
ECS 253 / MAE 253, Network Theory and Applications

Spring 2023

Common Problem Set # 1, Due April 19

Problem 1: Power Law Degree Distributions

Consider the power law distribution p(k) = Ak−γ, with support (i.e., defined from)

k = 1 to k →∞. In the steps below, you can either treat the k’s using a continuum

approximation (as we did in class) or you can treat the k’s as discrete. The continuum

approximation:
∞∑
k=1

pk ≈
∫ ∞
k=1

pkdk

The exact treatment:

∞∑
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∞∑
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]
.

The sum in the brackets is known as the Riemann Zeta Function, RZ(γ). The value

of RZ(γ), for many values of γ can be found in standard references (e.g., Mathworld,

Wikipedia, etc).

a) Show that we must have γ > 1 for this to be a properly defined probability

distribution function (pdf). Recall a pdf must have two properties: 1) p(k) ≥ 0 for

all k, and 2) it must be normalized.

b) Solve for the normalization constant A.

c) Show that if 1 < γ ≤ 2, the average value 〈k〉 diverges.

d) Show that if 2 < γ ≤ 3, the average is finite, but the variance, σ2, diverges. The

best way to do this is to realize σ2 = 〈k2〉 − 〈k〉2, explicitly:

σ2 =
1

N
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N
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∑
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=
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e) Plot p(k) = Ak−γ, for k = 1 to k = 100, 000 for γ = 3, and properly normalize. Use

matlab, R, or pen and paper, etc (and make sure to label axes clearly with values).



(A note on “properly normalizing”: The continuum approach (as shown in class)

leads to A = γ − 1, meaning for γ = 3 then p(k) = 2k−3 (i.e. p(1) > 1!). Thus the

continuum approximation actually leads to the wrong normalization constant! To

properly normalize you either need the Riemann Zeta func approach or you have to

explicitly calculate (e.g., by writing a little computer code)
∑m
k=1A

′k−3 = 1 where

m is a big number, say m = 106, and solving for the correct normalization constant

A′ 6= γ − 1.)

f) In a finite network with N nodes, what is the largest possible value of degree, kmax,

that can ever be observed? So can we ever have 〈k〉 → ∞ in a finite network?

Problem 2: Adjacency matrix

a) Consider the simple network shown above and write down its the adjacency matrix.

b) Consider a random walk on this network. What is the steady-state probability of

finding the walker on each node?

c) What would be the steady-state probability of finding the walker on each node if

the edges were instead undirected?



Problem 3: Rate equations: Network growth with uniform attachment

Consider a variant of the BA model that does not feature preferential attachment.

We start with a single node at time t = 1. In each subsequent discrete time step, a

new node is added with m = 1 links to existing nodes. The probability that a link

arriving at time step t+ 1 connects to any existing node i is uniformly distributions

and independent of i:

πi =
1

t
. (1)

Let nk,t denote the expected number of nodes of degree k at time t. For the steps

below, proceed as in lecture.

a) Write the rate equation for nk,t+1 in terms of the nj,t’s. (Note you will need to

equations, one for k = 1 and one for k > 1.)

b) Converting from expected number of nodes to probabilities, pk,t = nk,t/nt, rewrite

the equations in part (a) in terms of the probabilities.

c) Assume steady-state, that pk,t = pk, and solve the recurrence relation to obtain pk

in terms of pk−1.

d) Starting by solving for p1 and recursing, derive the expression for the stationary

degree distribution pk.


