Controlling complex networks
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Complex, interdependent networks of modern society
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Each network is a complex system
Collective behaviors from simple constituent elements

e Multiple length and time scales

e Emergent behaviors

— Self organization
(e.g., patterns, synchronization)

— Phase transitions

e Millions of degrees of freedom
— Full knowledge may not be feasible. 2

Cmax/N

Self-organization:

Decentralized coordination and control

0.0



What do we want to “control”?

e Every degree of freedom?

* Some macroscopic property of the system?

— E.g., do you care how many people are infected
(macroscopic) or which particular people are
infected (microscopic).

 Steer towards some class of behaviors? Avoid
certain attractors.
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Classes / categories of control

Traditional mathematical control theory

— Nodes evolving via internal nodal dynamics and interactions
with other nodes

A finaldesired
. . A state
Nonlinear dynamics: o 5
— Basins of attraction / control of chaos A P .
(nudging at a strategic time) :
— Control of self-organization and SOC . (Image Y.-Y. Liu)
X 3

2

Social systems (nodes have “mind of their own”)

Biological systems / medicine



Traditional control theory

* Doesn’t scale to modern systems with millions of
degrees of freedom (may not even be able to
know all the degrees of freedom, let alone their
instantaneous states)

* Modern systems are: Socio-technical, cyber-
physical, eco-social. Can’t necessarily reduce to a
set of interconnected differential equations.

 But there are opportunities



Today’s agenda

e Questions:

— What does it mean to control a complex network?
— What methods exist?

— What are potential new directions?

e Not an exhaustive review of all literature.

* Instead an overview of the main threads of
control in complex networks as | see them.



A comment: Physics meets control theory

e Control theory
— Feedback fundamental
— Strong controllability (every degree of freedom)

— Symmetry is the enemy of controllability
(no fine-grained control without symmetry breaking)

e Physics (in particular statistical physics of networks)
— Equilibrium theory of macroscopic properties
— Phase transitions (parametric control of macroscopic)
— Symmetry offers a key to understanding



Today: Three parts

* Traditional control theory and structural
control of networks

— Emphasis on structural control of Linear Time
Invariant (LTI) systems.

* Control of nonlinear dynamics

* Exerting influence in social networks



|. Traditional control theory
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Traditional control : Many different considerations and notions.

e Control a dynamical system with N degrees of freedom evolving in time,
dx(t)/dt.

* Controllability
e Candrive x(t) from any initial state to any final state in finite time

* Observability
* Knowledge of a subset of x(t) is sufficient to guarantee full
knowledge of x(t).

* Observability and controllability are duals!

Additional notions:
« Stabilizability: control only the amplifying nodes (dampening nodes not important)
* Detectability: all unobservable modes are asymptotically stable

e Set controllability: can bound x(t) to a region.



Linear time invariant (LTI) systems



Most basic starting point:
Linear Time Invariant (LTI) system

Discrete time considered here, since this is easier:

Linear time-invariant x(t+1) =Ax(t)
system:
0O 0 0 O
1= 0 0 ay
a 0 0 a
t 31 34
() x2(£) 0 00 0
1
A is an NxN matrix:
4 It is the adjacency matrix
X3(t) X4(t)

(Note edges are directed
and weighted)



Controlling an LTI system

Linear time-invariant x(t+1)=Ax((t)+ Bu(t)
system:
O 0 0 O
uq(t — | Ax 0 0 ay
1(0) A @, 0 0 ay
0O 0 0 O
1
uy (1)
[0 o
4 B=10 o
0 b,
\ B is a MxN matrix
* N nodes

Driver nodes. . :
* M control signals/driver nodes

e Columns are the unit vector of
We want to find N the minimum each driver node

number of driver nodes




Controllability matrix

Linear time-invariant x(t+1)=Ax(t)+ Bu(t)
system:

t =0: x(0) =0

t=1: x(1) = Bu(0)

t = 2: x(2) = Bu(1) + ABu(0)

t = N: x(N) = Bu(N —=1) + ABu(N = 2) + ---+ AN"'Bu(0) = Cu
Cisa MN x N matrix
Controllability matrix: C€C==[B AB A?B ... A" 'B]

Kalman’ s controllability criteria: rankC =N Controllable!

