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“Diffusion, Cascades and Influence”
Mathematical models & generating functions



Diffusion and cascades in networks

• Viruses (human and computer)
– contact processes
– epidemic thresholds

• Adoption of new technologies
– Winner take all
– Benefit of first to market
– Benefit of second to market

• Political or social beliefs and societal norms

A long history of study, now trying to add impact of underlying
network structure.



Simple diffusion

Diffusion of a substance φ on a network with adjacency matrix A.

– Let φi denote the concentration at node i.

• Diffusion: dφi
dt = C

∑
j Aij(φi − φj)

• In steady-state, dφi
dt = 0 =⇒ φj = φi.

• In steady-state all nodes have the same value of φ.

• In opinion dynamics this is called consensus.



Simple diffusion: The graph Laplacian

• dφi
dt = −C

∑
j Aij(φj − φi)

= −C
∑
j Aijφj − Cφi

∑
j Aij

= −C
∑
j Aijφj − Cφiki

= −C
∑
j (Aij − δijki)φj.

(Note Kronecker delta: δij = 1 if i = j and δij = 0 if i 6= j)

• In matrix form: dφdt = −C(A−D)φ = C(D−A)φ = CLφ



• From last page, matrix form: dφdt = C(D−A)φ = CLφ

• Graph Laplacian: L = D−A

where matrix D has zero entries except for diagonal with is
degree of node:

Dij = ki if i = j and 0 otherwise.



The graph Laplacian

• L has real positive eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

• Number of eigenvalues equal to 0 is the number of distinct,
disconnected components of a graph

(Compare this to the column-normalized state transition matrix
from earlier in class (i.e., random-walk), where the number of
λ’s equal to 1 is the number of components).

• If λ2 6= 0 the graph is fully connected. The bigger the value of
λ2 the more connected (less modular) the graph.



But people are not diffusing particles
Opinion dynamics on networks

What drives social change?



Accelerating pace of social change

Bloomberg, April 26, 2015.



Collective phenomena in social networks
How the online world is changing the game

J. Flack, R.D., editors, PIEEE (2014)

Past: Small, geographically localized
social networks, concentrated

power and influence

Present: Digital footprint,
massive online experimentation,

global information,
rapid rate of change.

“Re-computing the social sciences”
Next step connecting these models with our digital footprints.



Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

• Thresholds models

• Voter models

• Opinion dynamics
(e.g. The Naming game)

• Percolation

• Game theory

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.

What mechanism makes an individual change their mind?



Collective phenomena: Phase transitions
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Smooth transition Cusp bifurcation/catastrophe

• Percolation • dx
dt = −x3 + x+ a.

• Contact processes • Abrupt shift as slow-time parameter varies

• Epidemic spreading • e.g., Vinyl records vs digital music



Phase transitions depend on the underlying details

• The network structure

– Degree distribution (variation in connectivity)

– Modular structure

• The model of human behavior

– Simple contact process / percolation / epidemic spreading

∗ Thresholds (critical mass) versus diminishing returns
∗ Influential versus susceptible individuals

– Voter models

– Opinion dynamics / consensus

∗ The role of zealots

– Strategic interactions / Nash equilibrium (decentralized solutions)



Simplest model of human behavior:

Binary opinion dynamics

Each individual can be in one of two states {−1,+1}

• “Infected” or “healthy” (relevant to both human and computer networks)

• Holding opinion “A” or “B”

• Adopting new product, or sticking with status quo

• Many other choices....



But what causes opinion to change?



I. Diminishing returns versus thresholds
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II: The Voter model, “Tell me what to think”
V. Sood, S. Redner, Phys. Rev. Lett. 94, 2005.

• At each time step in the process, pick a node at random.

• That node picks a random neighbor, and adopts the opinion of the neighbor.

• Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

Degree distribution

• Invasion percolation(the “bully” model) yields the opposite: leaf nodes propagate opinions.



