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“Intro to Biological Networks, Motifs, and Model
selection/validation”



Biological Networks / Systems Biology

** In Biology, often edges can be activating or inhibiting! **

Luca Cardelli, http://lucacardelli.name/
Eivind Almaas, http://www.ntnu.no/ansatte/eivind.almaas

Sergey Nuzhdin, http://nlab.usc.edu/Site/Home.html
At UCD:

CS: Vladimir Filkov, llias Tagkopoulos, Patrice Koehl, Dan Gusfield, Dave
Doty,

Genome center / Biomed engineering: Savageau, Benham, Raychaudhuri,
Saiz, Brady, Feihn ....

Plant Biology: Dandekar, Maloof, ...



Intro to biological networks

See almaasBioNets.pdf



Network motifs

Network Analysis Detects Component




Examples of Biological Networks?

Sergey Nuzhdin slides:

Figure 1. The use of network conceptsto explore the structure and function of a variety of biological systems from genes (a) and proteins (b) to individuals within a population
(c) and species within an ecosystem (d). (a) The network of regulatory interactionsin the yeast Saccharomyces cerevisiae, where genes encoding transcription factors interact
by binding the regulatory regions of other regulatory genes [16]. (b) The protein interaction network in which proteins that physically interact are connected by edges [17].
(c) The geneticrelationship of populations of the cactus Lophocereus schottii [18]. In this graph, edge length represents the fraction of the total genetic variation explained by
the connected populations. (d) Predator-prey interactions in the Chesapeake Bay food web [19]. Reproduced, with permission from [16] (a), [17] (b}, [18] (c) and [18] (d).

c. What are appropriate network descriptions?
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‘ ® Garry O’Dell, Nature 2001:
| 19 equations, 54 parameters,

1/2000 random solutions = correct spatial structure.

Most parameters can vary 10,000 fold causing no changes,
1 [ 1 Mutation-selection balance?




Literature on validation of network models

is rather limited

Four useful papers:

M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network mechanisms:
The Drosophila melanogaster protein interaction network”, PNAS 102 (9),
2005. (About 180 citations.)

D. Alderson, L. Li, W. Willinger, and J. C. Doyle, “Understanding Internet
Topology: Principles, Models, and Validation”, IEEE/ACM Trans. on
Networking, 13 (6), 2005. (About 170 citations.)

V. Filkov, Z.M. Saul, S. Roy, R.M. DOSouza, P.T. Devanbu, “Modeling and
verifying a broad array of network properties”, Europhys. Lett. 86, 2009.

J. Wang and G. Provan, “Generating Application-Specific Benchmark
Models for Complex Systems”, Proc. Twenty-Third AAAI Conf on Artificial
Intelligence, 2008.



Model validation: Overarching issues

e Many models give rise to same large-scale statistics
(e.g., degree distribution, diameter, clustering coefficient).

e Data sets have multiple attributes. Fitting one or two of them is
not always sufficient.

e Data: Limited availability (expense or proprietary nature);
small data sets



In the beginning — Power Laws

e 1999 - 2005, explosion of observations of “power laws” in networks
also of “small-worlds”.
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e M. Mitzenmacher, “The Future of Power Law Research”
Internet Mathematics, 2 (4), 2006. (Editorial piece)
— A call to move beyond observation and model building to validation and control.
— Power laws ‘the signature of human activity’

e Clauset, Shalizi, Newman, “Power-law distributions in empirical data”,
SIAM Review 51, 661-703 (2009).

— Techniques to detect if actually have a power law, and if so, to extract exponents.



“Inferring network mechanisms: The Drosophila
melanogaster protein interaction network™

Middendorf, Ziv, and Wiggins PNAS 102, 2005

e Study the Drosophila protein interaction network

e Use machine learning techniques (discriminative classification)
to compare with seven proposed models to determine which
model best describes data.

e Classification rather than statistical tests on specific attributes.



