ECS 253 / MAE 253, Network Theory and Applications Spring 2023
Advanced Problem Set \# 4, Due May 31
Topic: Configuration model random graphs

Note 1: Some of the problems herein require you to implement computer code. The purpose is to teach you generic skills about how to build a random graph and how to run simulations on a graph. For these problems, you can either use your favorite graph library (e.g., networkX, igraph, ...) or do everything from scratch (e.g., by implementing your own adjacency list as a vector of vector). Although we encourage you to use a graph library, you should only call "basic graph operations" from such libraries. Indeed, calling a "high level" function such as nx.configuration model defeats the purpose of learning how to build your own random graph. The following operations are "basic graph operations": creating a network with N nodes and no edges; adding/deleting a node; adding/deleting an edge; requesting who are the neighbors of a node; storing information in a node/edge (i.e., node/edge properties). Use common sense.

Note 2: This document uses the first N natural numbers (i.e., $1,2,3, \cdots, N-1, N$) to refer to each node of a graph. Depending of the programming language you are using, indexing the elements of a vector may start at 0 or 1 . Hence, you are free to use the first N non-negative integers (i.e., $0,1,2, \cdots, N-2, N-1$) in your computer code if you want to.

1 Building a configuration model random graph

Let $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}, \cdots, k_{N}\right)$ be a vector of N non-negative integers such that $\sum_{i=1}^{N} k_{i}$ is an even number. An instance of the configuration model random graph with degree sequence \mathbf{k} can be obtained as follows.

- Make sure that $\sum_{i=1}^{N} k_{i}$ is an even number (give an error if not).
- Create an undirected graph containing N nodes and no edges.
- Create a vector (or list or multiset...) such that, for each $1 \leq i \leq N$, it contains k_{i} copies of i. This object will hereafter be known as the "stub list". Example: The vector $(1,2,3,4,5,5,6,6,6,7,7,7)$ is a valid stub list in the case $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}\right)=$ $(1,1,1,1,2,3,3)$.
- Sample uniformly at random one element from the stub list; call that element i and remove it from the stub list. Sample uniformly at random another element from the (now shorter) stub list; call that element j and remove it from the stub list. Add an edge between node i and node j in the network. Repeat this step as long as the stub list is not empty.

The resulting network will be a random graph with degree sequence \mathbf{k}. For the purpose of this problem, we do not worry about repeated edges (i.e., more than one links between two nodes) and self loops (i.e., a node with an edge to itself).
(a) Write a computer implementation of this algorithm.
(b) Using the degree sequence $\mathbf{k}=(1,1,1,1,1,1,1,1,2,2,2,2,3,3)$, generate a configuration model random graphs and display the result as a figure.
(c) Let \mathbf{n} be a vector such that the k th component represents the number of nodes of degree k. For example, $\mathbf{n}=(0,8,4,2)$ corresponds to the $\mathbf{k}=(1,1,1,1,1,1,1,1,2,2,2,2,3,3)$. Write a function that receives \mathbf{n} as an input and returns \mathbf{k}.
(d) Let \mathbf{p} be a vector such that the k th component denotes the probability of having a node of degree k. Write a function that receives \mathbf{p} and returns \mathbf{k}.

2 Percolation and spreading

Consider the three functions described below.

```
percolation:
```

- Receive as input a graph G and a real number p such that $0 \leq p \leq 1$.
- Make a graph with no edges and as many nodes as G has; call this graph without edges G^{\prime}.
- Iterate over all the edges of G. Suppose the current edge is between nodes u and v. Get a random number uniformly distributed in the interval $[0,1)$. If that number is lower than p, add in G^{\prime} an edge between nodes u and v.
- Return the graph G^{\prime}.

Hence, each edge of G has probability p to be present in G^{\prime}.
spreading:

- Receive as input a graph G, a node index v, and a real number T such that $0 \leq T \leq 1$.
- "Mark" all nodes as "unreached" by one of the following two methods:
- Create a vector of bool called is_reached containing as many entries as there are nodes in G. Initialize all its entries to "False"; OR
- Give to each node in G the bool "node property" is_reached. Initialize them all to "False".
- Create an empty vector (or other appropriate container) of indices; call it unresolved, and place v in it.
- Set an integer variable number_reached with value 1.
- Repeat the following as long as unresolved is not empty. Get in u the value of an element of unresolved, and remove said element from unresolved. If u is marked as unreached (i.e., if is_reached is "False" for that node), do the following:
- Increment number_reached by one.
- Mark u as reached (i.e., set is_reached to "True" for that node).
- For each neighbor w of u, generate a random number uniformly distributed in the interval $[0,1)$. If the number is lower than T, add w to unresolved.
- Return number_reached.
component_size:
- Receive as input a graph G and a node index v.
- Call your spreading function for the graph G, the node index v, and using $T=1$.
- Return the number_reached returned by the aforementioned function.
(a) The fifth bullet of spreading does not specify which element of unresolved should be removed to become u. Does the outcome number_reached depend on this choice? Why?
(b) Explain why the value returned by component_size corresponds to the size of the component to which u belong.
(c) Let G^{\prime} be a graph returned by percolation (with parameters G and p). Show (by hand) that calling spreading with the parameters G^{\prime}, v and T is statistically equivalent to calling spreading with the parameters G, v and $p T$. From this result, deduce a relationship between spreading and the size of the component to which v belong in a graph returned by percolation.
(d) Implement these three functions.
(e) We shall now use the code you have written up to this point to understand percolation/spreading on a random network with a given degree sequence. For a given graph, you will simulate spreading with a given probability of transmission (T) and compute the probability distribution for the total number of nodes reached starting from a node at random. The process is described below. Write code to do the following:
- Receive T, \mathbf{n} as inputs.
- Initialize a vector res to store the result. If the number of nodes in the network is N this vector has size N. Since spreading process could reach at most N nodes (and always starts with one random node).
- Repeat the following steps number_simulations times:
- Create a configuration model random graph with \mathbf{n} as the input.
- Do \mathcal{A} or \mathcal{B} (See below). Store the result in S
- Increment the S th entry of the vector res by 1.
- Normalize the vector res such that component i gives the probability of the process spreading to i nodes starting from a random node. This is the result we are interested in.
\mathcal{A} : Call spreading.
\mathcal{B} : Call percolation and then component_size.
(f) Run the above process for $\mathbf{n}=(0,8,4,2)$ and $T=0.4$. Report the result.

