ECS 253 / MAE 253, Network Theory and Applications Spring 2023
 Advanced Problem Set \# 1, Due April 19
 Topic: Kinetic theory, and the Erdős-Rényi random graph

Problem 1: The Erdős-Rényi random graph - analyzing the phase transition

Consider an Erdős-Rényi random graph with N nodes and probability p for any edge to be present. Let N_{G} denote the number of nodes that are in the giant component. Thus, the fraction of nodes that are not in the giant component, $u=1-N_{G} / N$. Likewise, the probability that a node chosen uniformly at random is not in the giant component is u.
a) We first analyze the likelihood that an arbitrary node i is not in the giant component via its connection to another node node j. There are two possibilities that lead to the desired outcome: (i) i is not linked to j, (ii) i is linked to j, but j is not part of a giant component. Considering these facts and that there are $N-1$ possible choices for j show that:

$$
\begin{equation*}
u=(1-p+p u)^{N-1} \tag{1}
\end{equation*}
$$

b) The average degree, $\langle k\rangle=p(N-1)$. Using $p=\langle k\rangle /(N-1)$ and the fact that $\ln (1+x) \approx x$ for small x show that:

$$
\begin{equation*}
\ln u=-\langle k\rangle(1-u) . \tag{2}
\end{equation*}
$$

c) Let $S=1-u$ denote the fraction of nodes in the giant component and show that the result in (b) leads to the equation:

$$
\begin{equation*}
S=1-e^{-\langle k\rangle S} \tag{3}
\end{equation*}
$$

d) Although Eq. (3) looks simple, it does not have a closed form solution. The easiest method to solve it is graphical. Plot the right hand side of Eq. (3) as a function of S for three choices of average degree $\langle k\rangle=0.5,1,1.5$. Now plot also on the same figure the line $S=S$. Where the curve and the line intersect is where there are valid solutions to Eq. (3).
e) In fact the smallest value of $\langle k\rangle$ that leads to a non-zero solution for S (the critical level of connectivity for the emergence of a giant component) is when the derivative of the r.h.s. of Eq. (3) w.r.t S equals the derivative of the l.h.s. of Eq. (3) w.r.t S for $S=0$. Using this, show that the giant component first emerges for $k_{c}=\langle k\rangle=1$.
f) Now consider another interesting aspect, the value of p where we first achieve full connectivity and all nodes are in the giant component. The probability that a node selected uniformly at random does not have an edge into the giant component is $(1-p)^{N_{G}}$, and we sill consider the regime $N_{G} \approx N$. Show that the expected number of isolated nodes $I_{G} \approx N e^{-N P}$. Then by using that formula and setting $I_{G}=1$ calculate the value of p for the onset of full connectivity.

Problem 2: The Erdős-Rényi random graph - cluster size distribution

Here you will do some simple analysis of the Erdős-Rényi random graph evolution using kinetic theory. We model the growth process as cluster aggregation via the classic Smoluchowski coagulation equation. The following two references are classics:

- David J. Aldous, "Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists", Bernoulli, Vol 5 (1), 3-48, 1999.
- E. Ben-Naim and P. L. Krapivsky, "Kinetic theory of random graphs: From paths to cycles", Phys. Rev. E 71, 026129, 2005.
- Let $N_{k}(t)$ denote the total number of components of size k and time t.
- Let $c_{k}(t)=N_{k}(t) / N$ denote the density of components containing k nodes at t.
- We begin at $t=0$ with $c_{1}(0)=1$ (and thus $c_{j}(0)=0$ for $j \neq 1$).
- We will drop the time subscript for simplicity, $c_{k}(t) \equiv c_{k}$, and analyze $\frac{d c_{k}}{d t}$. This approximates the impact of adding one edge as a continuous process and is the resulting average graph / "mean field" over all graphs (see Aldous 1999, for more details.)
a) The probability that a node chosen uniformly at random belongs to a component of size i is $i c_{i}$. Using this fact, write out the evolution equation for $\frac{d c_{k}}{d t}$. (You will have to consider all the ways that a new component of size k can be formed by adding one edge, and that the number of components of size k can decrease.)
b) By simple iteration, solve c_{1}, c_{2} and c_{3}.
c) What formula does this suggest for the general process, c_{k} ?
d) Note, to solve for c_{k} explicitly starting from the formula for $\frac{d c_{k}}{d t}$ requires generating functions and a clever Lagrange inversion formula (see Ben-Naim 2005 for details).
The real formula is $c_{k}=\frac{k^{k-2}}{k!} t^{k-1} e^{-k t}$, but the one you find in part (c) is close. Using this explicit formula for c_{k} show that at the critical point $(\mathrm{t}=1)$ the density of components $c_{k} \sim k^{-5 / 2}$.