III: “The Naming Game” / open minded individuals
Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

• Originally introduced for linguistic convergence. Two opinions, A and B.

• And each individual can hold A, B, or {A,B}.

• Exchange opinions with neighbors and update



More formal analysis .....



Part I. Ensemble approaches

• A. Master equations (Random graph evolution, cluster aggregation)

• B. Network configuration model

• C. Generating functions

– Degree distribution (fraction of nodes with degree k, for all k)

– Degree sequence (A realization, N specific values drawn from Pk)



A. Network Configuration Model
Degree sequence given

. . . 

• Bollobas 1980; Molloy and Reed 1995, 1998.

• Build a random network with a specified degree sequence.

• Assign each node a degree at the beginning.

• Random stub-matching until all half-edges are partnered.
(Make sure total # edges even, of course.)

• Self-loops and multiple edges possible, but less likely as
network size increases.

HW 4b – build a configuration model and analyze percolation and spreading.



B. Generating functions:
Properties of the ensemble of configuration model RGs

Determining properties of the ensemble of all graphs with a given
degree distribution, Pk.

• The basic generating function: G0(x) =
∑
k Pkx

k

Note, G0(1) =
∑
k Pk = 1.

• The moments of Pk can be obtained from derivatives of G0(x):



Calculating moments

• Base: G0(1) =
∑
k Pk = 1 (it is the sum of probabilities).

• First moment, 〈k〉 =
∑
k kPk = G′0(1)

(And note xG′0(x) =
∑
k kPkx

k)

• Second moment,
〈
k2
〉
≡
∑
k k

2Pk = d
dx(xG′0(x))

∣∣
x=1

d
dx(xG′0(x)) =

∑
k k

2Pkx
(k−1)

(And note x d
dx(xG′0(x)) =

∑
k k

2Pkx
k)

• The n-th moment

〈kn〉 ≡
∑
k k

nPk =
(
x d
dx

)n
G0(x)

∣∣∣
x=1



Generating functions for the giant component of a random
graph

Newman, Watts, Strogatz PRE 64 (2001)

With the basic generating function in place, can build on it to
calculate properties of more interesting distributions.

1. G.F. for connectivity of a node at edge of randomly chosen
edge.

2. G.F. for size of the component to which that node belongs.

3. G.F. for size of the component to which an arbitrary node
belongs.



Following a random edge

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

(Circles denote isolated nodes, squares components of unknown size.)



G1(x) the GF for the excess degree

• Let qk denote the probability of following an edge to a node with
excess degree of k: qk = [(k + 1)Pk+1] / 〈k〉

• The associated GF

G1(x) =
1

〈k〉

∞∑
k=0

(k + 1)Pk+1x
k

=
1

〈k〉

∞∑
k=1

kPkx
k−1

=
1

〈k〉
G′0(x)

• Recall the most basic GF: G0(x) =
∑
k Pkx

k



H1(x), Generating function for probability of component
size reached by following random edge

(subscript 0 on GF denotes node property, 1 denotes edge property)

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + xq3[H1(x)]3 · · ·

(A self-consistency equation. We assume a tree network.)

Note also that H1(x) = x
∑
k qk[H1(x)]k = xG1(H1(x))



Aside 1: Self-consistency equations
Graphical solution

• See HW 1b: Self-consistency
for ER giant component

S = 1− e−〈k〉S

• Solve for S(〈k〉) (see Fig a)
and plot result in Fig b.

(Barabasi book)



Aside 2: Powers property

The PGF for the sum of m instances of random variable k is the
PGF for k to the m’th power.

• Let Pk denote the probability distribution for random variable k

• Let Θj denote the probability that
∑
m k = j

• The associated PGF

F0(x) =
∑
j Θjx

j =

Pm0 +
(
m
1

)
P

(m−1)
0 P1x+

[(
m
2

)
Pm−20 P 2

1 +
(
m
1

)
Pm−10 P2

]
x2 + ...

