
Controlling	complex	networks	
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Complex,	interdependent	networks	of	modern	society	

Cyber-physical,			socio-technical,			eco-social	systems.		
	



Each network is a complex system
Collective behaviors from simple constituent elements

• Multiple length and time scales

• Emergent behaviors

– Self organization
(e.g., patterns, synchronization)

– Phase transitions

• Millions of degrees of freedom
– Full knowledge may not be feasible.

Self-organization:

Decentralized coordination and control



What	do	we	want	to	“control”?	

•  Every	degree	of	freedom?		

•  Some	macroscopic	property	of	the	system?		
– E.g.,	do	you	care	how	many	people	are	infected	
(macroscopic)	or	which	parCcular	people	are	
infected	(microscopic).		

•  Steer	towards	some	class	of	behaviors?	Avoid	
certain	aFractors.	



Thanks	to	Future	DirecCons	parCcipants	

•  PaFy	Mabry	
•  Tom	Valente	
•  Laszlo	Barabasi	
•  Yang-Yu	Liu	
•  Noshir	Contractor	
•  Kate	Coronges	
•  Ananthram	Swami	
•  Bruce	West		
•  Raissa	D’Souza	(Breakout	lead)		
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Classes	/	categories	of	control	
•  TradiConal	mathemaCcal	control	theory	
–  Nodes	evolving	via	internal	nodal	dynamics	and	interacCons	
with	other	nodes		

	
•  Nonlinear	dynamics:			
–  Basins	of	aFracCon	/	control	of	chaos																													
(nudging	at	a	strategic	Cme)		

–  Control	of	self-organizaCon	and	SOC	

•  Social	systems	(nodes	have	“mind	of	their	own”)		

•  Biological	systems	/	medicine		



TradiConal	control	theory 		

•  Doesn’t	scale	to	modern	systems	with	millions	of	
degrees	of	freedom	(may	not	even	be	able	to	
know	all	the	degrees	of	freedom,	let	alone	their	
instantaneous	states)		

•  Modern	systems	are:	Socio-technical,	cyber-
physical,	eco-social.	Can’t	necessarily	reduce	to	a	
set	of	interconnected	differenCal	equaCons.	

•  But	there	are	opportuniCes	



Today’s	agenda	

•  QuesCons:		
– What	does	it	mean	to	control	a	complex	network?	
– What	methods	exist?	
– What	are	potenCal	new	direcCons?			

•  Not	an	exhausCve	review	of	all	literature.	

•  Instead	an	overview	of	the	main	threads	of	
control	in	complex	networks	as	I	see	them.		



A	comment:		Physics	meets	control	theory	

•  Control	theory		
–  Feedback	fundamental		
–  Strong	controllability	(every	degree	of	freedom)	
–  Symmetry	is	the	enemy	of	controllability																										
(no	fine-grained	control	without	symmetry	breaking)	

•  Physics	(in	parCcular	staCsCcal	physics	of	networks)	
–  Equilibrium	theory	of	macroscopic	properCes	
–  Phase	transiCons	(parametric	control	of	macroscopic)	
–  Symmetry	offers	a	key	to	understanding	



Today:		Three	parts 		

•  TradiConal	control	theory	and	structural	
control	of	networks		
– Emphasis	on	structural	control	of	Linear	Time	
Invariant	(LTI)	systems.	

•  Control	of	nonlinear	dynamics	

•  ExerCng	influence	in	social	networks	



I.	TradiConal	control	theory		
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TradiConal	control	:	Many	different	consideraCons	and	noCons.		

•  Control	a	dynamical	system	with	N	degrees	of	freedom	evolving	in	Cme,	
dx(t)/dt.	

•  Controllability		
•  Can	drive	x(t)	from	any	iniCal	state	to	any	final	state	in	finite	Cme	

•  Observability	
•  Knowledge	of	a	subset	of	x(t)	is	sufficient	to	guarantee	full	

knowledge	of	x(t).	

•  Observability	and	controllability	are	duals!	

AddiConal	noCons:	
•  Stabilizability:	control	only	the	amplifying	nodes	(dampening	nodes	not	important)	
•  Detectability:	all	unobservable	modes	are	asymptoCcally	stable	
•  Set	controllability:	can	bound	x(t)	to	a	region.		



