ECS 253 / MAE 253

HW5b: Some analytical and semi-analytical tools for generating functions (GFs)

Note: This homework focuses on a specific aspect of generating functions (GFs). To broaden your perspective, you are recommended to read Chapter 1 of generatingfunctionology by Herbert S. Wilf (freely accessible at http://www.math.upenn.edu/~wilf/ DownldGF.html). You may also try your hand at the exercises of the same chapter, particularly exercises $1-6$ and 8 . The answers are all available at the end. This is not part of the homework.

1 Warming up

Suppose $f(x)$ is an ordinary generating function generating the sequence $\left(\phi_{k}\right)_{k=0}^{\infty}$, i.e.,

$$
\begin{equation*}
f(x):=\sum_{k=0}^{\infty} \phi_{k} x^{k} . \tag{1}
\end{equation*}
$$

We use the notation $\left[x^{n}\right] f(x)$ to represent the coefficient multiplying x^{n} in the power series of $f(x)$ (in this case $\left[x^{n}\right] f(x)=\phi_{n}$). We say that $f(x)$ is a probability generating function (PGF) if the coefficients ϕ_{k} are to be interpreted as the probability $\mathbb{P}(K=k)$ that the random variable K takes the value k (and thus $0 \leq \phi_{k} \leq 1$ for all k). We say that a PGF $f(x)$ is normalized if $\sum_{k=0}^{\infty} \phi_{k}=1$.
(a) Using proof by induction, show that $\left[x^{n}\right] f(x)=\left.\frac{1}{n!} \frac{\mathrm{d}^{n} f(x)}{\mathrm{d} x^{n}}\right|_{x=0}$
(i.e., show the relation holds for $n=0$ and $n=1$, and then for the general case $n+1$.)
(b) Assuming that $f(x)$ is a normalized PGF, show $f(1)=1$.
(c) Assuming that $f(x)$ is a normalized PGF, show $\mathbb{E}(K):=\sum_{k=0}^{\infty} k \mathbb{P}(K=k)=\left.\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right|_{x=1}$.
(d) Assuming that $f(x)$ is a normalized PGF, find an expression in terms of derivatives of $f(x)$ for $\mathbb{E}\left(K^{2}\right):=\sum_{k=0}^{\infty} k^{2} \mathbb{P}(K=k)$.
(e) Suppose that $\sum_{k=0}^{\infty} \mathbb{P}(K=k)=1-\mathbb{P}(K$ is infinite $)$. If $\mathbb{P}(K$ is infinite $)>0$, then the PGF $f(x)$ for the probability distribution $\mathbb{P}(K=k)$ is not normalized. Find the value for $\mathbb{P}(K$ is infinite $)$. Then find the normalized PGF for the probability sequence $\mathbb{P}(K=k \mid K$ is finite $)$.

2 Percolation: some analytical results

An infinite configuration model random graph has its degree distribution specified by $\left(p_{k}\right)_{k=0}^{\infty}$ (i.e., a node sampled uniformly at random has probability p_{k} to have degree k). In class, you have seen the following two generating functions, respectively for the degree of a node and excess degree of a node:

$$
\begin{align*}
& g_{0}(x):=\sum_{k=0}^{\infty} p_{k} x^{k} \tag{2a}\\
& g_{1}(x)=\sum_{k=0}^{\infty} q_{k} x^{k}=\frac{g_{0}^{\prime}(x)}{g_{0}^{\prime}(1)} \quad\left(\text { with } q_{k}:=\frac{(k+1) p_{k+1}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} p_{k^{\prime}}}\right) . \tag{2b}
\end{align*}
$$

Here q_{k} is the probability that a node reached by following a random edge has k other edges than the one we followed (and thus a total degree $k+1$). Following the line of reasoning in class we can then obtain the following PGFs

$$
\begin{align*}
& h_{1}(x):=(1-T)+T x g_{1}\left(h_{1}(x)\right) \tag{2c}\\
& h_{0}(x):=x g_{0}\left(h_{1}(x)\right) . \tag{2d}
\end{align*}
$$

The equation you saw in class had $T=1$. The parameter T here is the same as you saw in the last homework: it may be interpreted as either the probability for an edge of the original configuration model to be present in the percolated one, or as the probability for a spreading process to spread along an edge when it encounters it. Equation (??) may thus be interpreted as follows: with probability $1-T$, the edge is not followed and there should be no powers of x contributing here, and with probability T the edge is followed normally (hence the term $x g_{1}\left(h_{1}(x)\right)$). In summary, the probability of reaching r nodes by following a random edge with probability T is $\left[x^{r}\right] h_{1}(x)$, and the probability of reaching s nodes by starting at a node selected uniformly at random (and including that node) is $\left[x^{s}\right] h_{0}(x)$.