=
[∑

Pkx
k
]m



H0(x), Generating function for distribution in component
sizes starting from arbitrary node

Blends both node and edge properties

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H0(x) = xP0 + xP1H1(x) + xP2[H1(x)]2 + xP3[H1(x)]3 · · ·

= x
∑
k Pk[H1(x)]k = xG0(H1(x))

• Can take derivatives of H0(x) to find moments of component
size distribution!



Expected size of a component starting from arbitrary node

• 〈s〉 = d
dxH0(x)

∣∣
x=1

= d
dxxG0(H1(x))

∣∣
x=1

= G0(H1(x))|x=1 + x d
dxG0(H1(x)) ddxH1(x)

∣∣
x=1

= G0(H1(1)) + d
dxG0(H1(1)) · ddxH1(1)

Since H1(1) = 1, and G0(1) = 1 (i.e., they are sum of probabilities)

〈s〉 = 1 +G′0(1) ·H ′1(1)



• Recall (three slides ago) H1(x) = xG1(H1(x))

Thus, H ′1(x) = G1(H1(x)) + x d
dxG1(H1(x)) ddxH1(x)

Thus, H ′1(1) = 1 +G′1(1)H ′1(1) =⇒ H ′1(1) = 1/(1−G′1(1))

And thus, 〈s〉 = 1 +
G′0(1)

1−G′1(1)



• Now evaluating the derivative:

G′1(x) =
d

dx

1

〈k〉
G′0(x) =

1

〈k〉
d

dx

∑
k

kPkx
(k−1)

=
1

〈k〉
∑
k

k(k − 1)Pkx
(k−2)

• Evaluate at x = 1

G′1(1) =
1

〈k〉
∑
k

k(k − 1)Pk =
1

〈k〉
[〈
k2
〉
− 〈k〉

]



Expected size of a component starting from arbitrary node

• 〈s〉 = 1 +
G′0(1)

1−G′1(1)

• G′0(1) = 〈k〉

• G′1(1) = 1
〈k〉
[〈
k2
〉
− 〈k〉

]

〈s〉 = 1 +
G′0(1)

1−G′1(1)
= 1 + 〈k〉2

2〈k〉−〈k2〉



Emergence of the giant component

• 〈s〉 → ∞

• This happens when: 2 〈k〉 =
〈
k2
〉
, which can also be written as

〈k〉 =
(〈
k2
〉
− 〈k〉

)
• This means expected number of nearest neighbors 〈k〉,

first equals expected number of second nearest neighbors(〈
k2
〉
− 〈k〉

)
.

• Can also be written as
〈
k2
〉
− 2 〈k〉 = 0, which is

the famous Molloy and Reed criteria*, giant emerges when:∑
k k (k − 2)Pk = 0.

*GF approach is easier than Molloy Reed! (Link to paper on lecture page)



GFs widely used in “network epidemiology”

• Fragility of Power Law Random Graphs to targeted node
removal / Robustness to random removal
– Callaway PRL 2000
– Cohen PRL 2000

• Onset of epidemic threshold:
– C Moore, MEJ Newman, Physical Review E, 2000 – MEJ
Newman - Physical Review E, 2002
– Lauren Ancel Meyers, M.E.J. Newmanb, Babak Pourbohlou,
Journal of Theoretical Biology, 2006
– JC Miller - Physical Review E, 2007

• Information flow in social networks
F Wu, BA Huberman, LA Adamic, Physica A, 2004.

• Cascades on random networks
Watts PNAS 2002.



Global Cascades on Random Networks
Watts PNAS 2002

• Each node can be in one of two states, say {+1,−1}.

• Start with almost all nodes in {−1}, but just one node (or a
small fraction of nodes) in {+1}.

• Nodes update state asynchronously. For node j if the fraction
of its neighbors in state +1 is greater than a threshold function
Φj, j switches to +1 and stays in that state forever.