The matrix C is full-row rank (each row linearly independent)
Kalman, J.S.I.A.M. Control (1963)



The controllability matrix for a specific (A,B) example
c =[B AB A?’B ... A" 'B]

b, 0 0 0 0 07
C=10 by ayby 0 0 0
0 0 I'.'I—3|b| 0 O O_

A matrix 3 x 3
B matrixis2 x 3
C matrixis (2*3)x3=6x3



Kalman rank condition, intuition

Kalman rank condition: full-row rank, rank(C) =N
* N linearly independent rows of C.

* The modes are linearly independent when input
signals are constrained to only the nodes in B.

Many other controllability tests, e.g.,
* the Popov-Belevitch-Hautus theorem
* Non-singular Gramian matrix
(equivalent to Kalman)



So itis “controllable” but how do we control it?!

The controllability Gramian

t
We(t) = / eAt-") BB*eA (-7 dr
to

If and only if the pair (A,B) is controllable, W_ is non-singular, and we can solve for
the minimum energy control signal:

u(t) = —Brer W () [eAt ) gy — 2],

_Mt The control energy:

- Ty )
ey = [ et




Difficulties

1. Parameters (link weights): usually unknown.

2. If brute-force search: (2¥-1) combinations. (Search all possible driver nodes)

3. Kalman’s rank condition is hard to check for large system.

rank C=N
C =[B, AxB, A°xB,---, A" 'xB] has dimension N x NM.



Solution: Topological (purely structural) considerations
Exploit the deep connections with linear algebra

 Structural control solved via maximum matching
* Know which adjacency matrix elements are non-zero,
but do not know the values (“weights”) of the non-
zero entries
* Impact of degree distribution
e “Control profiles”: source, sinks and dilations

* “Exact controllability”
 Know the exact network structure (edge weights)
e Key consideration: the maximum multiplicity
eigenvalues (trying to break up symmetries)
* Energy of control (also, how quickly do you need it
done?)



Thanks to collaborators for slides on structural control
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IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-19, No. 3, JUNE 1974 201

Structural Controllability

CHING-TAI LIN, MEMBER, 1EEE

Abstract—The new concepts of ‘‘structure’’ and ‘‘structural con-
trollability’’ for a linear time-invariant control system (described by
a pair (A,b)) are defined and studied. The physical justification of
these concepts and examples are also given.

The graph of a pair (4,b) is also defined. This gives another way of
describing the structure of this pair. The property of structural con-
trollability is reduced to a property of the graph of the pair (A4,b).
To do this, the basic concept of a ‘‘cactus’ and the related concept of
a ‘‘precactus” are introduced. The main result of this paper states
that the pair (4,b) is structurally controllable if an only if the graph
of (A,b) is ‘‘spanned by a cactus.”” The result is also expressed in a
more conventional way, in terms of some properties of the pair (4,b).

nanre

TAMING
COMPLEXITY

ing entry of (4b) is also fixed (zero). Then one defines the
pair (Ag,bo) to be structurally conirollable if and only if there
exists a completely controllable pair (4,b) which has the
same structure as (Ag,bp).

The concept of “‘structural controllability’” of a pair
(A0,bp) makes the meaning of controllability (in the usual
sense) more complete from the physical point of view.
In fact, it is preferred whenever (Aoby) represents an
actual physical system (that involves parameters only
approximately determined). Actually, the completely
controllable pair (4,b) can be considered as “physically

A solution: structural control (1974) meets maximum matching (2011)

C-T Lin, IEEE Trans on
Automatic Control, 1974

Y.-Y, Liu, A.L. Barabasi, J.-J. Slotine
“Controllability of complex networks”

Nature 2011.



