ECS 253 / MAE 253, Lecture 14
May 17, 2023

“Diffusion, Cascades and Influence”
Mathematical models & generating functions



Diffusion and cascades in networks

e Viruses (human and computer)
— contact processes
— epidemic thresholds

e Adoption of new technologies
— Winner take all
— Benefit of first to market
— Benefit of second to market

e Political or social beliefs and societal norms

A long history of study, now trying to add impact of underlying
network structure.



Simple diffusion

Diffusion of a substance ¢ on a network with adjacency matrix A.

— Let ¢, denote the concentration at node .

e Diffusion: % = CZJ Azg(gbz — ij)
o In steady-state, =0 = ¢; = ¢;.

e In steady-state all nodes have the same value of ¢.

e In opinion dynamics this is called consensus.



Simple diffusion: The graph Laplacian

o Li=—CY . Aij(¢; — &)
— _CZJ' Aijgj — Cy Zj Ay
— O, Ay, — Coik
= —C ) (Aij — 0ik:) &5

(Note Kronecker delta: 6;; = 1ifi = j and §;; = 0 if ¢ # j)

e In matrix form: 2 = —C(A —D)¢ = C(D — A)¢ = CL¢



o From last page, matrix form: 2¢ = C(D — A)¢ = CL¢

e Graph Laplacian: L=D — A

where matrix D has zero entries except for diagonal with is
degree of node:

D;; = k; if ¢ = 5 and 0 otherwise.



The graph Laplacian

e [ has real positive eigenvalues 0 = A\ < Ay < -+ < Ay

e Number of eigenvalues equal to 0 is the number of distinct,
disconnected components of a graph

(Compare this to the column-normalized state transition matrix
from earlier in class (i.e., random-walk), where the number of
A's equal to 1 is the number of components).

e If \y # 0 the graph is fully connected. The bigger the value of
Ao the more connected (less modular) the graph.



But people are not diffusing particles
Opinion dynamics on networks

What drives social change?



Accelerating pace of social change

Speed of Change

Number of years from an issue’s trigger point
to federal action (all abortion years shown)
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Bloomberg, April 26, 2015.



Collective phenomena in social networks
How the online world is changing the game

J. Flack, R.D., editors, PIEEE (2014)

Proceedings: IEEE Past: Small, geographically localized
social networks, concentrated
Impact of Changing Technology power and influence

on Social Networks

Present: Digital footprint,
massive online experimentation,
global information,

rapid rate of change.

“Re-computing the social sciences’
Next step connecting these models with our digital footprints.



Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

INSIDE SCIENCE NEWS SERVICE

e Thresholds models Zealots Help Sway Popular Opinions

e \oter models

e Opinion dynamics
(e.g. The Naming game)

e Percolation

Image credit: Gabriel Saldana via Flickr | http://bit.ly/1ESIjCQ
Rights information: http://bit.ly/1dWcOPS

e Game theory

Enthusiasts can greatly influence the adoption of new ideas.
Originally published: Feb 19 2015 - 10:45am

By: Ker Than, Contributor

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.

What mechanism makes an individual change their mind?



Collective phenomena: Phase transitions
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e Percolation Az
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e Contact processes

e Abrupt shift as slow-time parameter varies
e Epidemic spreading

e €.0., Vinyl records vs digital music



Phase transitions depend on the underlying details

e The network structure

— Degree distribution (variation in connectivity)

— Modular structure

e The model of human behavior

— Simple contact process / percolation / epidemic spreading

+ Thresholds (critical mass) versus diminishing returns
+ Influential versus susceptible individuals

— Voter models
— Opinion dynamics / consensus

+ The role of zealots

— Strategic interactions / Nash equilibrium (decentralized solutions)



Simplest model of human behavior:
Binary opinion dynamics

Each individual can be in one of two states {—1,+1}

“Infected” or “healthy” (relevant to both human and computer networks)
Holding opinion “A” or “B”
Adopting new product, or sticking with status quo

Many other choices....



But what causes opinion to change?



|. Diminishing returns versus thresholds
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Q. Q.

k = number of friends adopting k = number of friends adopting
Diminishing returns? Critical mass?
Kleinberg, Leskovec, Kempe Watts, Dodds

e.g., KDD 2003. e.g. PNAS 2002.

