
ECS 253 / MAE 253, Lecture 12
May 10, 2023EXAMPLE 3: AIR 

TRANSPORTATION 

“Flows on spatial networks”



Announcements

• HW2b due ...



Topics

• Optimal allocation of facilities and transport networks:
– Michael Gastner (SFI) and Mark Newman (U Mich)

• Network flows on road networks
– Michael Zhang (UC Davis)

(Details of demand, edge capacity, and feasible paths all extremely
important)

– I. Optimization and network flow

– II. User vs System Optimal

– III. Braess’ Paradox

– IV. Nash Equilibrium

– V. Price of anarchy



Optimal design of spatial distribution
systems:

(Download: Gastner.pdf)



Gastner and Newman, Summary

• I. Optimal allocation of facilities: Number of facilities within radius n(r)
scales sublinear of density: n(r) ∼ ρ(r)2/3.

– Seems to hold true for distribution of public goods (hospitals, police
stations, county seats, ...)

• II. Optimal connection of facilities into a network:

– Linear tradeoffs between geometric and network metrics

– From road networks to air transport



More flows and statistical physics

• David Aldous, “Spatial Transportation Networks with Transfer Costs:
Asymptotic Optimality of Hub and Spoke Models”

• Marc Barthélemy, “Spatial networks” Physics Reports 499 (1), 2011.

• Flows of material goods, self-organization: Helbing et al.

• Jamming and flow (phase transitions):
Nishinari, Liu, Chayes, Zechina.



Flows with edge constraints

• Network flows on road networks – Michael Zhang (UC Davis)
(Details of demand, edge capacity, and feasible paths all extremely
important)

– I. Optimization and network flow

– II. User vs System Optimal

– III. Braess’ Paradox

– IV. Nash Equilibrium

– V. Price of anarchy



User optimal versus system optimal
(In the traffic context)Behavioral Assumptions 

•  Travelers have full knowledge of the network and its 
traffic conditions 

•  Each traveler minimizes his/her own travel cost (time) 

•  Travelers choose routes to make the total travel time of 
all travelers minimal (which can be achieved through 
choosing the routes with minimal marginal travel cost) 

Act on self interests (User Equilibrium): 

Act on public interests (System Optimal): 

min 



Pigou’s example: User versus system optimal
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• Two roads connecting source, s, and destination, t

• Route 1, “infinite” capacity but circuitous; 1 hour travel time

• Route 2, direct but easily congested; travel time is 1 hour times the fraction
of traffic on the route, x2.

– Route 1, c1 = 1 hour

– Route 2, c2 = x2 · 1 hour.
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• Everyone takes the bottom road!

– It is never worse than the top road, and sometimes better.

– In general, an equilibrium exists when the travel times on all routes are
equal. (See HW and later in lecture.)



Average travel time
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• Average travel time: τ = x1 · c1 + x2 · c2.

• Average travel time in equilibrium = 1 hour = 60 mins

• If could incentivize half the people to take the upper road, then the cost of
the lower road is one-half hour.

– Average travel time: 0.5*1 + 0.5*0.5 = 0.75 hour = 45 mins!



See Michael Zhang’s slides (zhang.pdf)



Braess Paradox

• Dietrich Braess, 1968
(Braess currently Prof of Math at Ruhr University Bochum, Germany)

• In a user-optimized network, when a new link is added, the change in
equilibrium flows might result in a higher cost, implying that users were
better off without that link.
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Recall Zhang notation

Flows in a Highway Network

:  set of nodes

:   set of links

:   set of origins 

:   set of destinations

:  set of paths from origin  to destination ij
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• Recall Zhang notation

– qij is overall traffic demand from node i to j.
– ta(νa, Ca) is travel cost along link a,
– which is a function of total flow that link νa and capacity Ca.

• Equilibrium is when the cost on all feasible paths is equal



Getting from 1 to 4

Assume traffic demand q14 = 6. Originally 2 paths (a-c) and (b-d).