• The thresholds Φj are drawn at random from a distribution f(Φ)

which is normalized in the usual way:
∫ 1

0
f(Φ)dΦ = 1.

• Local dependence, fractional threshold Φj, heterogeneous
degree make this model differ from contact processes.



Global cascades?

• Question: for what kinds of networks and thresholds will a
small perturbation (of even one node) cause a fraction of all
nodes to flip? (i.e. a global cascade).

• Some terms:
Innovator – The first node(s) flipped to +1.
Early adopter / vulnerable – A neighbor of innovator who flips
right away.

• Early adopter much have threshold Φj ≤ 1/kj, or equivalently
degree kj ≤ Kj = b1/Φjc



Using GFs can reduce a complicated dynamics to a static
percolation problem

• As usual, degree distribution Pk.

• A node is vulnerable / early adopter if it’s threshold Φ ≤ 1/k.
The probability a given node of degree k is vulnerable is thus

ρk = P [Φ ≤ 1/k] =
∫ 1/k

0
f(Φ)dΦ.

• The probability a node drawn uniformly at random from all
nodes has 1) degree k, and 2) is vulnerable is thus: ρkPk.

• Generating function for this (our base GF)

G0(x) =
∑
k ρkPkx

k.

Note: G0(1) ≤ 1.
e.g., G0(1) = 0 if there are no vulnerable nodes



“Propagation” of a cascade is edge following from a
vulnerable node

• As with the basic framework, probability of following edge to
node of degree k is proportional to k.

• GF for following a random edge to a vulnerable node of degree
k. (Again, observe building up process.):

G1(x) =
∑
k (kρkPk) /

∑
k kPk = G′0(x)/ 〈k〉

= G′0(x)/G′0(1)



GF for size of component made of vulnerable nodes found
by following initial edge:

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H1(x) = [1−G1(1)] + xG1(H1(x)).



GF for size of component made of vulnerable nodes found
by choosing arbitrary node:

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.H0(x) = [1−G0(1)] + xG0(H1(x)).

This leads to the cascade condition:∑
k k(k − 1)ρkPk > 〈k〉



Results: Theory and simulation

Uniform thresholds on random graph where all nodes have
degree z (a z-regular random graph)

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of the extended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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Results: Theory and simulation
(a) Normally distributed thresholds with std dev σ, on z-regular random graph.

(b) Uniform threshold on regular vs power law random graph.

vulnerable cluster should always be sufficient to activate the entire
connected component, even when the former is a very small
fraction of the latter, is not an obvious result, but it appears to hold
consistently, at least within the class of random graphs. Whether or
not it turns out to hold for networks more general than random
graphs is a matter of current investigation.

As Figs. 1 and 2 suggest, the onset of global cascades can occur
in two distinct regimes—a low connectivity regime and a high
connectivity regime—corresponding to the lower and upper phase
transitions respectively. The nature of the phase transitions at the
two boundaries is different, and this has important consequences
for the apparent stability of the systems involved. As Fig. 3 (open
squares) demonstrates, the cumulative distribution of cascades at
the lower boundary of the cascade window follows a power law,
analogous to the distribution of avalanches in models of self-
organized criticality (29) or the cluster size distribution at criticality
for standard percolation (22). In fact, the slope of the cascade size
distribution is indistinguishable from the known critical exponent
! ! 3!2 for the cluster size distribution of random graphs at
percolation (32). This result is expected because, when z " 1, most
vertices satisfy the vulnerability condition, so the propagation of
cascades is constrained principally by the connectivity of the
network, which for random graphs is known to undergo a second-
order phase transition at z ! 1 (31).