Linear	Cme	invariant	(LTI)	systems		



Most	basic	starCng	point:		
Linear	Time	Invariant	(LTI)	system	

Discrete	Cme	considered	here,	since	this	is	easier:		

A	is	an	NxN	matrix:	
It	is	the	adjacency	matrix	
	
(Note	edges	are	directed														
and	weighted)	



Controlling	an	LTI	system	

B	is	a	MxN	matrix	
•  N	nodes	
•  M	control	signals/driver	nodes	
•  Columns	are	the	unit	vector	of	

each	driver	node	We	want	to	find	ND	the	minimum	
number	of	driver	nodes	



C	is	a	MN	x	N	matrix		

The	matrix	C	is	full-row	rank	(each	row	linearly	independent)	

Controllable!		



The	controllability	matrix	for	a	specific	(A,B)	example	

A	matrix	3	x	3	
B	matrix	is	2	x	3	
C	matrix	is	(2*3)	x	3	=	6	x	3	

C



Kalman	rank	condiCon:		full-row	rank,	rank(C)	=	N	
•  N	linearly	independent	rows	of	C.	
•  The	modes	are	linearly	independent	when	input	
signals	are	constrained	to	only	the	nodes	in	B.		

Many	other	controllability	tests,	e.g.,		
•  the	Popov-Belevitch-Hautus	theorem	
•  Non-singular	Gramian	matrix	
																																																												(equivalent	to	Kalman)		
	

Kalman	rank	condiCon,	intuiCon	



The	controllability	Gramian	

So	it	is	“controllable”	but	how	do	we	control	it?!		

If	and	only	if	the	pair	(A,B)	is	controllable,	Wc	is	non-singular,	and	we	can	solve	for	
the	minimum	energy	control	signal:	

The	control	energy:		



x	

(Search	all	possible	driver	nodes)	



Solu<on:		Topological	(purely	structural)	consideraCons	
	Exploit	the	deep	connecCons	with	linear	algebra	

•  Structural	control	solved	via	maximum	matching	
•  Know	which	adjacency	matrix	elements	are	non-zero,	
but	do	not	know	the	values	(“weights”)	of	the	non-
zero	entries	

•  Impact	of	degree	distribuCon		
•  “Control	profiles”:	source,	sinks	and	dilaCons	

•  “Exact	controllability”	
•  Know	the	exact	network	structure	(edge	weights)	
•  Key	consideraCon:	the	maximum	mulCplicity	
eigenvalues	(trying	to	break	up	symmetries)	

•  Energy	of	control	(also,	how	quickly	do	you	need	it	
done?)	



Marton	Posfai	
UC	Davis	

Yang-Yu	Liu	
Harvard	Medical	School	

Thanks	to	collaborators	for	slides	on	structural	control		



Y.-Y,	Liu,	A.L.	Barabasi,	J.-J.	SloCne	
“Controllability	of	complex	networks”	
Nature	2011.	

A	soluCon:		structural	control	(1974)	meets	maximum	matching	(2011)	

C-T	Lin,	IEEE	Trans	on	
Automa3c	Control,	1974	





Recall	considering	an	LTI	system		





Loops	self-regulate:	





Weak	versus	strong	structural	control	

•  For	uncorrelated	edge	weights,	
the	set	of	uncontrollable	weight	
assignments	typically	form	a	set	
of	measure	zero.	(But	important	
instances,	like	all	equal	weights!)	

•  Strong	structural	control	---	any	assignment	of	the	non-zero	link	
weights	yields	a	controllable	network.	(Mayeda,	Yamada,	SIAM	1979.)	

•  Weak	structural	control	---	there	exists	an	assignment	of	weights	
to	the	non-zero	links	that	yields	a	controllable	network.	

“In	most	cases	the	system	is	controllable”	







(i.e.	nodes)	















Bi-parCte	
representaCon	



(Note,	we	could	
have	chosen	the	
other	matching	of	
1-3	and	4-2)	





Maximum	matching:	finds	the	value	of	ND	but	not	the	iden3ty	of	ND	
Typically	many	ways	to	assign	who	are	the	ND	driver	nodes		

A	matching	is	equivalent	to	finding	a	set	
of	”cactus”	made	of	stems	and	cycles	

Vocabulary:	“driver	node”	=	control	signal	
																						“actuator”	=	a	node	driven	by	the	control	signal		
(The	subtlety:		the	same	control	signal	can	drive	mulCple	actuators.)	