Structured system

We treat the nonzero elements in 4 and B as free parameters, and we keep the
zero entries fixed.

0O 0 O 0 0O 0 O 0

0 a a a,;, 0 a5, a,
A= % 23 Q24 9 A =| %21 23 Q24
a;; 0 0 ay az; 0 0 a3z,

0O 0 0O 0 0O 0 O 0

Lin, IEEE Transactions on Automatic Control (1974)



Structurally controllable

A system (A,B) is structurally controllable, if there exists (4* B*) that is
controllable in the original sense.

If a system is structurally controllable, then either it is controllable or it will
become controllable after slight change of certain links' weights, and remains
controllable for possibly large parameter variations.

Recall considering an LTI system

Lin, IEEE Transactions on Automatic Control (1974)



Examples

a u,
')]
X
ay,
X2
gy
X3

0 0O O 0O 0 O 0O 0 O 0 0 0
A=la, 0 O}, |a, O O|, |ay, O O}, |a,, 0 ay
0 a, O a, 0 0 a,, 0 ay, a, a, 0



Examples

Loops self-regulate:

X
X5 X
X3
C=[B, A-B, A’- B]
1 0 0 1 0 O 1 0 0 1 0 0
b|0 a,, 0 |(, 50 a, 0|, /0 a,, 0 |, /0 a, aya,
0 0 aya, 0 a; O 0 a; aguay, 0 a;, aya,
rank C = N=3 rank C=2 < N=3 rank C = N=3 rank C=?

controllable uncontrollable controllable controllable ?



Examples

1 0 0 )

C=b(0 a, aya,|

O a;, aya,)

ay) y3d; 2 2

If oC €.8. a,a,, = a,a;,thenrank C =2 < N = uncontrollable!

a a,,a ST
31 32721

However, this case 1s pathological. In most cases, the system is controllable.



Weak versus strong structural control

* Strong structural control --- any assignment of the non-zero link
weights yields a controllable network. (Mayeda, Yamada, SIAM 1979.)

 Weak structural control --- there exists an assignment of weights
to the non-zero links that yields a controllable network.

1 0 0
C=b|0 a, apa,l

0 a; aya,,

* For uncorrelated edge weights,

the set of uncontrollable weight “In most cases the system is controllable”
assignments typically form a set

of measure zero. (But important

instances, like all equal weights!)



Why structural controllability?

Finding driver
nodes

Finding maximum
matching




Matching in Directed Networks

Subset of links that do not share start or end points.



Matching in Directed Networks

Subset of links that do not share start or end points. (i.e. nodes)



Matching in Directed Networks

Subset of links that do not share start or end points.




Matching in Directed Networks

Subset of links that do not share start or end points.



Matching in Directed Networks

Subset of links that do not share start or end points.




Matching in Directed Networks

Subset of links that do not share start or end points.



Matching in Directed Networks

Matched nodes: nodes that have links in the matching pointing
at them.




Matching in Directed Networks

The unmatched nodes are the driver nodes.

5

GOOQOD: algorithms and analytical tools!



Mapping to maximum matching

1 0
A4
A34

3 ) 4 0

State of nodes at £+ 1 is completely determined by the state of neighbors at ¢

Bi-partite a @ @ e
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ONORONO

t+1

=
~
of & o
SO OO
O OO




Mapping to maximum matching

1 0
a24>
A34
4 0

If the network is controllable at ¢, it is controllable at ¢+ 1.

=
~
of § o
SO OO
O OO

(Note, we could
have chosen the c @ @ o
other matching of \1

1-3 and 4-2) HEORORONO

Matching: a set of links that do not share endpoints.



Mapping to maximum matching

1 >( 2 0
é A= azy

azq

3)e 4 0

e Rl an i an i @)
o OO

Q24
Q34

We have to control the unmatched nodes.