The upper boundary, however, is different. Here, the propa-
gation of cascades is limited not by the connectivity of the
network, but by the local stability of the vertices. Most vertices
in this regime have so many neighbors that they cannot be
toppled by a single neighbor perturbation; hence, most initial
shocks immediately encounter stable vertices. Most cascades
therefore die out before spreading very far, giving the appear-
ance that large cascades are exponentially unlikely. A percolat-
ing vulnerable cluster, however, still exists, so very rarely a
cascade will be triggered in which case the high connectivity of
the network ensures that it will be extremely large, typically
much larger than cascades at the lower phase transition. The
result is a distribution of cascade sizes that is bimodal rather than
a power law (see Fig. 3, solid circles). As the upper phase
transition is approached from below, global cascades become

larger, but increasingly rare, until they disappear altogether,
implying a discontinuous (i.e., first-order) phase transition in the
size of successful cascades (see Fig. 2b, solid circles). The main
consequence of the first-order phase transition is that just inside
the boundary of the window, where global cascades occur very
rarely (Fig. 3 shows only a single cascade occurring in 1,000
random trials), the system will in general be indistinguishable
from one that is highly stable, exhibiting only tiny cascades for
many initial shocks before generating a massive, global cascade
in response to a shock that is a priori indistinguishable from any
other.

These qualitative results are quite general within the class of
random networks, applying to arbitrary distributions both of thresh-
olds f(") and degree pk. Variations in either distribution, however,
can affect the quantitative results—and thus the effective vulner-
ability of the system—considerably, as is demonstrated in Fig. 4 a
and b. Fig. 4a shows the original cascade window for homogeneous
thresholds (solid line) and also two windows (dashed lines) derived
by the same generating function method, but corresponding to
threshold distributions f(") that are normally distributed with mean
"* and increasing standard deviation #. Numerical results (not
shown) correspond to the analytically derived windows. Clearly,
increased heterogeneity of thresholds causes the system to be less

Fig. 3. Cumulative distributions of cascade sizes at the lower and upper
critical points, for n ! 1,000 and z ! 1.05 (open squares) and z ! 6.14 (solid
circles), respectively. The straight line on the double logarithmic scale indi-
cates that cascades at the lower critical point are power-law distributed, with
slope 3!2 (the cumulative distribution has slope 1!2). By contrast, the distri-
bution at the upper critical point is bimodal, with an exponential tail at small
cascade size, and a second peak at the size of the entire system corresponding
to a single global cascade. Above the upper boundary, the global cascade
disappears and large cascades are always exponentially unlikely.

Fig. 4. Analytically derived cascade windows for heterogeneous networks. The
solid lines are the same as Fig. 1. (a) The dashed lines represent cascade windows
for uniform random graphs, but where the threshold distributions (") are nor-
mally distributed with mean " and SD # ! 0.05 and # ! 0.1. (b) The dashed line
represents the cascade window for a random graph with a degree distribution
that is a power law with exponent $ and exponential cut-off %0, where $ has been
fixed at $ ! 2.5 and %0 has been adjusted to generate graphs with variable z.

5770 # www.pnas.org!cgi!doi!10.1073!pnas.082090499 Watts

vulnerable cluster should always be sufficient to activate the entire
connected component, even when the former is a very small
fraction of the latter, is not an obvious result, but it appears to hold
consistently, at least within the class of random graphs. Whether or
not it turns out to hold for networks more general than random
graphs is a matter of current investigation.

As Figs. 1 and 2 suggest, the onset of global cascades can occur
in two distinct regimes—a low connectivity regime and a high
connectivity regime—corresponding to the lower and upper phase
transitions respectively. The nature of the phase transitions at the
two boundaries is different, and this has important consequences
for the apparent stability of the systems involved. As Fig. 3 (open
squares) demonstrates, the cumulative distribution of cascades at
the lower boundary of the cascade window follows a power law,
analogous to the distribution of avalanches in models of self-
organized criticality (29) or the cluster size distribution at criticality
for standard percolation (22). In fact, the slope of the cascade size
distribution is indistinguishable from the known critical exponent
! ! 3!2 for the cluster size distribution of random graphs at
percolation (32). This result is expected because, when z " 1, most
vertices satisfy the vulnerability condition, so the propagation of
cascades is constrained principally by the connectivity of the
network, which for random graphs is known to undergo a second-
order phase transition at z ! 1 (31).