The	fracCon	of	driver	nodes	nD=ND/N	

nD	





(Hubs	have	so	many	links,	they	are	almost	always	in	the	matching)		

Broad-scale	degree	distribuCons	have	ND	much	larger	
then	narrow-scale	network	of	same	size	N.	



Does	modularity	(community	structure)	maFer?	



Modularity	(community	structure)	does	not	maFer!	



Do	correlaCons	maFer?	



Yes,		
degree-degree	
correlaCons	
maFer!	

•  Pósfai,	M.,	Liu,	Y.	Y.,	SloCne,	J.	J.,	&	Barabási,	A.	L.	(2013).	Effect	of	correlaCons	on	
network	controllability.	Scien3fic	Reports,	3,	1067.	



Beyond driver nodes 
•  Control node categories 



Control Node Categories 



Control Node Categories 

Critical 
Always driver. 



Control Node Categories 

Critical 
Always driver. 

Redundant 
Never driver. 



Control Node Categories 

Critical 
Always driver. 

Redundant 
Never driver. 

Intermittent 
Sometimes driver, 
sometimes not. 

A node is critical iff it has no incoming links. 



Redundant Nodes 
Emergence of bi-modality 
SF network with increasing average degree. 
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nr Centralized control. 

Distributed control. 
Jia,	T.,	Liu,	Y.	Y.,	Csóka,	E.,	Pósfai,	M.,	SloCne,	J.	J.,	&	Barabási,	A.	
L.	(2013).	“Emergence	of	bimodality	in	controlling	complex	
networks”.	Nature	Comm.,	4.	
	



Puzzle 

Centralized control. Distributed control. 

Critical 
Intermittent 
Redundant 

How to explain this behavior? Answer: Core Percolation 
 

•  Liu,	Y.	Y.,	Csóka,	E.,	Zhou,	H.,	&	Pósfai,	M.	(2012).	“Core	percolaCon	on	complex	
networks”.	Phys.	Rev.	LeF.,	109	(20),	205703.	

•  Jia,	T.,	&	Pósfai,	M.	(2014).	ConnecCng	core	percolaCon	and	controllability	of	complex	
networks.	Scien3fic	reports,	4,	5379.	
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Greedy Leaf Removal 

2 1 

core 

3 4 5 

Core does not depend on the order of removal. 



Core of Undirected Networks 

Continuous phase transition. 

Directed	SF	network	



Directed Networks 

Bipartite representation Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.

Core Percolation on Complex Networks
Márton Pósfai1,2 (posfaim@elte.hu), Haijun Yhou3, Endre Csóka2

and Yang-Yu Liu1
1Northeastern University, Boston; 2Eötvös University, Budapest;

3Chinese Academy of Sciences, Beijing

We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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The GLR is defi ned for the bipartite graph as for the undirected 
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Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
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Directed network 

Greedy Leaf Removal is defined on the bipartite representation. 



Analytical solution 

Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.
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distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
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The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Undirected Networks
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core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.
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We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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•  α-removable: Nodes that 
can become isolated. 

•  β-removable: Nodes that 
can become neighbors of a 
leaf. 
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Core of Directed Networks 

Continuous. 

Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.

Core Percolation on Complex Networks
Márton Pósfai1,2 (posfaim@elte.hu), Haijun Yhou3, Endre Csóka2

and Yang-Yu Liu1
1Northeastern University, Boston; 2Eötvös University, Budapest;

3Chinese Academy of Sciences, Beijing

We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Core of Directed Networks 

Continuous. 

Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.
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We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.
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We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Control modes + core percolation 

Centralized control. Distributed control. 
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Directed Networks
Bipartite representation: 
We split each node v into two 
nodes, v+ and v-.  There is a link 
between vi

+ and vj
- if there is a 

directed link between vi and vj.

The GLR is defi ned for the bipartite graph as for the undirected 
case.

Discontinuous transition. 

Continuous only if:

Undirected Networks
We categorize the nodes:

α-removable:   Nodes that can become 
isolated.
β-removable:  Nodes that can become 
a neighbor of a leaf.
non-removable:   Nodes that belong to 
the core.

Local rules:
α-removable: All neighbors are β-removable. 
β-removable:  At least one neighbor is 
α-removable.
non-removable: no neighbor is α-removable, and 
at least two neighbors are not β-removable.

Greedy Leaf Removal
Select random leaf (nodes with degree 1).1. 
Remove leaf and its neighbor.2. 
If there are leaves go to step 1.3. 
Remove all isolated nodes.4. 

Undirected Networks
Graphic solution of 
equation for α.