“Hill climbing” / best response Percolation & generating functions

Algorithms for influential seed nodes Susceptibles vs influentials/mavens
(Depends on active vs passive influence.)



ll: The Voter model, “Tell me what to think”

V. Sood, S. Redner, Phys. Rev. Lett. 94, 2005.

e At each time step in the process, pick a node at random.

e That node picks a random neighbor, and adopts the opinion of the neighbor.

e Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

p(k)

10"
10%
10%

10*

10° 10’ 10

Degree distribution

high degree; few nodes

|

change rarely

low degree; picked often

import often

e Invasion percolation(the “bully” model) yields the opposite: leaf nodes propagate opinions.




lll: “The Naming Game” / open minded individuals
Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

e Originally introduced for linguistic convergence. Two opinions, A and B.

e And each individual can hold A, B, or {A, B}.

e Exchange opinions with neighbors and update




More formal analysis .....



Part I. Ensemble approaches

e A. Master equations (Random graph evolution, cluster aggregation)
e B. Network configuration model

e C. Generating functions

— Degree distribution (fraction of nodes with degree k, for all k)

p(k)

— Degree sequence (A realization, N specific values drawn from P;)



A. Network Configuration Model
Degree sequence given

o ¥ E

e Bollobas 1980; Molloy and Reed 1995, 1998.

e Build a random network with a specified degree sequence.
e Assign each node a degree at the beginning.

e Random stub-matching until all half-edges are partnered.

(Make sure total # edges even, of course.)

e Self-loops and multiple edges possible, but less likely as
network size increases.

HW 4b — build a configuration model and analyze percolation and spreading.



B. Generating functions:
Properties of the ensemble of configuration model RGs

Determining properties of the ensemble of all graphs with a given
degree distribution, P;.

e The basic generating function: Go(z) = >, Prx”
Note, Go(1) = >, P, = 1.

e The moments of P, can be obtained from derivatives of Gy(x):



Calculating moments

e Base: Gy(1) =), P, =1 (itis the sum of probabilities).

e First moment, | (k) = >, kP, = G;(1)

(And note xG{(x) = >, kPxz¥)

e Second moment, | (k*) = >, k*P, = £ (aGy(x))| _,

4(2Gy(x)) = L) k2 PiatD
(And note z-L(zGy(x)) = Y, k* Ppa®)

e he n-th moment

(k™) =>  k"P, = (:c%)n Go(x)

r=1




Generating functions for the giant component of a random
graph

Newman, Watts, Strogatz PRE 64 (2001)

With the basic generating function in place, can build on it to
calculate properties of more interesting distributions.

1. G.F. for connectivity of a node at edge of randomly chosen
edge.

2. G.F. for size of the component to which that node belongs.

3. G.F. for size of the component to which an arbitrary node
belongs.



Following a random edge

_ond A{ Vs

(Circles denote isolated nodes, squares components of unknown size.)




G1(x) the GF for the excess degree

e Let ¢, denote the probability of following an edge to a node with
excessdegree of k:  qr = [(k+ 1)Pxi1]/ (k)

e The associated GF

Gl(x) = %@'I;}(k -+ 1)Pk+1£€k

— % i kak—l

= 77 Co(@)

e Recall the most basic GF: Gy(z) = >, Pix”



H,(x), Generating function for probability of component
size reached by following random edge

(subscript 0 on GF denotes node property, 1 denotes edge property)

- {H\{ Vs

Hi(z) = vqo + xq1 Hi(x) + xqo[H1 (2)]? + xq3[H (2)]° - - -

(A self-consistency equation. We assume a tree network.)

Note also that H(z) =z, qx[H1(2)]* = 2G1(H;(x))



Aside 1: Self-consistency equations
Graphical solution
(@ 1 .
e See HW 1b: Self-consistency 08 -
for ER giant component 05 -

0.4 -

0.2 _

S=1—e 53

e Solve for S((k)) (see Fig a)
and plot result in Fig b.