Maximum matching: finds the value of Ny but not the identity of N,
Typically many ways to assign who are the N, driver nodes

O
o

A matching is equivalent to finding a set

of “cactus” made of stems and cycles

Vocabulary: “driver node” = control signal
“actuator” = a node driven by the control signal
(The subtlety: the same control signal can drive multiple actuators.)



More general questions

- What type of networks are easy/hard to control?
- What properties of networks influence control?

- What characterizes driver nodes?

1. Systematic measurements in real networks.

2. Generate model networks with certain properties.



Ng/N

The fraction of driver nodes n

n, for real networks
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Randomization of real networks

Complete
randomization
106 — - — -
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10’ 54
10° o Tﬁ« Ayy
10.1 1 1 1 1 1 1
10" 10° 10" 10* 10*° 10* 10° 10°
real
Np

Degree-preserving

randomization

10® 1 —_— :
105 | b A — Regulatory
.-‘ Trust
8 10° b —— Food Webs
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[ p ' S Internet
o &S v Communication
10 & +—<>—i Intra-organizational

10-1 1 1 1 !

10" 10° 10" 10° 10* 10* 10° 10°

N Dreal

Controllability is determined by the degree sequence.

But how?



Heterogeneous networks are harder to control.

1 @ Erdés-Rényi | b Scale-free : C <><><
08}
f D 06 - 10 -
l |
02}

N H| ]

1 | | | | |

Low-K Middle-K High-K Low-K Middle-K High-K

Broad-scale degree distributions have Ny much larger
then narrow-scale network of same size N.

Driver nodes tend to avoid hubs.

(Hubs have so many links, they are almost always in the matching)



Does modularity (community structure) matter?

Modularity

in r.out
kM

5(,'.5 yCj
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Community structure

1 k.zn ko_ut
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No effect found.

Modularity (community structure) does not matter!



Do correlations matter?

Degree-degree correlations

- Correlations between the degrees of connected node pairs.
- Directed networks have 4 types of degree correlations:

3 out-in ;g 2 out-out g

- Quantified by their Pearson coefficient:

B (WY k) (37 - 50)

o (@) g (B)

a, 3 € {in,out}

Ia,) =



Simulations 1 ' H
SF, y=2.5 ol
Yes, T es o o
(out-out)
degree-degree ]
correlations T H
0.8 :
matter! ]
o e -
< 0.4 (k)=9
|
1 0.5 0 0.5 1
r(in-out)

» Pésfai, M., Liu, Y. Y., Slotine, J. J., & Barabasi, A. L. (2013). Effect of correlations on
network controllability. Scientific Reports, 3, 1067.




* Control node categories






Critical _,—)

Always driver.




Critical _,—)

Always driver.

Redundant

Never driver. m




Intermittent

Sometimes driver, _‘%

sometimes not.

Critical >
Always driver.

Redundant

Never driver. _'—)

A node is critical iff it has no incoming links.




Emergence of bi-modality
SF network with increasing average degree.

1.0

0.8 -

0.6-

n i
" 04-

0.2 -

Jia, T., Liu, Y. Y., Cséka, E., Posfai, M., Slotine, J. J., & Barabasi, A.
L. (2013). “Emergence of bimodality in controlling complex Distributed control.
networks”. Nature Comm., 4.




® Critical
@® Intermittent
O Redundant

Centralized control. Distributed control.

How to explain this behavior? Answer: Core Percolation

* Liu, Y.Y., Csoka, E., Zhou, H., & Pdsfai, M. (2012). “Core percolation on complex
networks”. Phys. Rev. Lett., 109 (20), 205703.

Jia, T., & Pdsfai, M. (2014). Connecting core percolation and controllability of complex
networks. Scientific reports, 4, 5379.













