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e So far:

- Properties of nodes: degree,
centralities, triangles

— Statistics of local properties:
degree distribution

 How about large-scale organization?
— Core-periphery, hierarchy,...

- Communities
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e Social scientist Wayne W. Zachary collected friendship data at a karate club from
1970 to 72

« Edges represent friendship (activities outside the club)

« Conflict between instructor (node 1) and administrator (node 2), group broke up
into two

« Q: Can we predict the groups based on network structure?

Zachary, Wayne W. "An information flow model for conflict and fission in small groups.” Journal of anthropological research 33.4 (1977): 452-473.



e Zachary’s solution: network flow, source=node 1, sink=node 34

 Cut: flow bottleneck

Community 2

Community 1

e All but node 9 correct

Zachary, Wayne W. "An information flow model for conflict and fission in small groups.” Journal of anthropological research 33.4 (1977): 452-473.



e Zachary’s solution: network flow, source=node 1, sink=node 34

 Cut: flow bottleneck

Community 2

Community 1

e All but node 9 correct

Zachary, Wayne W. "An information flow model for conflict and fission in small groups.” Journal of anthropological research 33.4 (1977): 452-473.
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« Communities = locally dense subgraphs

* Modern network community detection from 2000s
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Zachary Karate Club Club

First presenter to mention the ZKC at a conference gets the trophy.

http://networkkarate.tumblr.com/




 Link (A—B) :Aand B coauthored a paper

* Node classification by role according to position in community

M. Girvan et al., PNAS, 99:12 (2002)



 Link (A—B) :Aand B proteins physically interact
* Modules correspond to functions
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PF Jonsson et al., BMC Bioinf. 7:2 (2006).



 What is a community?
- Intuitively: densely connected subnetworks

 Why is it interesting?

- Nodes that participate in same function/nodes
with similar attributes form groups and these
groups are represented in network structure.

* Challenges:

- No single clear definition.
- Many competing options.

- Large networks, different features. 4 X
- Even more algorithms. /] S oA

- Which one to choose?
- How to evaluate performance of method?

PF Jonsson et al., BMC Bioinf. 7:2 (2006).



« How to identify communities?
 How to asses the gquality of a community division?

« How asses the gquality of a method?

 Alot of competing methods and measures
— Here: selection that shows the development of the field

« And some guidelines to navigate the field



Method 1.
Hierarchical Clustering




« Traditional method used by social scientists.
* 0) Define a distance metric o;; between nodes based on network
1) Each node in its own community.

2) Calculate a distance between pairs of communities according to some
rule.

3) Join closest pair.
4) Go to step 2.




« Traditional method used by social scientists.

» 0) Define a distance metric o;; between nodes based on network

1) Each node in its own community.

2) Calculate a distance between pairs of communities according to some
rule.

3) Join closest pair.
4) Go to step 2.




* Node distance should be low if nodes are in a community.

* Popular choice: #common neighbors

n

Y

O =
j K
"1 degree

n@-j:3

« Other distances possible, e.g. number of independent paths connecting |
and j



e Distance between communities with more than one node:

| D E F G

A | 275 222 346 308 Single Linkage: X, = 1.59
Xij =T = B |338 2468 357 340
C

231 159 288 234

Complete Linkage: X, = 3.97 Average Linkage: X,, = 2 .84



« Example artificial network .
Cut corresponds to one partition

(slightly different definition of distance

dendrogram

=E=I=1-N=]
m—t ] L] =] 0
coooo

A.-L. Barabasi, Network Science: Communities.
E. Ravasz et al., Science 297 (2002).



 Dendrogram
(a)

(b) © (@)

A.-L. Barabasi, Network Science: Communities.



 E. coli metabolism
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« The color of each node, capturing the predominant biochemical class to
which it belongs, indicates that different functional classes are segregated in
distinct network neighborhoods.

* The highlighted region selects the nodes that belong to the pyrimidine
metabolism, one of the predicted communities.

