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FIG. 6: Six modules corresponding to the uppermost branched linear chain of modules depicted in Figure 4. Colors denote
modules as defined by the network information bottleneck algorithm. Again the modules roughly correspond to institutional
affiliations. Over 50% of the blue nodes have one or more affiliations with the institutions based in and around Chicago
(Argonne National Laboratory, University of Illinois at Chicago and University of Notre Dame). 70% of the red nodes are in
England, and 75% of the green nodes are in China, mostly at the Institute of Chemistry Chinese Academy of Sciences, and all
of the cyan nodes are at the Center of Complex Systems Research in Illinois. Both the yellow and magenta modules are mostly
affiliated with the University of Nebraska.

FIG. 7: E. coli gene regulatory network. Largest component of the symmetric version of the E. coli genetic regulatory
network. Colors denoted modules identified by NIB.

Diffusive distributions are but one general class of distributions on a network. A natural generalization of these
ideas is to describe other distributions on a network for which a particular function, energy, or origin is known, and
on which some particular degree of freedom (such as chemical concentration or genetic expression as a function of
time) may be defined.

Finally, we note that while the information bottleneck is a prescription for finding the highest-fidelity summary of a
system at a given simplicity, algorithms for determining network community structure are usually motivated by various
definitions of normalized min-cuts [27, 28, 29, 30]. Our results, particularly for the synthetic graphs with prescribed
modular structure, demonstrate that information modularity implies edge modularity, an unexpected finding which
motivates further numerical and analytic investigations in progress regarding this relationship.
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“Intro to Biological Networks, Motifs, and Model
selection/validation”



Biological Networks / Systems Biology

** In Biology, often edges can be activating or inhibiting! **

• Luca Cardelli, http://lucacardelli.name/

• Eivind Almaas, http://www.ntnu.no/ansatte/eivind.almaas

• Sergey Nuzhdin, http://nlab.usc.edu/Site/Home.html

At UCD:

• CS: Vladimir Filkov, Ilias Tagkopoulos, Patrice Koehl, Dan Gusfield, Dave
Doty,

• Genome center / Biomed engineering: Savageau, Benham, Raychaudhuri,
Saiz, Brady, Feihn ....

• Plant Biology: Dandekar, Maloof, ...



Intro to biological networks

See almaasBioNets.pdf



Network motifs

Network Analysis Detects Component 
Reuse (Network Motifs)! 



Sergey Nuzhdin slides:
Examples of Biological Networks? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c. What are appropriate network descriptions? 

 
 
 
 
 
 
 
 
 
 
 
 



dynamic description 
Garry O’Dell, Nature 2001: 
19 equations, 54 parameters, 
 
 

1/2000 random solutions ! correct spatial structure. 
 
Most parameters can vary 10,000 fold causing no changes,  

  Mutation-selection balance? 
 

 



Literature on validation of network models

• is rather limited

Four useful papers:

• M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network mechanisms:
The Drosophila melanogaster protein interaction network”, PNAS 102 (9),
2005. (About 180 citations.)

• D. Alderson, L. Li, W. Willinger, and J. C. Doyle, “Understanding Internet
Topology: Principles, Models, and Validation”, IEEE/ACM Trans. on
Networking, 13 (6), 2005. (About 170 citations.)

• V. Filkov, Z.M. Saul, S. Roy, R.M. DÕSouza, P.T. Devanbu, “Modeling and
verifying a broad array of network properties”, Europhys. Lett. 86, 2009.

• J. Wang and G. Provan, “Generating Application-Specific Benchmark
Models for Complex Systems”, Proc. Twenty-Third AAAI Conf on Artificial
Intelligence, 2008.



Model validation: Overarching issues

• Many models give rise to same large-scale statistics
(e.g., degree distribution, diameter, clustering coefficient).

• Data sets have multiple attributes. Fitting one or two of them is
not always sufficient.