EEiA



1 2 30 o 4@ = 5

55 f% f%COl’e

Core does not depend on the order of removal.



fraction of nodes

Directed SF network

Continuous phase transition.



Directed network Bipartite representation

_|_
(05 Uy

Ovl_

» v;‘ (2
(%) U3 U; Ug
(v1 — v2) (vf,v;)

Greedy Leaf Removal is defined on the bipartite representation.



 a-removable: Nodes that

can become isolated.

* B-removable: Nodes that
can become neighbors of a

leaf.

A= (AT (2)) —x
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® Critical
@® Intermittent
O Redundant

Centralized control. Distributed control.

NT > N NT < N

core core core core



Nt >N

core core

Centralized

P

N

Distributed
Nt < Nz

core core



Back to degree distribution discussion
(Still considering LTI system)

How does degree-distribution impact controllability?
Hubs are almost always matched! (They have so many edges.)
Low degree nodes matter

* As we saw, if in-degree = 0, must drive that node directly.
Some deeper answers (beyond degree distribution)

e G. Bianconi (low degree nodes)

e Ruths “control profiles”



Control profiles (for LTI complex networks)

internal
difation

e Source node
Sink node
Internal dilation
External dilation

D. Ruth, J. Ruths, “Control Profiles of Complex Networks”, Science, 343, 2014.



Control profiles --- categories of nodes

internal They conclude what matters:

* ffsources, n
 #internal dilations, n,

* #external dilations, n,

’ .
© control Sk

* Source node - no in-links (must drive this node directly)
Sink node - no out-links (cannot control another node)

Internal dilation — a branch point (cannot control both
out-edges independently)

External dilation — excess sink nodes (#sources — #sinks)



Real-world networks fall into different classes/ control profiles

source
dominated

ENLN

Sink dominated

external-dilation
dominated

AVAY

internal-dilation
dominated

AVA

newral (4) social (8] copurchase (4) comp. owneshp (1)
/\ /\
R B massagng (2) pa2p (8)
LA 7] socal influsnce (5) ranscription (2)
Distributed Top down control
control (correlated actions)

airport (21 awionomows (1)

AVA

Grouit(3) | food web (22)

www+biog (4]

Conservation
laws?




”Control profiles” of real versus synthetic network models
(They don’t match, e.q., PA adds only source nodes)

i
1
S A A
c Ms real Me
i g ‘
=
=|
) A
ER BA [A DD real A )
Ns synthetic Ne

C. Campbell, K. Shea, R. Albert, Comment on “Control profiles of complex networks”,
Science, 346, 2014. (Add a parameter for added node has in- or out-edges.)



“Exact controllability” of LTI networks

Note on Structural control: weak versus strong notions but the non-zero edge
weights are unspecified; directed edges.

Z.Yuan, C. Zhao, Z. Di, W-X Wang, and Y-C Lai
“Exact controllability of complex networks”. Nature Communications, 4, 2013

A Elementary colum=n Column canonical Eigenvalues
"~ ‘N Transformation form
2':;.2.3' " -1 11111 100000 -1.9032
S 100000 010000 —1.0000(
LA 100000 010000 ,_| 01939 | 4 =100
r/.-—,_,‘ . [ A= *
o ¥ 100-100| ™% (001000 1.0000 [ ;M) =2
3 | @5 | 10001 1 000100 1.0000
®: 1000 1-1 020-100 2.7093
More recently applied to multiplex
Undirected edges allowed networks, New Journal of Physics, 2014.
Edge weights specified

Consider the eigenvalues of A
Ny = maximum geometric multiplicity of eigenvalues



Energy/cost of control

G.Yan, J. Ren, Y-C Lai, C-H Lai, and B. Li. “Controlling complex networks:
How much energy is needed?” Physical Review Letters, 108(21), 2012.

* LTI system

* Know the adjacency matrix (including edge weights)
* Drive the system from state x, to x; in time T;

e Restrict to structures that only need one driver node

* T,->0 energy diverges

* T,->0°° energy required can go to zero!