(k)
(Barabasi book)

Graphical Solution



Aside 2: Powers property

The PGF for the sum of m instances of random variable k is the
PGF for k to the m’th power.

e Let P, denote the probability distribution for random variable &
e Let ©; denote the probability that > |k = j

e The associated PGF
Fo(z) =2, 0,17 =

Py + (1) PV P+ [(5) P P2 + (T) Py Pa) a® + ..

— [Z PkiCk] "



Hy(x), Generating function for distribution in component
sizes starting from arbitrary node
Blends both node and edge properties

= 0O+0O +\C! +\J>/

Ho(z) = 2Py + 2P Hy(2) + xP[Hq(x)]?* + aP3[Hq(x)]? - - -

=1y, Pu[H1(2)]" = 2Go(Hy(z))

e Can take derivatives of Hy(x) to find moments of component
size distribution!



Expected size of a component starting from arbitrary node

o (s) = jpHo(2)|,_, = 7z2Go(Hi(2))],_,
= Go(Hi(2))| =y + 7 ZGo(Hi(x)) g Hi(2)],_,

= Go(H1(1)) + %GO(Hl(l)) : %Hl(l)
Since Hi(1) =1,and Gy(1) =1 (i.e., they are sum of probabilities)

(s) = 14 Go(1) - Hy(1)



e Recall (three slides ago) H{(x) = xG1(H1(x))
ThUS, H{(ZE) = Gl(Hl(ZC)) + I%Gl(Hl(ZC))C%Hl(Qf)

Thus, H{(1) = 1+ G4(1)H!(1) = H!(1)=1/(1 — G'(1))

And thus, (s) =1+ fg(,l()l)
1




e Now evaluating the derivative:

d 1

1
= — S k(k—1)Pz*2
B Ek:( )Py

e Evaluate at z =1

Gi(1) = %2}; k(k —1)Py =
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Expected size of a component starting from arbitrary node

Gp(1
o (s)=1+ 1—8;(’1()1)

o Go(l) = (k)

¢ GL(1) = s [(#) = (k)




Emergence of the giant component
® <S> — OO

e This happens when: 2 (k) = (k?), which can also be written as

(k) = ((k) = (k)

e This means expected number of nearest neighbors (k),
first equals expected number of second nearest neighbors

((F2) = (k).
e Can also be written as (k*) — 2 (k) = 0, which is

the famous Molloy and Reed criteria®, giant emerges when:

S k(k—2) P, = 0.

*GF approach is easier than Molloy Reed! (Link to paper on lecture page)



GFs widely used in “network epidemiology”

e Fragility of Power Law Random Graphs to targeted node
removal / Robustness to random removal
— Callaway PRL 2000
— Cohen PRL 2000

e Onset of epidemic threshold:
— C Moore, MEJ Newman, Physical Review E, 2000 — MEJ
Newman - Physical Review E, 2002
— Lauren Ancel Meyers, M.E.J. Newmanb, Babak Pourbohlou,
Journal of Theoretical Biology, 2006
— JC Miller - Physical Review E, 2007

e Information flow in social networks
F Wu, BA Huberman, LA Adamic, Physica A, 2004.

e Cascades on random networks
Watts PNAS 2002.



Global Cascades on Random Networks
Watts PNAS 2002

e Each node can be in one of two states, say {+1, —1}.

e Start with almost all nodes in {—1}, but just one node (or a
small fraction of nodes) in {+1}.

e Nodes update state asynchronously. For node j if the fraction
of its neighbors in state +1 is greater than a threshold function
®,, 5 switches to 41 and stays in that state forever.

e Thethresholds ®, are drawn at random from a distribution f(®)
which is normalized in the usual way: fol f(P)dd = 1.

e Local dependence, fractional threshold ®;, heterogeneous
degree make this model differ from contact processes.