The upper boundary, however, is different. Here, the propa-
gation of cascades is limited not by the connectivity of the
network, but by the local stability of the vertices. Most vertices
in this regime have so many neighbors that they cannot be
toppled by a single neighbor perturbation; hence, most initial
shocks immediately encounter stable vertices. Most cascades
therefore die out before spreading very far, giving the appear-
ance that large cascades are exponentially unlikely. A percolat-
ing vulnerable cluster, however, still exists, so very rarely a
cascade will be triggered in which case the high connectivity of
the network ensures that it will be extremely large, typically
much larger than cascades at the lower phase transition. The
result is a distribution of cascade sizes that is bimodal rather than
a power law (see Fig. 3, solid circles). As the upper phase
transition is approached from below, global cascades become

larger, but increasingly rare, until they disappear altogether,
implying a discontinuous (i.e., first-order) phase transition in the
size of successful cascades (see Fig. 2b, solid circles). The main
consequence of the first-order phase transition is that just inside
the boundary of the window, where global cascades occur very
rarely (Fig. 3 shows only a single cascade occurring in 1,000
random trials), the system will in general be indistinguishable
from one that is highly stable, exhibiting only tiny cascades for
many initial shocks before generating a massive, global cascade
in response to a shock that is a priori indistinguishable from any
other.

These qualitative results are quite general within the class of
random networks, applying to arbitrary distributions both of thresh-
olds f(") and degree pk. Variations in either distribution, however,
can affect the quantitative results—and thus the effective vulner-
ability of the system—considerably, as is demonstrated in Fig. 4 a
and b. Fig. 4a shows the original cascade window for homogeneous
thresholds (solid line) and also two windows (dashed lines) derived
by the same generating function method, but corresponding to
threshold distributions f(") that are normally distributed with mean
"* and increasing standard deviation #. Numerical results (not
shown) correspond to the analytically derived windows. Clearly,
increased heterogeneity of thresholds causes the system to be less

Fig. 3. Cumulative distributions of cascade sizes at the lower and upper
critical points, for n ! 1,000 and z ! 1.05 (open squares) and z ! 6.14 (solid
circles), respectively. The straight line on the double logarithmic scale indi-
cates that cascades at the lower critical point are power-law distributed, with
slope 3!2 (the cumulative distribution has slope 1!2). By contrast, the distri-
bution at the upper critical point is bimodal, with an exponential tail at small
cascade size, and a second peak at the size of the entire system corresponding
to a single global cascade. Above the upper boundary, the global cascade
disappears and large cascades are always exponentially unlikely.

Fig. 4. Analytically derived cascade windows for heterogeneous networks. The
solid lines are the same as Fig. 1. (a) The dashed lines represent cascade windows
for uniform random graphs, but where the threshold distributions (") are nor-
mally distributed with mean " and SD # ! 0.05 and # ! 0.1. (b) The dashed line
represents the cascade window for a random graph with a degree distribution
that is a power law with exponent $ and exponential cut-off %0, where $ has been
fixed at $ ! 2.5 and %0 has been adjusted to generate graphs with variable z.
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• Heterogeneous thresholds seem to enhance global cascades.

• Heterogeneous node degrees seem to reduce global cascades.



Generating function approach to
adoption of new behavior: Watts PNAS (2002)

• All nodes, except one, start in “inactive” state, {−1}

• Fractional threshold model (Φi).
– Node “activated” once a fraction of it’s neighbors ≥ Φi are
active.
– A vulnerable node is one that needs only a single neighbor
to be active before it flips (i.e., Φi ≤ 1/k).
– Use generating functions to calculate the expected size of
clusters of vulnerable nodes.
– A “Global cascade” corresponds to a giant component

• Results
– Heterogeneity in thresholds (Φi) enhances global cascades.
– Heterogeneity of degree (Pk) suppresses global cascades.