A.-L. Barabasi, Network Science: Communities.



Hierarchical clustering: issues

« Advantages:

- Easy to understand
- Easy to implement
« Disadvantages:

- Slow(ish), number of steps to evaluate: ~N2or ~N3, depending on
linkage

- “Tends to group together those nodes with the strongest connections
but leave out those with weaker connections — divisions consist of a
few dense cores surrounded by a periphery of unattached nodes”

- (Results depend on distance and linkage)

* Open gquestion: where to cut the dendrogram?

M.E.J. Newman, Nature Phys., 8:25-31 (2012)



Method 2:
Betweenness based division




Betweenness based division

« Alternative method: instead of agglomerating communities, breaking one
large into smaller ones

1) Start from one large community

2) Calculate a centrality measure for each link
3) Remove link with highest centrality

4) Go to step 2

« Centralities: betweenness for edge / #shorest path between

| | / s and t traversing |
B(i) = X u %)

\#Shorest path between
sandt

e QOther: random walk, ...

M. Girvan et al., PNAS, 99:12 (2002)



e Our little example:
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« Advantages:
- Easy to understand
- Easy to implement
- Perhaps less decisions have to be made

« Disadvantages:

- Slow, number of steps to evaluate: ~NLz2 or faster if we don't
recalculate the betweenness in each step

- (Results depend on centrality)

« Still open question: where to cut the dendrogram?

M.E.J. Newman, Nature Phys., 8:25-31 (2012)



Quality of community division




e Again: many existing measures.

Naive: fraction of links that are inside communities

1
Q — % Zﬁ: AU 351.,5].

m: #links in the network

A;: adjacency matrix, 1 if i and ] are connected, O of not

d.so. 1 If in the same community, O if not

M. Girvan et al., PNAS, 99:12 (2002)



1
Q — % ZU: AU 351.,51.

W<t W

Intuitive. Optimal.

« Entire network one community: even if links are randomly placed, all links
are inside the community

* |nstead: fraction of links inside communities compared to what you would
expect by chance

 What is by chance?
M. Girvan et al., PNAS, 99:12 (2002)



 Degree preserved randomization

Q@
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Original What we compare to




« Modularity:
o ! Kk
M = — ij Si, S
2m Z T 2m /
N
Real link Probability of link in randomized

version

m: #links in the network

A;: adjacency matrix, 1 if i and j are connected, O of not

ki: degree of node |

d.so. 1 If in the same community, O if not

High M — good division

M. Girvan et al., PNAS, 99:12 (2002)



(a) (b)

Optimal Partition Suboptimal Partition
= 0.41 = (.22
(c)
Smgle Community Negative Modularity
=0 M = —-0.12

MM



 Where to cut dendrogram? At maximum Q!

S
Lo

(d)

"o

o
LG N

(e) (f) 05—
e I
ABCDE|7—‘GFH|7ﬁ_‘K Oi—l i l l j—L
0 2 3 4 " 6 8 10
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Method 3.
Direct optimization of Q




« Exact maximum of Q — NP-complete (exponentially increasingly difficult
with N)

e Approximation methods: a lot to choose from

 Louvain method
- Fast, ~L
- Typically preforms well on tests

Two steps applied iteratively:
1) Find local maximum.

2) Coarse grain network.

V.D. Blondel et al, J. Stat. Mech. P10008 (2008).



1) For node i, calculate AQ for each neighbor j if node i is removed from its
community and placed in the commnuity of j.Coarse grain network.

2) Move i to community that maximizes AQ, if AQ>0.

3) Repeat while Q increases.

AM, 5 = 0.023
AMy 5 = 0.032
AM, 4 = 0.026
AM, 5 = 0.026

V.D. Blondel et al, J. Stat. Mech. P10008 (2008).



AMp, = 0.023
AMy 3 = 0.032
AM, 4 = 0.026
AMp; = 0.026

V.D. Blondel et al, J. Stat. Mech. P10008 (2008).



