ECS 253 / MAE 253, Lecture 2 April 5, 2023

"Power laws, Random graphs, phase transitions"

Class structure

- Two tracks to the class:

Track A: Project
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

- Track A: Project
- Teams of 5-6 people ideal
- Negative results are OK
- Ideally aim to have a result for a journal or conference

Complex networks are ubiquitous:

Networks: Physical, Biological, Social, Technological

- Geometric versus virtual (Internet versus WWW).
- Natural /spontaneously arising versus engineered /built.
- Directed versus undirected edges.
- Each network may optimize something unique.
- Identifying similarities and fundamental differences can guide future design/understanding.
- Interplay of topology and function ?
- Unifying features: - Broad heterogeneity in node degree. - Small Worlds (Diameter $\sim \log (N)$).

What are networks?

- Networks are collections of points joined by lines.

"Network" = "Graph"

points	lines	
vertices	edges, arcs	math
nodes	links	computer science
sites	bonds	physics
actors	ties, relations	sociology

Subtle details of edges

Network elements: edges

- Directed (also called arcs)
- A -> B ($E_{B A}$)
- A likes B, A gave a gift to B, A is B ' s child
- Undirected
- A <-> B or A - B
- A and B like each other
- A and B are siblings
- A and B are co-authors
- Edge attributes
- weight (e.g. frequency of communication)
- ranking (best friend, second best friend...)
- type (friend, relative, co-worker)
- properties depending on the structure of the rest of the graph: e.g. betweenness

■ Multiedge: multiple edges between two pair of nodes
■ Self-edge: from a node to itself

Adjacency matrices

Representing edges (who is adjacent to whom) as a matrix

- $A_{i j}=1$ if node i has an edge to node j
$=0$ if node i does not have an edge to j

■ $A_{i i}=0$ unless the network has self-loops
\square If self-loop, $A_{i i}=1$
$\square A_{i j}=A_{j i}$ if the network is undirected, or if i and j share a reciprocated edge
Example: $\quad A=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0\end{array}\right]$

Adjacency lists

Edge list

- 23
- 24
- 32
- 34
- 45
- 52
- 51

- Adjacency list

■ is easier to work with if network is

- large
- sparse

■ quickly retrieve all neighbors for a node

- 1:
- 2: 34
- 3:24
- 4: 5
- 5: 12

Beyond simple networks:

Bipartite (two-mode) networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
- directors and boards of directors
- customers and the items they purchase
- metabolites and the reactions they participate in

Slide from Gunes course, UNR

Beyond simple networks: Multiplex and multi-layered

- B) Multiplex: the same set of nodes have multiple types of relationships, each one described by a layer.
- C) Multi-layer: The nodes in each layer can be distinct.

Beyond simple networks:

HyperGraphs

- Edges join more than two nodes at a time (hyperEdge)
- Affliation networks
- Examples
- Families

■ Subnetworks

- Chemical reactions
- co-author networks

Can be transformed to a bipartite network

NETWORK TOPOLOGY; simple edges

Binary connectivity matrix, M :

Node degree is number of links.

Network Activity: FLOWS on NETWORKS

(Spread of disease, routing data, materials transport/flow, gossip spread/marketing)

FLOWS on NETWORKS : Random walks

Random walk on the network has state transition matrix, P : (Column normalize the adjacency matrix)

The eigenvalues and eigenvectors convey much information. Markov Chains, Spectral Gap.

Random walk on the WWW is the "Page Rank"

Page Rank of a node is the steady-state random walk occupancy probabilty.
(We will discuss building a search engine in detail later.)

Example Eigen-technique: Community structure (Political Books 2004)

M. Girvan and M. E. J. Newman

Back to topology: Broad scale degree distributions

Social contacts
Szendröi and Csányi

Airport traffic
Bounova 2009

Protein interactions
Giot et al Science 2003

- A few hubs, dominated by leaves
- Small data sets, power laws vs log normal, stretched-exponential, etc...
- Exceptions: Power grids? Router-level Internet?

Degree distribution

- Often observe "heavy-tailed" / "broad-scale" degree distributions.
- The simplest example of such a distribution is a power law (Pareto distribution).
$p_{k} \sim k^{-\gamma}$
$\ln p_{k} \sim-\gamma \ln k$

Power Laws versus Bell Curves: "Heavy tails"

- Power law distribution: $p_{k} \sim k^{-\gamma}$.
- Gaussian distribution: $p_{k} \sim \exp \left(-k^{2} / 2 \sigma^{2}\right)$.