In the case $T=1$, you saw that the network contains a giant component when $g_{1}^{\prime}(x)>1$. In the more general case where $0 \leq T \leq 1$, there may be no giant component even if $g_{1}^{\prime}(x)>1$. In fact, there is a critical value of T, noted T_{c}, over which a giant component exists. Hence, for $T \leq T_{c}$, there are only small components and the PGF $g_{0}(x)$ should thus be normalized. Moreover, the average size of the small components should diverge when $T=T_{c}$.
(a) Differentiate both sides of Eq. (??) w.r.t. x and solve for $h_{1}^{\prime}(x)$ for the case where T is under threshold, i.e., $h_{1}(1)=1$. Find T_{c} in terms of average degree $\langle k\rangle:=\mathbb{E}(K)$ and the second moment $\left\langle k^{2}\right\rangle:=\mathbb{E}\left(K^{2}\right)$.
(b) What is T_{c} if the degree distribution follows a power law $p_{k} \propto k^{-\gamma}$ with $\gamma=2.5$?
(c) Suppose that the highest degree present in the network is 3 (i.e., only p_{0}, p_{1}, p_{2} and p_{3} may be nonzero). Obtain a closed form for $h_{0}(x)$. You will need the quadratic formula to obtain $h_{1}(x)$, and recall $h_{1}(1)=1$ for $T<T_{c}$ to decide which of the two roots of the quadratic provides a physically valid answer.
(d) Obtain T_{c} in the case $p_{0}=0, p_{1}=0.2, p_{2}=0.5, p_{3}=0.3$, and $p_{k}=0$ for $k>3$. Obtain $h_{0}(1)$ for $T=0.70, T=0.75$ and $T=0.80$. What is the size of the giant component (if any) in each of these cases?

3 Percolation: semi-analytical results

(a) Dust-off the code you created for exercise 2(e) of the last homework. Using the parameters number_simulations $=10000, \mathbf{n}=(0,200,500,300)$, and version \mathcal{A} (spreading), run your code to estimate the probability distribution for the number s of reached nodes for $T=0.70, T=0.75$ and $T=0.80$. In each case, create a log-log graph showing the probability as a function of the number of reached nodes s. Plot each value with a small dot without lines joining them.
(b) Suppose $p_{0}=0, p_{1}=0.2, p_{2}=0.5, p_{3}=0.3$, and $p_{k}=0$ for $k>3$. Use the DFT method with $M=1001$ (see next page) to extract the coefficients $\left[x^{s}\right] h_{0}(x)$ from the solution you obtained in exercise 2(c) in the following three cases: $T=0.70, T=0.75$ and $T=0.80$. Display your results on the same three $\log -\log$ plots as in exercise ??, this time using a plain thin line without markers.

NOTE; Usually, you will not have access to such an analytical solution for $h_{0}(z)$. Fortunately, you can also build a recurrence equation (??). Indeed, for a given z, you can estimate $h_{1}(z)$ as using $h_{1}^{(L)}(z)$ defined as follows: $h_{1}^{(0)}(z)=0$, and $h_{1}^{(L+1)}(z)=(1-T)+T z g_{1}\left(h_{1}^{(L)}(z)\right)$. You can then estimate $h_{0}(z)$ using $h_{0}^{(L)}(z)=z g_{0}\left(h_{1}^{(L)}(z)\right)$. You do not do this here, but our solutions will show how to:

- Create a function receiving $T,\left(p_{k}\right)_{k=0}^{K}$ and L and returning $h_{0}^{(L)}(z)$.
- Use the DFT method to extract the coefficients $\left[z^{n}\right] h_{0}^{(10)}$ for $p_{0}=0, p_{1}=0.2$, $p_{2}=0.5, p_{3}=0.3$, and $p_{k}=0$ for $k>3$, and in the three cases $T=0.70$, $T=0.75$ and $T=0.80$. Report these results on the same 3 plots as before, this time using a doted line.
- Do the same for $\left[z^{n}\right] h_{0}^{(100)}$, this time using a wide dashed line.

