
NetworkxDemo

April 28, 2014

1 An introduction to network tools in Python

Python has been a very popular choice for a scientific programmming. I could say many things about it but
I feel the following XKCD comic pretty much sums it up.

In [122]: from IPython.display import Image

Image(’http://imgs.xkcd.com/comics/python.png’)

Out[122]:

1

1.1 Useful modules (or libraries)

Numpy and Scipy are useful for standard scientific computing. Networkx and iGraph are more specialized
for networks. Matplotlib is a great plotting library. For this introduction we will not be requiring functions
from Scipy or iGraph. The links to all these modules are can be found in the list of resources.

In [123]: import numpy as np

import networkx as nx

import matplotlib.pylab as plt

from __future__ import division

2

1.2 Basic graph operations in Networkx

In [124]: g = nx.erdos_renyi_graph(10, 0.5) #create an ER random graph with 10 nodes

and probability of connection = 0.5

In [125]: g.add_node(12) #add a node

In [126]: g.add_edge(12,"A") #add a new node "A" and connect it to node 12

In [127]: nx.connected_components(g) #list the connnected components of the graph

Out[127]: [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [’A’, 12]]

In [128]: g.degree() #return a dictionary of nodes and degree

Out[128]: {0: 3, 1: 5, 2: 5, 3: 4, 4: 4, 5: 4, 6: 3, 7: 8, 8: 4, 9: 4, 12: 1, ’A’: 1}

In [129]: nx.clustering(g) #list the clustering coefficient for each node

Out[129]: {0: 0.6666666666666666,

1: 0.4,

2: 0.4,

3: 0.16666666666666666,

4: 0.5,

5: 0.3333333333333333,

6: 0.6666666666666666,

7: 0.35714285714285715,

8: 0.5,

9: 0.3333333333333333,

12: 0.0,

’A’: 0.0}

In [130]: nx.betweenness_centrality(g) #compute betweeness-centrality for each node

Out[130]: {0: 0.00606060606060606,

1: 0.04696969696969696,

2: 0.04090909090909091,

3: 0.034848484848484844,

4: 0.016666666666666666,

5: 0.03787878787878787,

6: 0.00909090909090909,

7: 0.1712121212121212,

8: 0.028787878787878786,

9: 0.025757575757575753,

12: 0.0,

’A’: 0.0}

1.3 Random walk on a graph

We will compute the steady state distribution for a random walk on a given network. We will also learn how
to visualize a simple network as part of this exercise.

In [131]: g = nx.DiGraph() #define g to be a directed graph

In [132]: g.add_edges_from([(1,3),(2,1),(2,4),(3,2),(3,4),(4,3),(5,1),(5,3)])

#this is the same graph used in HW1, problem 2

In [133]: nx.draw(g) #visualize the graph. The thicker stubs are used in place of arrows.

3

In [134]: M = nx.adjacency_matrix(g) #obtain the adj. matrix for the graph

In [135]: print(M)

[[0. 0. 1. 0. 0.]

[1. 0. 0. 1. 0.]

[0. 1. 0. 1. 0.]

[0. 0. 1. 0. 0.]

[1. 0. 1. 0. 0.]]

In [136]: for i in range(5):

if (np.sum(M[i]) > 0):

M[i] = M[i]/np.sum(M[i])

In [137]: print M #normalized matrix

[[0. 0. 1. 0. 0.]

[0.5 0. 0. 0.5 0.]

[0. 0.5 0. 0.5 0.]

[0. 0. 1. 0. 0.]

[0.5 0. 0.5 0. 0.]]

1.3.1 Numerical approach

If we denote the probability of finding a random walker on each node as a column vector, the transition
matrix T is given by:

In [138]: T = np.matrix(M).transpose()

4

In order to find the stationary distribution start with a state vector with equal probability on being on
any of the nodes and repeatedly apply the transition matrix. In the limit of number of times going to infinity
the resulting state vector gives us the stationary distribution. For small graphs, the number steps required
is quite small.

In [139]: state_vec = np.matrix((1/5)*np.ones(5)).transpose()

#start with equal probability of finding a random walker on any node

In [140]: for i in range(15): # here 15 is the number of times we apply T on the state vector.