Link (A—B) : Aand B talk
frequently on the phone

Phone calls of ~2 million
customers

V.D.

Blondel et al, J. Stat. Mech. P10008 (2008).



 Link (A—-B) :Aand B talk frequently on the phone

* Phone calls of ~2 million customers

Dutch-speaking
Flemish

French-speaking
Walloons

V.D. Blondel et al, J. Stat. Mech. P10008 (2008).



Comparing methods
I



 We need a network where we know the true community.
* Option I: Real networks with known ground truth

* Option II: Model networks with built-in communites



 We need a network where we know the true community.
e Option I: Real networks

« Zachary Karate Club

Instructor

Administrator

M. Girvan et al., PNAS, 99:12 (2002)
W.W. Zachary, J. Anthropol. Res. 33:452-473 (1977).



Girvan-Newman benchmark

N=128 node divided into 4 groups, <k>=16

P, = prob. that two nodes in the same group are connected

Pout = Prob. that two nodes in different groups are connected (not independent)
W = fraction of external links = 3p,./(Pi,+3Pout)

No communities:
pin:pout or lJ :075




* |s the Girvan-Newman benchmark realistic?

« Community size distribution

SCIENTIFIC COLLABORATION
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Lancichinetti-Fortunato—Radicchi (LFR) benchmark

N nodes, N, communities

W = fraction of external links . * .

Power-law degree
distribution

Power-law community
size distribution

A. Lancichinetti et al., PRE, 78:046110 (2008)



We know what we should get.
How to systematically compare what we found?
Again, a lot of possibilities

Our choice now: Normalized mutual information




Information theory approach: if two partitions are similar, one needs very little information
to infer one partition given the other. We can use the mutual information

Shannon entropy:

H ({C1}) ==Y p(Cy)logp(Ch)

Ch

Measures the amount of information in a string of random variables drawn from p(C,)

Probability that a randomly chosen node belongs to community C,

how many nodes belong to C N¢

. _ e
p(C1) sum over all partitions 2.c Ne

L. Danon et al, JStat. P09008 (2005)
S. Fortunato, Phys. Rep. 486 (2010)



Normalized mutual information

Information theory approach: if two partitions are similar, one needs very little information
to infer one partition given the other. We can use the mutual information

_ 0 P(C1, Cs)
I({Ch},{C}) = ;%;P(Ch@” 8 2 (C1)p (C)

Joint probability that a randomly chosen node belongs to community C, in the first
partition and C, in the second

how many nodes that are in C; are also in Cs N C1C5
p(C1,C) = sum over all possible pairs C; and Cs B Z N
C1,C2 *'C102

Probability that a randomly chosen node belongs to community C,

how many nodes belong to Cy N¢

0y — =1
p( 1) sum over all partitions ZC Nc¢

Normalization by average Shannon entropy:

I, ({C1},{C5}) = 7 2I ({C1},{C2})

({C1}) + H (1C2}))

L. Danon et al, JStat. P09008 (2005)
S. Fortunato, Phys. Rep. 486 (2010)



* In summary:

21 ({Cl}v {02})
{C1}) + H ({C2})

I, ({C1},{C2}) = I7]

it quantifies the "amount of information” (in units such as bits) obtained about
one random variable, through the other random variable (wiki)

e |,=1 — same division

 |,=0 — two divisions independent from each other

L. Danon et al, JStat. P09008 (2005)
S. Fortunato, Phys. Rep. 486 (2010)



NG benchmark, hierarchical clustering
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A.-L. Barabasi, Network Science: Communities.




NG benchmark, hierarchical clustering
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« Purple: Hierarchical; Orange: Louvain; Gray: Betweenness
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A.-L. Barabasi, Network Science: Communities.




 Many other methods to find communities:

- Local: instead of finding global division, find the community a given
node belongs to

— Spectral: based on spectrum of graph Laplacian
- Dynamical: Potts-model, oscillators, random walks

- Stochastic block models: find best fit using maximum likelihood fit of
benchmark-like model - mathematically principled results



« What is the best method?

