ECS 253 / MAE 253, Network Theory and Applications
Spring 2023
Advanced Problem Set # 4, Due May 31
Topic: Configuration model random graphs

Note 1: Some of the problems herein require you to implement computer code. The
purpose is to teach you generic skills about how to build a random graph and how to
run simulations on a graph. For these problems, you can either use your favorite graph
library (e.g., networkX, igraph, ...) or do everything from scratch (e.g., by implement-
ing your own adjacency list as a vector of vector). Although we encourage you to use a
graph library, you should only call “basic graph operations” from such libraries. Indeed,
calling a “high level” function such as nx.configuration model defeats the purpose
of learning how to build your own random graph. The following operations are “basic
graph operations”: creating a network with N nodes and no edges; adding/deleting
a node; adding/deleting an edge; requesting who are the neighbors of a node; storing
information in a node/edge (i.e., node/edge properties). Use common sense.

Note 2: This document uses the first N natural numbers (i.e., 1,2,3,--- N —1,N) to
refer to each node of a graph. Depending of the programming language you are using,
indexing the elements of a vector may start at 0 or 1. Hence, you are free to use the
first N non-negative integers (i.e., 0,1,2,--- ;N — 2, N — 1) in your computer code if
you want to.

1 Building a configuration model random graph

Let k = (ky, ko, k3, -+, ky) be a vector of N non-negative integers such that Zfil k; is an
even number. An instance of the configuration model random graph with degree sequence
k can be obtained as follows.

e Make sure that S_~ k; is an even number (give an error if not).
e Create an undirected graph containing N nodes and no edges.

e Create a vector (or list or multiset...) such that, for each 1 < i < N, it contains k;
copies of i. This object will hereafter be known as the “stub list”. Example: The vector
(1,2,3,4,5,5,6,6,6,7,7,7) is a valid stub list in the case k = (kq, ko, k3, k4, ks, ke, k7) =
(1,1,1,1,2,3,3).

e Sample uniformly at random one element from the stub list; call that element ¢ and
remove it from the stub list. Sample uniformly at random another element from the
(now shorter) stub list; call that element j and remove it from the stub list. Add an
edge between node ¢ and node j in the network. Repeat this step as long as the stub
list is not empty.

The resulting network will be a random graph with degree sequence k. For the purpose of
this problem, we do not worry about repeated edges (i.e., more than one links between two
nodes) and self loops (i.e., a node with an edge to itself).

(a) Write a computer implementation of this algorithm.

(b) Using the degree sequence k = (1,1,1,1,1,1,1,1,2,2,2,2,3,3), generate a configura-
tion model random graphs and display the result as a figure.

(c) Let n be a vector such that the kth component represents the number of nodes of degree
k. For example, n = (0, 8,4, 2) corresponds to the k = (1,1,1,1,1,1,1,1,2,2,2,2,3, 3).
Write a function that receives n as an input and returns k.

(d) Let p be a vector such that the kth component denotes the probability of having a
node of degree k. Write a function that receives p and returns k.

2 Percolation and spreading

Consider the three functions described below.

percolation:
e Receive as input a graph GG and a real number p such that 0 < p < 1.

e Make a graph with no edges and as many nodes as G has; call this graph without edges
G

e [terate over all the edges of G. Suppose the current edge is between nodes u and v.
Get a random number uniformly distributed in the interval [0, 1). If that number is
lower than p, add in G’ an edge between nodes u and v.

e Return the graph G'.
Hence, each edge of GG has probability p to be present in G'.
spreading:
e Receive as input a graph GG, a node index v, and a real number 7" such that 0 <7T" < 1.
e “Mark” all nodes as “unreached” by one of the following two methods:

— Create a vector of bool called is_reached containing as many entries as there are
nodes in G. Initialize all its entries to “False”; OR

— Give to each node in G the bool “node property” is_reached. Initialize them all
to “False”.

e Create an empty vector (or other appropriate container) of indices; call it unresolved,
and place v in it.

Set an integer variable number_reached with value 1.

Repeat the following as long as unresolved is not empty. Get in u the value of an
element of unresolved, and remove said element from unresolved. If u is marked as
unreached (i.e., if is_reached is “False” for that node), do the following:

— Increment number_reached by one.

— Mark u as reached (i.e., set is_reached to “True” for that node).

— For each neighbor w of u, generate a random number uniformly distributed in the

interval [0, 1). If the number is lower than 7', add w to unresolved.

Return number_reached.

component_size:

e Receive as input a graph GG and a node index v.

e (Call your spreading function for the graph G, the node index v, and using 7" = 1.

e Return the number reached returned by the aforementioned function.

(a)

(b)

The fifth bullet of spreading does not specify which element of unresolved should
be removed to become u. Does the outcome number reached depend on this choice?

Why?

Explain why the value returned by component _size corresponds to the size of the
component to which u belong.

Let G’ be a graph returned by percolation (with parameters G and p). Show (by
hand) that calling spreading with the parameters G, v and T is statistically equivalent
to calling spreading with the parameters G, v and pT. From this result, deduce a
relationship between spreading and the size of the component to which v belong in a
graph returned by percolation.

Implement these three functions.

We shall now use the code you have written up to this point to understand percola-
tion/spreading on a random network with a given degree sequence. For a given graph,
you will simulate spreading with a given probability of transmission (7") and compute
the probability distribution for the total number of nodes reached starting from a node
at random. The process is described below. Write code to do the following:

e Receive T', n as inputs.

e Initialize a vector res to store the result. If the number of nodes in the network
is N this vector has size N. Since spreading process could reach at most N nodes
(and always starts with one random node).

e Repeat the following steps number_simulations times:

— Create a configuration model random graph with n as the input.
— Do A or B (See below). Store the result in S
— Increment the Sth entry of the vector res by 1.

e Normalize the vector res such that component ¢ gives the probability of the pro-
cess spreading to ¢ nodes starting from a random node. This is the result we are
interested in.

A: Call spreading.
B: Call percolation and then component_size.

(f) Run the above process for n = (0,8,4,2) and T' = 0.4. Report the result.