• ta(νa) = 10νa • tc(νc) = νc + 50
• tb(νb) = νb + 50 • td(νd) = 10νd

=⇒ Eqm: ν = 3 on each link

C1 = C2 = 83

Add new link with te(νe) = νe + 10

Now three paths:

Path 3 (a - e - d), with νe = 0 initially, so C3 = 0 + 10 + 0 = 10

C3 < C2 and C1 so a new equilibrium is needed.



• By inspection, shift one unit of flow form path 1 and from 2 respectively to
path 3.

• Now all paths have flow f1 = f2 = f3 = 2.

• Link flow νa = 4, νb = 2, νc = 2, νd = 4, νe = 2.

ta = 40, tb = 52, tc = 52, td = 40, te = 12.

C1 = ta + tc = 92; C2 = tb + td = 92; C3 = ta + te + td = 92.

• 92 > 83 so just increased the travel cost!



Braess paradox – Real-world examples

• 42nd street closed in New York City. Instead of the predicted
traffic gridlock, traffic flow actually improved.

• A new road was constructed in Stuttgart, Germany, traffic flow
worsened and only improved after the road was torn up.



Braess paradox depends on parameter choices

• “Classic” 4-node Braess construction relies on details of q14
and the link travel cost functions, ti.

• The example works because for small overall demand (q14),
links a and d are cheap. The new link e allows a path
connecting them.

• If instead demand large, e.g. q14 = 60, now links a and d are
costly! (ta = td = 600 while tb = tc = 110). The new path a-e-d
will always be more expensive so νe = 0. No traffic will flow on
that link. So Braess paradox does not arise for this choice of
parameters.



Another example of Braess
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How to avoid Braess?

• Back to Zhang presentation .... typically solve for optimal flows
numerically using computers. Can test for a range of choices
of traffic demand and link costs.



Power grid cascades similarly depend on details

“Small vulnerable sets determine large network cascades in
power grids”, Yang Yang, Takashi Nishikawa, Adilson E. Motter,
Science 358, 886 (2017). See web link

• The failure of a small set of edges is implicated in large-scale
failure. But membership in the set varies with specific details
of the operating conditions.

• Intriguing connections to k-core which suggest theoretical
understanding of flow-rerouting and vulnerability is possible.

• R. D. Accompanying perspectives piece, “Curtailing cascading
failures” Science 358, 860 (2017)



More flows and equilibirum

• David Aldous, “Spatial Transportation Networks with Transfer
Costs: Asymptotic Optimality of Hub and Spoke Models”

• Marc Barthélemy, “Spatial networks” Physics Reports 499 (1),
2011.

• Flows of material goods, self-organization: Helbing et al.

• Jamming and flow (phase transitions):
Nishinari, Liu, Chayes, Zechina.

• Algorithmic game theory: Multiplayer games for users
connected in a network / interacting via a network.

– Designing algorithms with desirable Nash equilibrium.
– Computing equilibrium when agents connected in a network.



User-centric behavior

• Utility functions

• Game theory

– Normal form games & Nash equilibrium:

- Prisoner’s dilemma
- Stag hunt



Prisoner’s Dilemma

Cooperate Defect
Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

Blue has two strategies:

• Cooperates/Red Cooperates — Blue gets payout “3”

• Cooperates/Red Defects – Blue gets “0”

• Defects/Red Defects – Blue gets “1”

• Defects/Red Cooperates – Blue gets “5”

Ave payout: Cooperate = 1.5, Defect = 3



Nash equilibrium

No player has anything to gain by changing only his or her own
strategy.

– Blue always chooses to Defect! Likewise Red always
chooses Defect.

– Both defect and get “1” (Nash), even though each would get
a higher payout of “3” if they cooperated (Pareto efficient).