The control energy:

P T 2
ey = [ fufar




Target control:
When full control is unnecessary or infeasible

* Motivation:
— Internet (Unnecessary full control)
— Social networks (Unnecessary full control)
— Financial networks (Infeasible full control )
— Flights network (Infeasible full control )
— Biology networks (Infeasible full control )

Target Control

the ability to efficiently control a preselected subset of nodes.



Structural control can miss important partial (target) control

k-walks Theory:

The driver node can control a set of
nodes where each node has a distinct
path length to the driver.

Alternative solution:

(a) Network (b) Maximum matChing (C) Full control

Pn
\

(d) Greedy algorithm

Structural control
predicts Ny=3

(e) Target control

1 ) @®
2
3 ® \ w 1
4 //.@ k-walk theory correctly
5 @ predicts Ny=1
NS
7 @

Iteration 4 Iteration 3 Iteration 2 Iteration 1



Target control efficiency

0.15/ (@) ] (b) |=v=20
0.1 y=2.4
0.1 7 ——vy=3.0

N Number of driver nodes to 00s I N o
D control the entire network —

—

«)-0.05
-0.1
-0.15
-0.2
-0.25

Random

0.15
0.1
y!
0.05

< -0.05
-0.1
-0.15
-0.2
-0.25

Local

4 )
Results:

1. In general local target control is more efficient than random target control.

2. More surprisingly, we find that degree heterogeneous networks like scale-free networks have

higher specific and overall target control efficiency than degree homogeneous networks, for

both random and local schemes. /

-

J. Gao, Y.-Y. Liu, R.D., A-L Barabasi, “Target control of complex networks”, Nat. Comm., 2014




Control of LTI multiplex, multi-timescale networks

o $
Layer | ' |
Q‘/® -©
Layer Il f

Xl(’) = Alxl(l — Tl) -+ BU(’ — Tl) if (f mod T|) = (),

i

x"(t) = A][X”(f — 7'1[) -+ An(f)DX](f _— T|) if (t mod T[]) = (),

M Pdsfai, J Gao, SP Cornelius, AL Barabasi, R.D., Physical Review E 94 (3),

032316, 2016.




Rather than node control what about edge control?
(i.e., dynamics on edges, not on the nodes)

T. Nepusz and T. Vicsek , “Controlling edge dynamics in complex
networks”, Nature Physics, 8, 2012.

Commentary: “Complex networks: The missing link”, Slotine & Liu

Why edge dynamics?

e Airline networks

e Social communication patterns
o Uni-cast (unique message on each outgoing edge) versus
o Broadcast (same message on all outgoing edges)

 Hubs have so many out edges, they facilitate control
 Heterogeneous degree distribution easier to control



Traditional control theory -- beyond LTI

* Linearization:
* Around fixed points
* Around a trajectory
* Open loop control (feedback!)

* Lie algebra and Lie brackets for non-linear
formulations of Kalman



Part |l.

Non-linear dynamics
and “control of chaos”



Il. Nonlinear dynamics

e Controlling chaos:

e Oftt, Gregobi, Yorkes, “Controlling chaos”. Physical Review Letters,
64(11):1196, 1990.

* Pinning control

* Used extensively for synchronization

* RO Grigoriev, MC Cross, and HG Schuster. Pinning control of
spatiotemporal chaos. Physical Review Letters, 79(15):2795, 1997.

 F.Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen.
Controllability of complex networks via pinning. Physical Review E,

75(4):046103, 2007.



Il. Nonlinear dynamics

e Attractor switching networks & “compensatory perturbations”

S P Cornelius, WL Kath, and AE Motter. Realistic control of network
dynamics. Nature Communications, 4, 2013.

* Wells, Daniel K., William L. Kath, and Adilson E. Motter. "Control of
stochastic and induced switching in biophysical
networks." Physical Review X 5.3 (2015): 031036.

