
A stub of what could someday become a PGF tutorial

Pierre-André Noël

April 19, 2012

f(x) =
X

k

akx
k

(1)

an =
1

n!

dnf(x)

dxn

����
x=0

(2)

an =
1

2⇡i

I
f(z)

zn+1
dz = r�n

Z 1

0

e
�2⇡in✓ f

�
r e2⇡i✓

�
d✓ (3)

We could approximate this integral by evaluating fm = f
�
r e2⇡i

m
M

�
along the M equally spaced

points {f0, f1, . . . , fM�1}.

an ⇡ 1

Mrn

M�1X

m=0

fm e
�2⇡inm

M (4)

Since the fm do not depend on n, the same points could be used in order to evaluate di↵erent an.
In fact, the sum happens to be a discrete Fourier transform (DFT).

{Ma0,Mra1,Mr2a2, . . . ,MrM�1aM�1} ⇡ F�1{f0, f1, f2, . . . , fM�1} (5)

Hence, all the {a0, a1, . . . , aM�1} may be evaluated in the same pass of fast Fourier transform

(FFT) algorithm.
1

If f(x) is a polynomial of order N such that N < M , this relation becomes exact : the discrete
sum exactly evaluates the integral in the limit M ! 1 and, by the Nyquist-Shannon sampling

theorem, the result of the DFT for 0  n  N should not depend on M when N < M . (Hence, a

finite M greater than N gives the same result as M ! 1, which is exact.)

When N � M , aliasing occur: the an for n � M are “folded back” unto the lower values of n,
resulting in errors. However, even when an 6= 0 in the limit n ! 1, it is often possible to choose

a M su�ciently high such that the error is acceptable, provided that
P

n�M an is small or that we

have some idea of the behaviour of an for n � M .

1We here suppose that the inverse transform F�1 is defined without normalization, which is the case of the
FFTW algorithm as well as most standard libraries. Note, however, that MATLAB applies a factor 1

M .

1