“The price of anarchy”

E. Koutsoupias, C. H. Papadimitriou
“Worst-case equilibria,” STACS 99.

Cost of worst case Nash equilibrium / cost of system optimal
solution.
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The Price of Anarchy

Nash Equilibrium:

cost = 14+14 = 28
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(From Roughgarden Barbados Talk, http://theory.stanford.edu/ tim/)
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The Price of Anarchy

Nash Equilibrium:          To Minimize Cost:

Price of anarchy = 28/24 = 7/6.
�• if multiple equilibria exist, look at the worst one
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(From Roughgarden Barbados Talk, http://theory.stanford.edu/ tim/)



Selfish routing and the POA on the Internet

T. Roughgarden and E. Tardos, How Bad is Selfish Routing?,
FOCS ’00/JACM ’02

• Routing in the Internet is decentralized: Each router makes a
decision, so path dynamically decided as packet passed on.

• Cost of an edge c(e), may be constant (infinite capacity) or
depend on the load.

• “Shortest path” routing (really lowest
∑
c(e) routing) typically

implemented.

• This is equivalent to “selfish routing” (each router chooses best
option available to it).

• Resulting POA = 2!



Braess and the POA for Internet traffic

Greg Valiant, Tim Roughgarden, Eva Tardos
“Braess’s paradox in large random graphs”, Proceedings of the

7th ACM conference on Electronic commerce, 2006.

• Removing edges from a network with “selfish routing” can
decrease the latency incurred by traffic in an equilibrium flow.

• With high probability, (as the number of vertices goes to
infinity), there is a traffic rate and a set of edges whose removal
improves the latency of traffic in an equilibrium flow by a
constant factor.

• Braess paradox found in random networks often (not just
“classic” 4-node construction).



Algorithmic game theory

• Since we know users act according to Nash, can we design
algorithms (mechanisms) that bring Nash and System Optimal
as close together as possible?

• Typically we think of players who interact via a network, or
who’s connectivity is described by a network of interactions.

– Multiplayer games for users connected in a network or
interacting via a network.

– Designing algorithms with desirable Nash equilibrium.

– Computing equilibrium when agents connected in a network.



focs 2001 20 

mechanism design 
(or inverse game theory) 

•  agents have utilities   – but these utilities are 
known only to them 

•  game designer prefers certain outcomes 
depending on players’ utilities 

•  designed game (mechanism) has designer’s 
goals as dominating strategies 

(Papadimitriou, “Algorithms, Games, and the Internet” presented at STOC/ICALP 2001.)



Some traditional games:

focs 2001 7 

1,-1 -1,1 

-1,1 1,-1 

0,0 0,1 

1,0 -1,-1 

3,3 0,4 

4,0 1,1 

matching pennies prisoner’s dilemma 

chicken 
auction 

1     …          n 
1 
. 
. 
n 

u – x, 0 

0, v – y 

e.g. 

(Papadimitriou, “Algorithms, Games, and the Internet” presented at STOC/ICALP 2001.)



Mechanism design example:

focs 2001 25 

e.g., Vickrey auction 

•  sealed-highest-bid auction encourages gaming and 
speculation 

•  Vickrey auction:  Highest bidder wins,  
    pays second-highest bid 

Theorem:  Vickrey auction is a truthful mechanism. 

Theorem:  It maximizes social benefit and 
auctioneer expected revenue. 

(Papadimitriou, “Algorithms, Games, and the Internet” presented at STOC/ICALP 2001.)



(Modified) Vickrey auctions in real life –
Google AdWords, and Yahoo’s ad sales

• Bidding on a “keyword” so that your advertisement is displayed
when a search user enters in this keyword

• You can safely bid the maximum price you think is fair, and if
you win, you may actually pay less!

• Mechanism design
– Incentivizes users to bid what they think is fair
(reveal their true utilities)
– Keeps more people in the bidding
– Does not necessarily maximize profits for seller



Summary of spatial flows and games

• Optimal location of facilities to maximize access for all.

• Designing “optimal” spatial networks (collection/distribution
networks – subways, power lines, road networks, airline
networks).

• Details of flows on actual networks make all the difference!

– Users act according to Nash

– Braess paradox (removing edges may improve a network’s
performance!)

– The “Price of Anarchy” (cost of worst Nash eqm / cost of
system optimal)

• Mechanism design / algorithmic game theory