Continuous transition.

Scale-free with exponential cut-off: no core.

Scale-free static model: 
c*(γ)>c*ER=e.
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We study an iterative node removal process called greedy leaf 
removal.
Applying the removal process  to a network leaves us with the 
core.

Previous work focused on Erdős-Rényi networks, we derive exact 
results for directed and undirected networks with given degree 
distribution.

We fi nd that for networks with average degree smaller c<c* 
there is no core, for c>c* the core size is fi nite. The transition is 
continuous for undirected and symmetric directed (Pin(k)=Pout(k)) 
networks, and discontinuous for asymmetric directed networks.

The core percolation is related to combinatorial optimization 
problems (maximum matching, minimum vertex cover) and 
to physical phenomena (conductor-insulator transitions, 
controllability of complex dynamical systems).
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Back	to	degree	distribuCon	discussion	
(S3ll	considering	LTI	system)		

•  How	does	degree-distribuCon	impact	controllability?		

•  Hubs	are	almost	always	matched!		(They	have	so	many	edges.)	

•  Low	degree	nodes	maFer	

•  As	we	saw,	if	in-degree	=	0,	must	drive	that	node	directly.	

•  Some	deeper	answers	(beyond	degree	distribuCon)	

•  G.	Bianconi	(low	degree	nodes)	
•  Ruths	”control	profiles”		



Control	profiles	(for	LTI	complex	networks)	

•  Source	node	
•  Sink	node	
•  Internal	dilaCon	
•  External	dilaCon	

D.	Ruth,	J.	Ruths,	“Control	Profiles	of	Complex	Networks”,	Science,	343,	2014.		



•  Source	node	–	no	in-links	(must	drive	this	node	directly)	
•  Sink	node	–	no	out-links	(cannot	control	another	node)	
•  Internal	dilaCon	–	a	branch	point	(cannot	control	both	
out-edges	independently)	

•  External	dilaCon	–	excess	sink	nodes	(#sources	–	#sinks)	

Control	profiles	---	categories	of	nodes	

They	conclude	what	maFers:		
•  #sources,	ns	
•  #internal	dilaCons,	ni	
•  #external	dilaCons,	ne	



Real-world	networks	fall	into	different	classes/	control	profiles	

Distributed	
control		

Top	down	control	
(correlated	acCons)	

ConservaCon	
laws?	

Sink	dominated	



”Control	profiles”	of	real	versus	syntheCc	network	models	
(They	don’t	match,	e.g.,	PA	adds	only	source	nodes)	

C.	Campbell,	K.	Shea,	R.	Albert,	Comment	on	“Control	profiles	of	complex	networks”,	
Science,	346,	2014.	(Add	a	parameter	for	added	node	has	in-	or	out-edges.)	



“Exact	controllability”	of	LTI	networks	

More	recently	applied	to	mulCplex	
networks,	New	Journal	of	Physics,	2014.		

Z.	Yuan,	C.	Zhao,	Z.	Di,	W-X	Wang,	and	Y-C	Lai	
	“Exact	controllability	of	complex	networks”.	Nature	CommunicaCons,	4,	2013	

Note	on	Structural	control:	weak	versus	strong	noCons	but	the	non-zero	edge	
weights	are	unspecified;	directed	edges.		

•  Undirected	edges	allowed	
•  Edge	weights	specified	
•  Consider	the	eigenvalues	of	A	
•  ND	=	maximum	geometric	mulCplicity	of	eigenvalues	



Energy/cost	of	control	

G.Yan,	J.	Ren,	Y-C	Lai,	C-H	Lai,	and	B.	Li.	“Controlling	complex	networks:	
How	much	energy	is	needed?”	Physical	Review	LeFers,	108(21),	2012.	

•  LTI	system	
•  Know	the	adjacency	matrix	(including	edge	weights)	
•  Drive	the	system	from	state	x0	to	xTf	in	Cme	Tf	
•  Restrict	to	structures	that	only	need	one	driver	node	
•  Tf	->	0						energy	diverges	
•  Tf	->	∞				energy	required	can	go	to	zero!	

