
ECS 253 / MAE 253
HW5b: Some analytical and semi-analytical tools for

generating functions (GFs)

Note: This homework focuses on a specific aspect of generating functions (GFs). To
broaden your perspective, you are recommended to read Chapter 1 of generatingfunc-
tionology by Herbert S. Wilf (freely accessible at http://www.math.upenn.edu/~wilf/
DownldGF.html). You may also try your hand at the exercises of the same chapter, par-
ticularly exercises 1–6 and 8. The answers are all available at the end. This is not
part of the homework.

1 Warming up

Suppose f(x) is an ordinary generating function generating the sequence (φk)
∞
k=0, i.e.,

f(x) :=
∞∑
k=0

φkx
k. (1)

We use the notation [xn]f(x) to represent the coefficient multiplying xn in the power series
of f(x) (in this case [xn]f(x) = φn). We say that f(x) is a probability generating function
(PGF) if the coefficients φk are to be interpreted as the probability P(K = k) that the
random variable K takes the value k (and thus 0 ≤ φk ≤ 1 for all k). We say that a PGF
f(x) is normalized if

∑∞
k=0 φk = 1.

(a) Using proof by induction, show that [xn]f(x) =
1

n!

dn f(x)

dxn

∣∣∣∣
x=0

(i.e., show the relation holds for n = 0 and n = 1, and then for the general case n+ 1.)

(b) Assuming that f(x) is a normalized PGF, show f(1) = 1.

(c) Assuming that f(x) is a normalized PGF, show E(K) :=
∞∑
k=0

kP(K = k) =
d f(x)

dx

∣∣∣∣
x=1

.

(d) Assuming that f(x) is a normalized PGF, find an expression in terms of derivatives of

f(x) for E(K2) :=
∞∑
k=0

k2P(K = k).

(e) Suppose that
∑∞

k=0 P(K = k) = 1 − P(K is infinite). If P(K is infinite) > 0, then
the PGF f(x) for the probability distribution P(K = k) is not normalized. Find the
value for P(K is infinite). Then find the normalized PGF for the probability sequence
P(K = k|K is finite).
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2 Percolation: some analytical results

An infinite configuration model random graph has its degree distribution specified by (pk)
∞
k=0

(i.e., a node sampled uniformly at random has probability pk to have degree k). In class,
you have seen the following two generating functions, respectively for the degree of a node
and excess degree of a node:

g0(x) :=
∞∑
k=0

pkx
k (2a)

g1(x) =
∞∑
k=0

qkx
k =

g′0(x)

g′0(1)

(
with qk :=

(k + 1)pk+1∑∞
k′=0 k

′pk′

)
. (2b)

Here qk is the probability that a node reached by following a random edge has k other edges
than the one we followed (and thus a total degree k + 1). Following the line of reasoning in
class we can then obtain the following PGFs

h1(x) := (1− T ) + Txg1
(
h1(x)

)
(2c)

h0(x) := xg0
(
h1(x)

)
. (2d)

The equation you saw in class had T = 1. The parameter T here is the same as you saw
in the last homework: it may be interpreted as either the probability for an edge of the
original configuration model to be present in the percolated one, or as the probability for a
spreading process to spread along an edge when it encounters it. Equation (??) may thus
be interpreted as follows: with probability 1− T , the edge is not followed and there should
be no powers of x contributing here, and with probability T the edge is followed normally
(hence the term xg1

(
h1(x)

)
). In summary, the probability of reaching r nodes by following

a random edge with probability T is [xr]h1(x), and the probability of reaching s nodes by
starting at a node selected uniformly at random (and including that node) is [xs]h0(x).

In the case T = 1, you saw that the network contains a giant component when g′1(x) > 1.
In the more general case where 0 ≤ T ≤ 1, there may be no giant component even if
g′1(x) > 1. In fact, there is a critical value of T , noted Tc, over which a giant component
exists. Hence, for T ≤ Tc, there are only small components and the PGF g0(x) should thus
be normalized. Moreover, the average size of the small components should diverge when
T = Tc.

(a) Differentiate both sides of Eq. (??) w.r.t. x and solve for h′1(x) for the case where T is
under threshold, i.e., h1(1) = 1. Find Tc in terms of average degree 〈k〉 := E(K) and
the second moment 〈k2〉 := E(K2).

(b) What is Tc if the degree distribution follows a power law pk ∝ k−γ with γ = 2.5?

(c) Suppose that the highest degree present in the network is 3 (i.e., only p0, p1, p2 and p3
may be nonzero). Obtain a closed form for h0(x). You will need the quadratic formula
to obtain h1(x), and recall h1(1) = 1 for T < Tc to decide which of the two roots of
the quadratic provides a physically valid answer.

2



(d) Obtain Tc in the case p0 = 0, p1 = 0.2, p2 = 0.5, p3 = 0.3, and pk = 0 for k > 3. Obtain
h0(1) for T = 0.70, T = 0.75 and T = 0.80. What is the size of the giant component
(if any) in each of these cases?

3 Percolation: semi-analytical results

(a) Dust-off the code you created for exercise 2(e) of the last homework. Using the param-
eters number simulations= 10000, n = (0, 200, 500, 300), and version A (spreading),
run your code to estimate the probability distribution for the number s of reached
nodes for T = 0.70, T = 0.75 and T = 0.80. In each case, create a log-log graph
showing the probability as a function of the number of reached nodes s. Plot each
value with a small dot without lines joining them.

(b) Suppose p0 = 0, p1 = 0.2, p2 = 0.5, p3 = 0.3, and pk = 0 for k > 3. Use the DFT
method with M = 1001 (see next page) to extract the coefficients [xs]h0(x) from the
solution you obtained in exercise 2(c) in the following three cases: T = 0.70, T = 0.75
and T = 0.80. Display your results on the same three log-log plots as in exercise ??,
this time using a plain thin line without markers.

NOTE; Usually, you will not have access to such an analytical solution for h0(z). Fortunately,
you can also build a recurrence equation (??). Indeed, for a given z, you can estimate h1(z)

as using h
(L)
1 (z) defined as follows: h

(0)
1 (z) = 0, and h

(L+1)
1 (z) = (1 − T ) + Tzg1

(
h
(L)
1 (z)

)
.

You can then estimate h0(z) using h
(L)
0 (z) = zg0

(
h
(L)
1 (z)

)
. You do not do this here, but

our solutions will show how to:

• Create a function receiving T , (pk)
K
k=0 and L and returning h

(L)
0 (z).

• Use the DFT method to extract the coefficients [zn]h
(10)
0 for p0 = 0, p1 = 0.2,

p2 = 0.5, p3 = 0.3, and pk = 0 for k > 3, and in the three cases T = 0.70,
T = 0.75 and T = 0.80. Report these results on the same 3 plots as before,
this time using a doted line.

• Do the same for [zn]h
(100)
0 , this time using a wide dashed line.
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