— NoO clear answer.

« Better question: What is the method that fits my needs?
- Network features: Size? Directed? Weighted? Bipartite?

- What do we expect to find? Overlapping communities? Size of the
groups?



« What is the best method?

— NoO clear answer.

« Better question: What is the method that fits my needs?
- Network features: Size? Directed? Weighted? Bipartite?

- What do we expect to find? Overlapping communities? Size of the
groups?



Name Overlap Dir Weight Dyn NoPar MDim Iner Multip Complexity BESn BESm | Year | Ref
Evolutionary™® v v O(n®) 5k ? 2006 | [21]
§ MSN-BD v v O(n2ck) 6k 3M | 2006 | [22]
g SocDim v v v O(n?logn)* 80k 6M | 2009 | [23]
£ PMM v v O(mn?) 15k 27M | 2009 | [24]
A MRGC v v v v O(mD) 40k ? 2007 | [25]
¢ Infinite Relational v v O(n?D) 160 ? 2006 | [26]
= Find-Tribes v v O(mnK?) 26k 100k | 2007 | [27]
= AutoPart v v v O(mk?) 75k 500k | 2004 | [28]
Timefall v v v O(mk) 75M  53M | 2008 [ [29]
Context-specific Cluster Tree v v O(mk) 37k 367k | 2008 [ [30]
& Modularity v v v v v v O(mklogn) 118M 1B 2004 | [18]
% MetaFac v v O(mnD) ? 2M | 2009 | [31]
A Variational Bayes v O(mk) 115 613 | 2008 | [32]
B LA — 18%* v v O(mk +n) 16k ? 2005 | [33]
~ Local Density v v O(nKlogn) 108k 330k | 2005 | [34]
. Edge Betweenness v v O(m*n) 271 1k 2002 [ [4]
= CONGO* v v O(nlogn) 30k 116k | 2008 | [35]
& L-Shell v v O(n®) 77 254 | 2005 | [36]
Internal-External Degree v O(n?logn) 775k A.TM | 2009 | [37]
Label Propagation v v v O(m +n) 374k 30M | 2007 | [38]
- Node Colouring v v O(ntk?) 2k ? 2007 | [39]
kel Kirchhoff v v O(m+n) 115 613 2004 | [40]
é Communication Dynamic v v v v O(mnt) 160k 530k | 2008 [ [41]
A GuruMine v v O(T An?) 217k 212k | 2008 | [9]
DegreeDiscountIC v O(klogn+m) 37k 230k | 2009 | [42]
MMSB v v O(nk) 871 2k | 2007 | [43]
2 Walktrap v O(mn?) 160k  1.8M | 2006 | [44]
e DOCS v ? 325k IM | 2009 | [45]
“ Infomap v v v O(mlog?n) 6k 6M | 2008 | [46]
B K-Clique v O(m™) 20k 127k | 2005 | [3]
E S-Plexes Enumeration v O(kmn) ? ? 2009 | [47]
£ Bi-Clique v v O(m2) 200k 500k | 2008 | [48]
@ EAGLE v v v 0(3%) 16k 31k | 2009 | [49]
N Link modularity v v v O(2mklogn) 20k 127k | 2009 | [50]
E HLC* v v v O(nk?) 885k  5.5M | 2010 | [51]
Link Maximum Likelihood v O(mk) 4.8M  42M | 2011 | [52]
Hybrid® v v v v O(nkK) 325k 1.5M | 2010 | 53]
2 | Multi-relational Regression v v ? ? 7 2005 | [54]
z Hierarchical Bayes O(n?) 1k 4k 2008 | [55]
Expectation Maximization v ? 112 ? 2007 | [7]

M. Coscia et al, Statistical Analysis and Data Mining, 4(5):512546 (2011)




Literature

 Where to start reading?