The	control	energy:		



Target	control:	
When	full	control	is	unnecessary	or	infeasible	

•  Mo<va<on:		
–  Internet	(Unnecessary	full	control)	
–  Social	networks	(Unnecessary	full	control)	
–  Financial	networks	(Infeasible	full	control	)	
–  Flights	network	(Infeasible	full	control	)	
–  Biology	networks	(Infeasible	full	control	)	
–  … 

Target	Control 
the	ability	to	efficiently	control	a	preselected	subset	of	nodes.	



k-walks	Theory:	
The	 driver	 node	 can	 control	 a	 set	 of	
nodes	 where	 each	 node	 has	 a	 disCnct	
path	length	to	the	driver. 

Structural	control	can	miss	important	parCal	(target)	control	

AlternaCve	soluCon:	

Structural	control		
predicts	ND=3	

k-walk	theory	correctly		
predicts	ND=1	



Results: 
1.   In	general	local	target	control	is	more	efficient	than	random	target	control.	
2.   More	surprisingly,	we	find	that	degree	heterogeneous	networks	like	scale-free	networks	have	

higher	specific	and	overall	target	control	efficiency	than	degree	homogeneous	networks,	for	
both	random	and	local	schemes.	
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J.	Gao,	Y.-Y.	Liu,	R.D.,	A-L	Barabasi,	“Target	control	of	complex	networks”,	Nat.	Comm.,	2014	



Control	of	LTI	mulCplex,	mulC-Cmescale	networks	

M	Pósfai,	J	Gao,	SP	Cornelius,	AL	Barabási,	R.D.,	Physical	Review	E	94	(3),	
032316,	2016.	
	



Rather	than	node	control	what	about	edge	control?	
(i.e.,	dynamics	on	edges,	not	on	the	nodes)		

T.	Nepusz	and	T.	Vicsek	,	“Controlling	edge	dynamics	in	complex	
networks”,	Nature	Physics,	8,	2012.		

Commentary:	“Complex	networks:	The	missing	link”,	SloCne	&	Liu	

Why	edge	dynamics?	
•  Airline	networks	
•  Social	communicaCon	paFerns	

o  Uni-cast	(unique	message	on	each	outgoing	edge)	versus		
o  Broadcast	(same	message	on	all	outgoing	edges)	

•  Hubs	have	so	many	out	edges,	they	facilitate	control	
•  Heterogeneous	degree	distribuCon	easier	to	control	



TradiConal	control	theory	--	beyond	LTI	

•  LinearizaCon:	
•  Around	fixed	points	
•  Around	a	trajectory		
•  Open	loop	control	(feedback!)	

•  Lie	algebra	and	Lie	brackets	for	non-linear	
formulaCons	of	Kalman	



Part	II.			
	
Non-linear	dynamics		
and	“control	of	chaos”	



II.	Nonlinear	dynamics	

•  Controlling	chaos:		

•  OF,	Gregobi,	Yorkes,	“Controlling	chaos”.	Physical	Review	LeFers,	
64(11):1196,	1990.	

•  Pinning	control		

•  Used	extensively	for	synchronizaCon	
•  RO	Grigoriev,	MC	Cross,	and	HG	Schuster.	Pinning	control	of	
spaCotemporal	chaos.	Physical	Review	LeFers,	79(15):2795,	1997.	

•  F.	SorrenCno,	M.	di	Bernardo,	F.	Garofalo,	and	G.	Chen.	
Controllability	of	complex	networks	via	pinning.	Physical	Review	E,	
75(4):046103,	2007.	



•  AFractor	switching	networks	&	“compensatory	perturbaCons”		

•  S	P	Cornelius,	WL	Kath,	and	AE	MoFer.	RealisCc	control	of	network	
dynamics.	Nature	CommunicaCons,	4,	2013.	

•  Wells,	Daniel	K.,	William	L.	Kath,	and	Adilson	E.	MoFer.	"Control	of	
stochasCc	and	induced	switching	in	biophysical	
networks."	Physical	Review	X	5.3	(2015):	031036.		

•  Ying-Cheng	Lai.	Controlling	complex,	non-linear	dynamical	
networks.	NaConal	Science	Review,	1(3):339–341,	2014.	

•  Control	of	phase	transiCons	in	complex	networks	

•  Explosive	percolaCon	in	random	networks,	D	Achlioptas,	RM	
D’Souza,	J	Spencer,	Science	323	(5920),	1453-1455,	2009.		

II.	Nonlinear	dynamics	



II.	Nonlinear	dynamics	

•  Control	of	SOC	and	Dragon	Kings	

•  P-A.	Noel,	C.	D.	BrummiF,	and	R.	D’Souza.	Controlling	self-
organizing	dynamics	on	networks	using	models	that	self-
organize.	Phys.	Rev.	LeF.,	111:078701,	2013.	