Data:
Giot et al, Science 302, 1727 (2003)
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e Accept any edge with p > 0.65,
3,359 vertices and 2,795 edges.



7 candidate models

e DMC — duplication-complementation-mutation (Vasquez et al)
e DMR — duplication-mutation with random mutations

e RDS — random static (Erdos-Renyi)

e RDG — random growing graph (Callaway et al.)

e LPA — Linear pref attachment (Barabasi-Albert)

e AGV — Aging vertices

e SMW — Small world (Watts-Strogatz)



The procedure

e Generate 1000 random instances of a network with N=3359
and E=2795 for each of the seven models (7000 random
instances in total). (Training data)

e “Subgraph census” — classify each network by exhaustive
search for all possible subgraphs up to a given size. (“Motifs”)

e Classify eac
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Notes on procedure

e Similar to techniques in social sciences (p*, exponential
random graph models).

e Network “motifs”, Milo et al Science, 2002. But motifs only up
ton =3 or n = 4 nodes.

e Note the term “clustering” here refers to machine learning
technique to categorize data, not “clustering coefficient”
(transitivity).



Build classifier from the training data (Learning Algorithm)
e Alternating Decision Tree (ADT), (Freund and Schapire, 1997).
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DMR: 0.58 DMR: =3.64 DMR: 0.19 DMR: 0.12 DMR: =3.50
RDG: 0.56 RDG: -3.82 RDG: 0.24 RDG: 0.10 RDG: -3.51
LPA: -3.94 LPA: -4.25 LPA: 0.99 LPA: -0.01 LPA: -1.70
AGV: -3.94 AGYV: -0.03 AGV: 0.05 AGV: 0.01 AGV: -2.80
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Which subgraphs best

DMC: 0.04
DMR: -0.75

DMC: 0.65
DMR: -0.57

distinguish the models?

RDG: -1.63 RDG: -1.60
LPA: -2.46 LPA: -0.00
AGV: -0.30 AGV: 0.05
SMw: 0.05 SMw: 0.T3

RDS: 0.65 RDS: -2.44




Validating classifier

Prediction
Truth DMR DMC AGY LPA SMW RDS RDG
DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0
AGY 0.0 0.1 84.7 135 1.2 0.5 0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0

e Slight overlap in models which are variations on one-another.
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e (a) DMC and RDG produce similar statistical distributions.

e (b) Classifier can discriminate between the two models.

Validating classifier
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After classifier built, use it to characterize individual
network realizations

(Walk the Drosophila data through the ADT)

e A given network’s subgraph counts determine paths inthe ADT
(decision nodes are rectangles)

e The ADT outputs a real-valued prediction score, which is the
sum of all weights over all paths.

e The final weight for a model is related to probability that
particular network realization was generated by that model.

e Model with the highest weight wins (best describes that
particular network realization).

e DMC wins for Giot Drosophila data!



Comparison by subgraph counts

1108 o
=
b= |

1106 8

110%4 '%

102 2

3

S 8 8 8 8 5 8
rank score (%)

—
=]

e Green is best (same median occurrence as in real Drosophila
data).

e 0 means the subgraph is in data, but not in model.



Introducing noise — degree preserving edge rewiring
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e (Classifier robust.



Comments

e Model selection not validation. (Relative judgement)
(i.e., which of these 7 models fits the data best?)

e Many of these 7 models considered produce similar
macroscopic features (degree distribution, clustering, diameter,
etc).

e Delve into microscopic details and let the data distinguish
between the 7 models.

e Must start with models that are accurate statistical fits to data!
(different type of model validation). (Acompanying commentary,
Rice et al PNAS 2005, DMC does not reproduce giant
component.)



Model Validation Lit Review: Conclusions

e New techniques being introduced (classifiers, PCA).
e Calls for necessity of validation (e.g., Mitzenmacher)
e Specifics may matter, constraint curves “first principles”.

e Selection easier than validation!