• Data: Limited availability (expense or proprietary nature);
small data sets



In the beginning – Power Laws

• 1999 - 2005, explosion of observations of “power laws” in networks
also of “small-worlds”.
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• M. Mitzenmacher, “The Future of Power Law Research”
Internet Mathematics, 2 (4), 2006. (Editorial piece)
– A call to move beyond observation and model building to validation and control.
– Power laws ‘the signature of human activity’

• Clauset, Shalizi, Newman, “Power-law distributions in empirical data”,
SIAM Review 51, 661-703 (2009).
– Techniques to detect if actually have a power law, and if so, to extract exponents.



“Inferring network mechanisms: The Drosophila
melanogaster protein interaction network”

Middendorf, Ziv, and Wiggins PNAS 102, 2005

• Study the Drosophila protein interaction network

• Use machine learning techniques (discriminative classification)
to compare with seven proposed models to determine which
model best describes data.

• Classification rather than statistical tests on specific attributes.



Data:
Giot et al, Science 302, 1727 (2003)

• Accept any edge with p > 0.65,
3,359 vertices and 2,795 edges.



7 candidate models

• DMC – duplication-complementation-mutation (Vasquez et al)

• DMR – duplication-mutation with random mutations

• RDS – random static (Erdos-Renyi)

• RDG – random growing graph (Callaway et al.)

• LPA – Linear pref attachment (Barabasi-Albert)

• AGV – Aging vertices

• SMW – Small world (Watts-Strogatz)



The procedure

• Generate 1000 random instances of a network with N=3359
and E=2795 for each of the seven models (7000 random
instances in total). (Training data)

• “Subgraph census” – classify each network by exhaustive
search for all possible subgraphs up to a given size. (“Motifs”)

• Classify each of the 7 mechanisms by raw subgraph counts.

An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) ! e2y(c)!(1 "
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.

3194 " www.pnas.org!cgi!doi!10.1073!pnas.0409515102 Middendorf et al.

(Example subgraphs)



Notes on procedure

• Similar to techniques in social sciences (p∗, exponential
random graph models).

• Network “motifs”, Milo et al Science, 2002. But motifs only up
to n = 3 or n = 4 nodes.

• Note the term “clustering” here refers to machine learning
technique to categorize data, not “clustering coefficient”
(transitivity).



Build classifier from the training data (Learning Algorithm)

• Alternating Decision Tree (ADT), (Freund and Schapire, 1997).

An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) ! e2y(c)!(1 "
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.
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Which subgraphs best

distinguish the models?

An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) ! e2y(c)!(1 "
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.
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Validating classifier

• Slight overlap in models which are variations on one-another.



Validating classifier

• (a) DMC and RDG produce similar statistical distributions.

• (b) Classifier can discriminate between the two models.



After classifier built, use it to characterize individual
network realizations

(Walk the Drosophila data through the ADT)

• A given network’s subgraph counts determine paths in the ADT
(decision nodes are rectangles)

• The ADT outputs a real-valued prediction score, which is the
sum of all weights over all paths.

• The final weight for a model is related to probability that
particular network realization was generated by that model.

• Model with the highest weight wins (best describes that
particular network realization).

• DMC wins for Giot Drosophila data!



Comparison by subgraph counts

• Green is best (same median occurrence as in real Drosophila
data).

• 0 means the subgraph is in data, but not in model.



Introducing noise – degree preserving edge rewiring

• Classifier robust.



Comments

• Model selection not validation. (Relative judgement)
(i.e., which of these 7 models fits the data best?)

• Many of these 7 models considered produce similar
macroscopic features (degree distribution, clustering, diameter,
etc).

• Delve into microscopic details and let the data distinguish
between the 7 models.

• Must start with models that are accurate statistical fits to data!
(different type of model validation). (Acompanying commentary,
Rice et al PNAS 2005, DMC does not reproduce giant
component.)



Model Validation Lit Review: Conclusions

• New techniques being introduced (classifiers, PCA).

• Calls for necessity of validation (e.g., Mitzenmacher)

• Specifics may matter, constraint curves “first principles”.

• Selection easier than validation!