* Ying-Cheng Lai. Controlling complex, non-linear dynamical
networks. National Science Review, 1(3):339-341, 2014.

e Control of phase transitions in complex networks

* Explosive percolation in random networks, D Achlioptas, RM
D’Souza, J Spencer, Science 323 (5920), 1453-1455, 2009.



Il. Nonlinear dynamics

* Control of SOC and Dragon Kings

* P-A. Noel, C. D. Brummitt, and R. D’Souza. Controlling self-
organizing dynamics on networks using models that self-
organize. Phys. Rev. Lett., 111:078701, 2013.

 P-A. Noél, C. D. Brummitt, and R. D'Souza. "Bottom-up
model of self-organized criticality on networks." Physical
Review E 89.1 (2014): 012807.

* The Self-Organization of Dragon Kings, Y Lin, K Burghardt,
M Rohden, PA Noél, RM D'Souza arXiv:1705.10831



In the beginning

VOLUME 64, NUMBER 11 PHYSICAL REVIEW LETTERS 12 MARCH 1990

Controlling Chaos

Edward Ott, @-®) Celso Grebogi,® and James A. Yorke

University of Maryland, College Park, Maryland 20742
(Received 22 December 1989)

* Convert a chaotic attractor to an one of a
many possible time-periodic motions by
making only small time-dependent
perturbations of a system parameter

* Uses delay coordinate embedding (can
measure an empirical system and
determine the control action)




Chaotic attractor control

An infinite number of unstable periodic orbits typically
embedded in a chaotic attractor.

Determine some of the low-period unstable periodic orbits
Find a desired one (that improves “system performance”)

Tailor time-dependent parameter perturbations to stabilize
that orbit

Note: Many different orbits can be stabilized showing that
chaos can be a big advantage for control or system adaptation.
(Simple period orbit can’t be significantly altered, but a chaotic
one can.)



Controlling chaos (OGY theory, cont)

* Consider the trajectory of a three-
dimensional continuous time dynamical
system:

e dx/dt = F(x,p)

e Xxis the three-dimensional vector

* pisthe parameter that can vary
between some range p* >p > -p*

* Consider a surface of section and measure
every time the dynamical trajectory
pierces the surface. y

* Accumulate a time series of data from \
the trajectories and approximate F(x,p)

* Linearize around a fixed point

* Linear state feedback law

(Image Y.-Y. Liu)



OGY is for low-dimensional systems, classic
example x is 3-dimensional.

(Complex networks massive number of
dimensions)



Kicking control and compensatory perturbations

x
" target, x*
X, : :
Xo Exploit basins of
X() attraction and natural
[ ] 'rn—l [
= ! phase-space
trajectories
L3



S P Cornelius, WL Kath, and AE Motter. “Realistic control of
network dynamics”. Nature Communications, 4, 2013.
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Control of phase transitions

Design small interventions that enhance or delay the onset of
phase transitions in a complex network.

o

—

¢ Enhance — similar to ER
but with earlier onset. =

.
e Delay — é’é
Extremely abrupt O

00 05 10 15 20 25 3.0

“Explosive percolation in random networks”, D Achlioptas, RM
D’Souza, J Spencer, Science 323 (5920), 1453-1455, 2009.



Control of self organized cascades

Controlling the BTW model away from the SOC state

Noél, Brummitt, R.D., Phys. Rev. Lett. 111 0780701, 2013

Control parameter pu:
probability grain lands on a node at threshold* e Avoid cascades,

i = 0.05 — larger

™\ T————rT ————vT ] T
N O uncontrolled (i = ¥, ~ 0.53) cascades when they do
V \H"'A“Qg\ m  controlled with g = 0.05 occur
0001 | ""-.:}'\\ 4 controlled with =099 | '
£ f e
2 bability of N Ny, :
3 probability o Nt ™ e Ignite cascades,
8 7L sizeOis 1— A\ 3
a 107" S 1= A \ L 1
\ N\ u, i = 0.99 — smaller
A\ \ )
A Y cascades, but more
107" by " : I | . -
oF frequent.