Global cascades?

e Question: for what kinds of networks and thresholds will a
small perturbation (of even one node) cause a fraction of all
nodes to flip? (i.e. a global cascade).

e Some terms:
Innovator — The first node(s) flipped to +1.
Early adopter / vulnerable — A neighbor of innovator who flips
right away.

e Early adopter much have threshold ®; < 1/k;, or equivalently
degree k; < K; = [1/9,]



Using GFs can reduce a complicated dynamics to a static
percolation problem

e As usual, degree distribution F.

e A node is vulnerable / early adopter if it's threshold ® < 1/k.
The probability a given node of degree £ is vulnerable is thus

YE£(3)dD.

pr =P <1/k|] = 0

e The probability a node drawn uniformly at random from all
nodes has 1) degree k, and 2) is vulnerable is thus: pi P;.

e Generating function for this (our base GF)

Go(w) — Zk kak:Ek.
Note: Gp(1) < 1.

e.g., Go(1) = 0 if there are no vulnerable nodes



“Propagation” of a cascade is edge following from a
vulnerable node

e As with the basic framework, probability of following edge to
node of degree k is proportional to k.

e GF for following a random edge to a vulnerable node of degree

k. (Again, observe building up process.):

Gi(x) = 2k (kprPr) [ 21 kPx = Golz)/ (K)
= Go(z)/Go(1)



GF for size of component made of vulnerable nodes found
by following initial edge:

o A{ U

Hy(z) = [1 — G1(1)] + zG1(Hi(x)).



GF for size of component made of vulnerable nodes found
by choosing arbitrary node:

= O+<‘) +\<{ + \J>/+

Ho(z) = [1 = Go(1)] + 2Go(H1()).

This leads to the cascade condition:

S k(k — D)ppPy > (k)




Results: Theory and simulation

Uniform thresholds on random graph where all
degree z (a z-regular random graph)

nodes have
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Results: Theory and simulation
(a) Normally distributed thresholds with std dev o, on z-regular random graph.

(b) Uniform threshold on regular vs power law random graph.
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e Heterogeneous thresholds seem to enhance global cascades.

e Heterogeneous node degrees seem to reduce global cascades.



Generating function approach to
adoption of new behavior: Watts PNAS (2002)

e All nodes, except one, start in “inactive” state, {—1}

e Fractional threshold model (®;).
— Node “activated” once a fraction of it's neighbors > &, are
active.
— A vulnerable node is one that needs only a single neighbor
to be active before it flips (i.e., ®; < 1/k).
— Use generating functions to calculate the expected size of
clusters of vulnerable nodes.
— A “Global cascade” corresponds to a giant component

e Results
— Heterogeneity in thresholds (®;) enhances global cascades.
— Heterogeneity of degree (P;) suppresses global cascades.



Susceptibles versus influentials

e A long debate
e Malcolm Gladwell vs Duncan Watts

e Aral and Walker, Science, 2012.



Diffusion, Cascade behaviors, and influential nodes
Part ll: Contact processes with individual node preferences

e Long history of empirical / qualitative study in the social
sciences (Peyton Young, Granovetter, Martin Nowak ...;
diffusion of innovation; societal norms)

e Recent theorems: “network coordination games” (bigger
payout if connected nodes in the same state)
(Kleinberg, Kempe, Tardos, Dodds, Watts, Domingos)

e Finding the influential set of nodes, or the k£ most influential
Often NP-hard and not amenable to approximation algorithms

e Key distinction:
— Thresholds of activation (leads to unpredictable behaviors)
— Diminishing returns (submodular functions nicer)



Part Il. Network Coordination Games

e The most basic model: Reviewed in Kleinberg “Cascading Behavior
in Networks: Algorithmic and Economic Issues”, Chap 24 of Algorithmic
Game Theory, (Cambridge University Press, 2007).

e Again each node in one of two states, say {—1,+1}.

e Play a game with each connected neighbor independently.
Total payout is sum over all games.

e Assume neighbor(s) of j in fixed state while j updates.

e Positive payout if connected nodes ¢ and ; adopt the same
state. No payout if they differ. And -1 can have different payout
that +1 coordinated behavior.

0

Payout matrix:
g (1-q)

o0




How each node operates

e Again assume all other nodes fixed while node ; updates.

e It has k! neighbors in state —1, and k7 neighbors in state +1.
e If node j chooses state —1, payout of gk:'.

e If node j chooses state +1, payout of (1 — ¢)k7.

e Chooses —1 if gk > (1 — q)kP.

e Substitute in k; = k&' + k7 and rearrange:
Criteria: choose —1 if k7 < gk; and +1if k7 > ¢k;.

e A threshold model! Adopt +1 if a fraction ¢ of your neighbors
have state +1.