Susceptibles versus influentials

• A long debate

• Malcolm Gladwell vs Duncan Watts

• Aral and Walker, Science, 2012.



Diffusion, Cascade behaviors, and influential nodes
Part II: Contact processes with individual node preferences

• Long history of empirical / qualitative study in the social
sciences (Peyton Young, Granovetter, Martin Nowak ...;
diffusion of innovation; societal norms)

• Recent theorems: “network coordination games” (bigger
payout if connected nodes in the same state)
(Kleinberg, Kempe, Tardos, Dodds, Watts, Domingos)

• Finding the influential set of nodes, or the k most influential
Often NP-hard and not amenable to approximation algorithms

• Key distinction:
– Thresholds of activation (leads to unpredictable behaviors)
– Diminishing returns (submodular functions nicer)



Part II. Network Coordination Games

• The most basic model: Reviewed in Kleinberg “Cascading Behavior
in Networks: Algorithmic and Economic Issues”, Chap 24 of Algorithmic
Game Theory, (Cambridge University Press, 2007).

• Again each node in one of two states, say {−1,+1}.

• Play a game with each connected neighbor independently.
Total payout is sum over all games.

• Assume neighbor(s) of j in fixed state while j updates.

• Positive payout if connected nodes i and j adopt the same
state. No payout if they differ. And -1 can have different payout
that +1 coordinated behavior.

Payout matrix:
q 0
0 (1-q)



How each node operates

• Again assume all other nodes fixed while node j updates.

• It has kAj neighbors in state −1, and kBj neighbors in state +1.

• If node j chooses state −1, payout of qkAj .

• If node j chooses state +1, payout of (1− q)kBj .

• Chooses −1 if qkAj > (1− q)kBj .

• Substitute in kj = kAj + kBj and rearrange:

Criteria: choose −1 if kBj < qkj and +1 if kBj > qkj.

• A threshold model! Adopt +1 if a fraction q of your neighbors
have state +1.



Finding the influential nodes
Motivation

• Viral marketing – use word-of-mouth effects to sell product with
minimal advertising cost.

• Design of search tools to track news, blogs, and other forms of
on-line discussion about current events

Finding the influential nodes: formally

• The minimum set S ∈ V that will lead to the whole network
being activated.

• The optimal set of a specified size k = |S| that will lead to
largest portion of the network being activated.



Due to thresholds/ critical mass

• In general NP-hard to find optimal set S.

• NP-hard to even find a approximate optimal set (optimal to
within factor η1−ε where n is network size and ε > 0.)
(“inapproximability”)

• Due to thresholds (esp if each node can have its own) might
have a tiny activated final set of nodes but it jumps abruptly if
just a few more nodes or, moreover, the right nodes activated.

• Kleinberg calls this abrupt response the “Knife edge” property



Diminishing returns
(No longer a threshold, but a concave function)

• Each additional friend who adopts the new behavior enhances
your chance of adopting the new behevaior, but with less
influence for each additional friend
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Diminishing returns
(Submodular / concave function)

• The benefit of adding elements decreases as the set to which
they are being added grows.

• So no longer get to have more influence from family or
other special nodes. (Instead its the first nodes exert more
influence.)

• Since no longer have special nodes easy to build up optimal
set S of k nodes.

• Hill climbing – add one at the time nodes to the set S that
cause maximum impact.



Hill climbing

(from Leskovec talk)



Submodular and hill climbing more formally:

(from Leskovec talk)



Empirical observations
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Joining Livejournal: on online bulletin board network
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Probability of joining a community when k friends are already members

• Diminishing returns only sets in once k > 3.

• Network effect not illustrated by curve: If the k friends are highly
clustered, the new user is more likely to join.
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