1) Newman, M. E., Communities, modules and large-scale structure Iin
networks. Nature Physics, 8(1):25-31 (2012).
— Short, big picture

2) Fortunato, S., Community detection in graphs. Physics reports, 486(3):75-
174 (2010).
- >100 pages, complete at the time, good for looking up methods

3) Coscia, M., Giannotti, F., & Pedreschi, D., A classification for community
discovery methods in complex networks. Statistical Analysis and Data
Mining, 4(5):512-546 (2011).

— shorter, compares a lot of methods

4) A.-L. Barabasi, Network Science, Chapter 9
http://barabasi.com/networksciencebook/
Appears in print in May.
— Lot of figures of the lecture are from here. Easy to read, tells a detailed
story, but does not cover everything.


http://barabasi.com/networksciencebook/

Extra time:
Problems with modularity




« Should we merge two communities?
 Intuitive:

)
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Modularity, N
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Good et al., PRE, 81:046106 (2010)
A.-L. Barabasi, Network Science: Communities.



* Should we merge two communities?

Lap

2L = 2L 2L 2L N 2L
AMap =—Ma — M+ Magp =
Joint kik; Jeint kik;
7 2 e L~ 2 )t
i,jEA i,JEB

K4kt 4 Lap 5 kik; > kiky > kik;

2 2 2
L 1,JEA (QL) 1,jEB (QL) 1€A,JEDB (QL)

_Lap  kaks

L 212

S. Fortunato. PNAS, 104(1):36-41 (2006)
A.-L. Barabasi, Network Science: Communities.



* Should we merge two communities?

Lap

Lyp _ kAkB’
212
k, and k, total degree in A and B

AMyp =

kakp

If <1 and L > 1 ) AMsp >0 We merge A and B to

maximize modularity.

Assuming k4 ~ kg =k mwmp k<+2L

Modularity has a resolution limit, as it cannot detect communities
smaller than this size.

S. Fortunato. PNAS, 104(1):36-41 (2006)
A.-L. Barabasi, Network Science: Communities.



Even more time:
Link communities




Bialogical Physi
T T Nodes tend to belong to multiple communities

Biologists “\Zoom" 200 Links tend to be specific, capturing the nature

Hobb
¢ = —~ of the relationship between two nodes.
Smmunity
Family

Social networks, a link may indicate:
* they are in the same family; they work together; they share a hobby.

Biological networks:
each interaction of a protein is responsible for a different function, uniquely
defining the protein’s role in the cell

mm) Define a hierarchical algorithm based on similarity of links

Ahn, Bragow and Lehmann, Nature 466 (2010).
A.-L. Barabasi, Network Science: Communities.
Palla, et al. Nature, 435:814, 2005



1. Define link similarity
_ |ns () Ny (G) @
ny (D) Uny(j)]

n,(i): the list of the neighbors of node i,

including itself.
S measures the relative number of
common neighbors i and j have.

|n+(i) N n+(j)| — 4
| @yun (| =12

S(eikyejk)

1
S(eikyejk) — §

Ahn, Bragow and Lehmann, Nature 466 (2010).
A.-L. Barabasi, Network Science: Communities.



2. Apply hierarchical clustering (agglomerative, single linkage)

Ahn, Bragow and Lehmann, Nature 466 (2010).
A.-L. Barabasi, Network Science: Communities.



Gribier

Fauchelevent
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alci Co Del
MlleGillenormand MmeDeR - MmeMagleire G untessDel.o
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MileVaubois OlMan [ g aborand
“ Cravatte
Champtercier

The network of characters in Victor
Hugo’s 1862 novel Les Miserables. Two
characters are connected if they interact
directly with each other in the story. The
link colors indicate the clusters, grey
nodes corresponding to single-link
clusters. Each node is depicted as a
pie-chart, illustrating its membership in
multiple communities. Not surprisingly,
the main character, Jean Valjean, has
the most diverse community

membership

Ahn, Bragow and Lehmann, Nature 466 (2010).
A.-L. Barabasi, Network Science: Communities.
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