. Now, writing in Physical Re-




Popular Press

@ “When Networks Network”, SCIEI’ICGNGWS
Science News, Sept 22, 2012

@ “The mathematics of averting the
next big network failure”, Wired,
Mar 19, 2013.