•  P-A.	Noël,	C.	D.	BrummiF,	and	R.	D'Souza.	"BoFom-up	
model	of	self-organized	criCcality	on	networks."	Physical	
Review	E	89.1	(2014):	012807.	

•  The	Self-OrganizaCon	of	Dragon	Kings,	Y	Lin,	K	Burghardt,	
M	Rohden,	PA	Noël,	RM	D'Souza	arXiv:1705.10831	



In	the	beginning	

•  Convert	a	chaoCc	aFractor	to	an	one	of	a	
many	possible	Cme-periodic	moCons	by	
making	only	small	Cme-dependent	
perturbaCons	of	a	system	parameter	

•  Uses	delay	coordinate	embedding	(can	
measure	an	empirical	system	and	
determine	the	control	acCon)	



ChaoCc	aFractor	control	

•  An	infinite	number	of	unstable	periodic	orbits	typically	
embedded	in	a	chaoCc	aFractor.	

•  Determine	some	of	the	low-period	unstable	periodic	orbits	

•  Find	a	desired	one	(that	improves	“system	performance”)	

•  Tailor	Cme-dependent	parameter	perturbaCons	to	stabilize	
that	orbit	

•  Note:		Many	different	orbits	can	be	stabilized	showing	that	
chaos	can	be	a	big	advantage	for	control	or	system	adaptaCon.	
(Simple	period	orbit	can’t	be	significantly	altered,	but	a	chaoCc	
one	can.)		



Controlling	chaos	(OGY	theory,	cont)	
•  Consider	the	trajectory	of	a	three-
dimensional	conCnuous	Cme	dynamical	
system:	
•  dx/dt	=	F(x,p)	
•  x	is	the	three-dimensional	vector	
•  p	is	the	parameter	that	can	vary	
between	some	range	p*	>	p	>	-p*	

•  Consider	a	surface	of	secCon	and	measure	
every	Cme	the	dynamical	trajectory	
pierces	the	surface.		
•  Accumulate	a	Cme	series	of	data	from	
the	trajectories	and	approximate	F(x,p)	

•  Linearize	around	a	fixed	point	
•  Linear	state	feedback	law	

(Image	Y.-Y.	Liu)	



OGY	is	for	low-dimensional	systems,	classic	
example	x	is	3-dimensional.	

	
(Complex	networks	massive	number	of	

dimensions)	



Kicking	control	and	compensatory	perturbaCons	

Exploit	basins	of	
aFracCon	and	natural	
phase-space	
trajectories	



S	P	Cornelius,	WL	Kath,	and	AE	MoFer.	“RealisCc	control	of	
network	dynamics”.	Nature	Communica3ons,	4,	2013.	



Control	of	phase	transiCons	
Design	small	intervenCons	that	enhance	or	delay	the	onset	of	
phase	transiCons	in	a	complex	network.			

“Explosive	percolaCon	in	random	networks”,	D	Achlioptas,	RM	
D’Souza,	J	Spencer,	Science	323	(5920),	1453-1455,	2009.		



Control	of	self	organized	cascades	

•  IntervenCons	can	drive	a	sub-criCcal	system	to	criCcal	point	
•  OpCmal	levels	of	control	exist	to	maximize	profit	



III.	Social	Systems	















Social	networks	(feedback	from	the	real	social	scienCsts)	

•  First	need	to	build	the	influence	network	
•  Then	understand	who	to	influence	and	how	to	influence	

(strategies	of	persuasion)	
•  IntervenCons	are	just	at	the	infancy	
•  ExisCng	intervenCons			
–  IdenCfy	opinion	leaders	
–  SegmentaCon	
–  InducCon	
– AlteraCon	

•  But	how	do	we	make	them	lasCng	changes?		
–  	exploraCon,	adopCon,	implementaCon,	sustaining	
and	monitoring.		



CommonaliCes	
Control	of	complex	networks	across	genres	

What	to	influence	and	how	to	influence	
and	when	to	influence?	



CommonaliCes	

•  Do	we	want	to	control	the	global	behavior	
or	behavior	of	every	single	node?		

e.g.		Large-scale	connecCvity	in	a	
network	vs	eliminaCng	smoking	in	
a	parCcular	individual		



CommonaliCes	

•  What	is	the	minimal	amount	of	
knowledge	of	the	system	we	need	in	

order	to	control	it?	