Finding the influential nodes
Motivation

e Viral marketing — use word-of-mouth effects to sell product with
minimal advertising cost.

e Design of search tools to track news, blogs, and other forms of
on-line discussion about current events

Finding the influential nodes: formally

e The minimum set S € V that will lead to the whole network
being activated.

e The optimal set of a specified size £ = |S| that will lead to
largest portion of the network being activated.



Due to thresholds/ critical mass

e In general NP-hard to find optimal set S.

e NP-hard to even find a approximate optimal set (optimal to
within factor n'=¢ where n is network size and ¢ > 0.)
(“inapproximability”)

e Due to thresholds (esp if each node can have its own) might
have a tiny activated final set of nodes but it jumps abruptly if
just a few more nodes or, moreover, the right nodes activated.

e Kleinberg calls this abrupt response the “Knife edge” property



Diminishing returns
(No longer a threshold, but a concave function)

e Each additional friend who adopts the new behavior enhances
your chance of adopting the new behevaior, but with less

influence for each additional friend

Basis for models:

— Probability of adopting new behavior depends on
the number of friends who have adopted [Bass ‘69,

Granovetter ‘78, Shelling '78]
What’s the dependence?

c c
2 2
2 =
o O
© o
© m
° °
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e a
k = number of friends adopting k = number of friends adopting
Diminishing returns? Critical mass?

(from Leskovec talk)



Diminishing returns
(Submodular / concave function)

e The benefit of adding elements decreases as the set to which
they are being added grows.

e SO0 no longer get to have more influence from family or
other special nodes. (Instead its the first nodes exert more
influence.)

e Since no longer have special nodes easy to build up optimal
set S of k nodes.

e Hill climbing — add one at the time nodes to the set S that
cause maximum impact.



Hill climbing

An Approximation Result Ir

* Diminishing returns: p (u,S) 2 p (u,T)if SCT

* Hill-climbing: repeatedly select node with
maximum marginal gain

* Performance guarantee: hill-climbing
algorithm is within (1-1/e) ~63% of optimal
[Kempe et al. 2003]

(from Leskovec talk)



Submodular and hill climbing more formally:

An Approximation Result I/

* Analysis: diminishing returns at individual
nodes implies diminishing returns at a
“global” level

— Cascade size f(S) grows slower and slower with §.
fis submodular: if S < Tthen
fSUxf)=1(S) 2 f(Tux}) = f(T)
— Theorem [Nehmhauser et al. ‘78]:
If fis a function that is monotone and
submodular, then k-step hill-climbing produces
set S for which f(S) is within (1-1/e) of optimal.

(from Leskovec talk)




Empirical observations

Part 2: Empirical Analysis

..
—

What do diffusion curves look like?
* How do cascades look like?
* Challenge:
— Large dataset where diffusion can be observed
— Need social network links and behaviors that spread
* We use:

— Blogs: How information propagates? [Leskovec et al. 2007]

— Product recommendations: How recommendations and
purchases propagate? [Leskovec-Adamic-Huberman 2006]

— Communities: How community membership propagates?
[Backstrom et al. 2006]

(from Leskovec talk)



How do diffusion curves look like?

* Viral marketing — DVD purchases:
0.08 -

Probability of Buying
o o
2 S

o
o
o
-1,

10 20 30 40 50 60
k (number of in-recommendations)
— Mainly diminishing returns (saturation)

— Turns upward fork =0, 1, 2, ...

(from Leskovec talk)



Joining Livejournal: on online bulletin board network

Probability of joining a community when k friends are already members

0.025

0.02 -

0.015

probability

0.01 -

0.005 -

0 5 10 15 20 25 30 35 40 45 50

e Diminishing returns only sets in once k£ > 3.

e Network effect not illustrated by curve: If the k friends are highly
clustered, the new user is more likely to join.



How Do Cascades Look Like?

* How big are cascades? i -
* What are the building ' ‘
blocks of cascades?

sse e
LR

..........

Medlcal gunde book - DVD

(from Leskovec talk)