#choosing a small number to illustrate a point.

state_vec = T*state_vec

print state_vec

[[0.09960938]

[0.2]

[0.40078125]

[0.29960938]

[0.]]

In [141]: #check if state_vec has converged

print T*state_vec

[[0.1]

[0.20039062]

[0.39921875]

[0.30039063]

[0.]]

In [142]: # since the vector obtained above is not the same as the state_vec,

apply T on state_vec a few more times

for i in range(35):

state_vec = T*state_vec

print state_vec

[[0.1]

[0.2]

[0.4]

[0.3]

[0.]]

In [143]: # check if state_vec has converged.

print T*state_vec

[[0.1]

[0.2]

[0.4]

[0.3]

[0.]]

Since the vector has now converged this is the stationary distribution. Note that the vector obtained
after 15 iterations was still a good approximation due to the small number of nodes present in this network.

1.3.2 Analytical approach

We know that the steady state distribution is related to the spectrum of the normalized adjacency matrix.
In this part we illustrate this approach.

5

In [144]: import numpy.linalg as la #import linear algebra module

In [145]: T = np.matrix(M.transpose())

print T

[[0. 0.5 0. 0. 0.5]

[0. 0. 0.5 0. 0.]

[1. 0. 0. 1. 0.5]

[0. 0.5 0.5 0. 0.]

[0. 0. 0. 0. 0.]]

In [146]: eigvals, eigvec = la.eig(T)

In [147]: print eigvals

#list the eigenvalues. The eigenvector corresponding to the eigenvalue of 1 is the one that gives us the steady state

[1.00000000e+00+0.j -5.00000000e-01+0.5j -5.00000000e-01-0.5j

2.28576394e-17+0.j 0.00000000e+00+0.j]

In [148]: print eigvec[:,0] #eigenvector corresponding to eigenvalue of 1

[[-0.18257419+0.j]

[-0.36514837+0.j]

[-0.73029674+0.j]

[-0.54772256+0.j]

[0.00000000+0.j]]

In [149]: steady_state = np.real(eigvec[:,0]/np.sum(eigvec[:,0]))

#normalize to get steady state. Note that the imaginary part is zero, which it should be if everything was done correctly.

print steady_state

[[0.1]

[0.2]

[0.4]

[0.3]

[-0.]]

1.4 Finite size Effects

In this section we explore the effect of finite size in networks by studying the degree distribution of the
Barabasi-Albert graph.

In [150]: for N in [100000, 10000, 1000, 100]:

g = nx.barabasi_albert_graph(N, 2) #generate a Barabasi-Albert graph with N nodes with each incomming node having 2 stubs

k = np.sort(g.degree().values()) #get the degree of all nodes in the graph and sort them

y = 1 - np.arange(1., N+1)/N # probability in terms of a rank order

plt.loglog(k,y,’.’,label=‘N‘) # plot the CCDF. This makes the tail easy to visualize

plt.xlabel(’k’)

plt.ylabel(’CCDF’)

plt.grid() #switch on grid

plt.legend(loc=0) #show the legend and use the best location for it

Out[150]: <matplotlib.legend.Legend at 0x100c9090>

6

The figure above shows how the degree distribution appears to be more heavy tailed as we increase the
system size. Recall that the largest degree that can be present in any network is limited by the total number
of nodes present. It is important to test and account for finite size effects when we study a system based on
simulations.

1.5 Links to the software packages mentioned

Here are the links to all the modules mentioned in this notebook. The links below will take you to homepage
of the modules. It should be easy to find tutorials and installation instructions there.

Python: https://www.python.org/
IPython: https://www.python.org/
Numpy: http://www.numpy.org/
Scipy: http://www.scipy.org/
Networkx: http://networkx.github.io/
Matplotlib: http://matplotlib.org/
iGraph: http://igraph.org/

In [150]:

7

	An introduction to network tools in Python
	Useful modules (or libraries)
	Basic graph operations in Networkx
	Random walk on a graph
	Numerical approach
	Analytical approach

	Finite size Effects
	Links to the software packages mentioned