0 1 10 102 10° 10 10°

cascade size (number of topplings)

* Interventions can drive a sub-critical system to critical point
* Optimal levels of control exist to maximize profit



I1l. Social Systems

Modeling Influence & Opinion Dynamics




Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

INSIDE SCIENCE NEWS SERVICE

e Thresholds models

Zealots Help Sway Popular Opinions

e Voter models

e Opinion dynamics
(e.g. The Naming game)

\ | £ , ."
i) Pe rCOI atio n Image credit: Gabriel Saldana via Flickr | http://bu!.ly/lEQl;CE}

Rights information: http://bit.ly/1dWcOPS

Enthusiasts can greatly influence the adoption of new ideas.

Originally published: Feb 19 2015 - 10:45am

e Game theory S —

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.

What mechanism makes an individual change their mind?



|. Diminishing returns versus thresholds

c c
= k=]
= =
o O
© ©
™ L)
° °
- g
o e
(= a
k = number of friends adopting k = number of friends adopting
Diminishing returns? Critical mass?
Kleinberg, Leskovec, Kempe Watts, Dodds
e.g., KDD 2003. e.g. PNAS 2002.
“Hill climbing” / best response Percolation & generating functions

Algorithms for influential seed nodes Susceptibles vs influentials/mavens
(Depends on active vs passive influence.)



ll: The Voter model, “Tell me what to think”
V. Sood, S. Redner, Phys. Rev. Lett. 94, 2005.
e At each time step in the process, pick a node at random.
e That node picks a random neighbor, and adopts the opinion of the neighbor.

e Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

high degree; few nodes
j change rarely

low degree; picked often
import often

10° 10’ 10° K

Degree distribution

e Invasion percolation (the “bully” model) yields the opposite: leaf nodes propagate opinions.



lll: “The Naming Game” / open minded individuals
Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

e Originally introduced for linguistic convergence. Two opinions, A and B.

e And each individual can hold A, B, or { A, B}.

e Exchange opinions with neighbors and update




The impact of Zealots
Committed individuals who will never change opinions

/ P
X =zlx+z+ 5 yix — p),

/ q
y=z|y+tz+ ) —x(y—9q),

z=1-x-y.
p is fraction of A zealots; ¢ is fraction of B zealots.
Voter model: A finite number of zealots can sway the outcome.

Naming game: A small fraction of zealots can sway the outcome.

Naming game with multiple choices, :
Operating systems; cell phones; political parties; etc

— Zealots of only one kind: Quickly obey the zealot.
— Equal fractions of zealots of all kinds: Quickly reach stalemate.



Collective phenomena in social networks
How the online world is changing the game

J. Flack, R.D., editors, PIEEE (2014)

Past: Small, geographically localized
social networks, concentrated
power and influence

Proceedings IEEE

Impact of Changing Technology
on Social Networks

vvvvv

Present: Digital footprint,
massive online experimentation,
global information,

rapid rate of change.



Social networks (feedback from the real social scientists)

* First need to build the influence network

e Then understand who to influence and how to influence
(strategies of persuasion)

* Interventions are just at the infancy

* Existing interventions
— ldentify opinion leaders
— Segmentation
— Induction
— Alteration

* But how do we make them lasting changes?

— exploration, adoption, implementation, sustaining
and monitoring.



Commonalities
Control of complex networks across genres

What to influence and how to influence
and when to influence?



Commonalities

* Do we want to control the global behavior
or behavior of every single node?

e.g. Large-scale connectivity in a
network vs eliminating smoking in
a particular individual



Commonalities

 What is the minimal amount of
knowledge of the system we need in
order to control it?



