A stub of what could someday become a PGF tutorial

Pierre-André Noël

April 19, 2012

$$
\begin{align*}
f(x) & =\sum_{k} a_{k} x^{k} \tag{1}\\
a_{n} & =\left.\frac{1}{n!} \frac{d^{n} f(x)}{d x^{n}}\right|_{x=0} \tag{2}\\
a_{n} & =\frac{1}{2 \pi i} \oint \frac{f(z)}{z^{n+1}} d z=r^{-n} \int_{0}^{1} \mathrm{e}^{-2 \pi i n \theta} f\left(r \mathrm{e}^{2 \pi i \theta}\right) d \theta \tag{3}
\end{align*}
$$

We could approximate this integral by evaluating $f_{m}=f\left(r \mathrm{e}^{2 \pi i \frac{m}{M}}\right)$ along the M equally spaced points $\left\{f_{0}, f_{1}, \ldots, f_{M-1}\right\}$.

$$
\begin{equation*}
a_{n} \approx \frac{1}{M r^{n}} \sum_{m=0}^{M-1} f_{m} \mathrm{e}^{-2 \pi i n \frac{m}{M}} \tag{4}
\end{equation*}
$$

Since the f_{m} do not depend on n, the same points could be used in order to evaluate different a_{n}. In fact, the sum happens to be a discrete Fourier transform (DFT).

$$
\begin{equation*}
\left\{M a_{0}, M r a_{1}, M r^{2} a_{2}, \ldots, M r^{M-1} a_{M-1}\right\} \approx \mathcal{F}^{-1}\left\{f_{0}, f_{1}, f_{2}, \ldots, f_{M-1}\right\} \tag{5}
\end{equation*}
$$

Hence, all the $\left\{a_{0}, a_{1}, \ldots, a_{M-1}\right\}$ may be evaluated in the same pass of fast Fourier transform (FFT) algorithm. ${ }^{1}$

If $f(x)$ is a polynomial of order N such that $N<M$, this relation becomes exact: the discrete sum exactly evaluates the integral in the limit $M \rightarrow \infty$ and, by the Nyquist-Shannon sampling theorem, the result of the DFT for $0 \leq n \leq N$ should not depend on M when $N<M$. (Hence, a finite M greater than N gives the same result as $M \rightarrow \infty$, which is exact.)

When $N \geq M$, aliasing occur: the a_{n} for $n \geq M$ are "folded back" unto the lower values of n, resulting in errors. However, even when $a_{n} \neq 0$ in the limit $n \rightarrow \infty$, it is often possible to choose a M sufficiently high such that the error is acceptable, provided that $\sum_{n \geq M} a_{n}$ is small or that we have some idea of the behaviour of a_{n} for $n \geq M$.

[^0]
[^0]: ${ }^{1}$ We here suppose that the inverse transform \mathcal{F}^{-1} is defined without normalization, which is the case of the FFTW algorithm as well as most standard libraries. Note, however, that MATLAB applies a factor $\frac{1}{M}$.