- Most nodes have low degree
- But a few nodes are hubs, with massive degree

Many network growth models produce power law degree distribution (we will study some of these)

- Preferential attachment
- Copying models (WWW, biological networks, ...)
- Optimization models

Degree distribution misses other structure.

- Doyle, et. al., PNAS 102 (4)2005.

Link Speed (Gbps)	Router Speed (Gbps)
$5.0-10.0$	50-100
$1.0-5.0$	$10-50$
0.5-1.0	5-10
$0.1-0.5$	1 -
0.05-0.1	0.5-1.0
$0.01-0.05$	$0.1-0.5$
$0.005-0.01$	$0.05-0.1$
$0.001-0.005$	$0.01-0.05$

Power law probability distributions: $p_{k}=A k^{-\gamma}$ with $\gamma>0$

- $0 \leq p_{k} \leq 1 \quad \forall k$ which are valid degrees (typically $k \in \mathbb{Z}^{+}$).
- Must be properly normalized:

$$
\sum_{k=1}^{\infty} p_{k}=\sum_{k=1}^{\infty} \frac{A}{k^{\gamma}}=1
$$

- Approximating discrete sum by integral:

$$
\begin{gathered}
1=\int_{k=1}^{\infty} \frac{A}{k^{\gamma}}=-\left.\left(\frac{A}{\gamma-1}\right) \frac{1}{k^{(\gamma-1)}}\right|_{k=1} ^{\infty} \\
=\left(\frac{A}{1-\gamma}\right)\left(\frac{1}{\infty^{(\gamma-1)}}-1\right)
\end{gathered}
$$

- Finite requirement means $\gamma>1$, in which case $A=(\gamma-1)$.

The first moment (the mean)

Recall, $p_{k}=\frac{A}{k^{\gamma}}$

- Mean degree:

$$
\langle k\rangle=\sum_{k=1}^{\infty} k p_{k} \approx \int_{k=1}^{\infty} k p_{k} d k=\int_{k=1}^{\infty} \frac{A}{k^{(\gamma-1)}} d k
$$

Diverges (i.e., $\langle k\rangle \rightarrow \infty$) if $\gamma \leq 2$.

The second moment and the variance

- Second moment:

$$
\left\langle k^{2}\right\rangle=\sum_{k=1}^{\infty} k^{2} p_{k} \approx \int_{k=1}^{\infty} k^{2} p_{k} d k=\int_{k=1}^{\infty} \frac{A}{k^{(\gamma-2)}} d k
$$

Diverges (i.e., $\left\langle k^{2}\right\rangle \rightarrow \infty$) if $\gamma \leq 3$.

- Variance $=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}$, likewise diverges if $\gamma \leq 3$.

Properties of a power law PDF (Summary)

(PDF = probability density function)

- To be a properly defined probability distribution need $\gamma>1$.
- For $1<\gamma \leq 2$, both the average $\langle k\rangle$ and variance σ^{2} are infinite!
- For $2<\gamma \leq 3$, average $\langle k\rangle$ is finite, but variance σ^{2} is infinite!
- For $\gamma>3$, both average and variance finite.

Why a power law is "scale-free"

- Power law for "x", means "scale-free" in x :

$$
p(b x)=(b x)^{-\gamma}=b^{-\gamma} p(x)
$$

$$
\frac{p(b k)}{p(k)}=b^{-\gamma} \text { regardless of } k
$$

In contrast consider: $p(k)=A \exp (-k)$.

$$
\text { So } p(b k)=A \exp (-b k)
$$

$$
\frac{p(b k)}{p(k)}=\exp [-k(b-1)] \text { dependent on } k
$$

Self-similar/scale-free fractal structures

Sierpinski Sieve/Gasket/Fractal, $N \sim r^{d}$.
When r doubles, N triples: $3=2^{d}$
$d=\log N / \log r=\log 3 / \log 2$

Power laws in the real world

Confusion

- Power law
- Log normal
- Weibull
- Stretched exponential

All of these distributions can look the same! (Especially when we are dealing with finite data sets - not enough data to get good statistics).

How to deal with real data

- Can adjust bin size: increase exponentially with degree.
- Consider the Cumulative PDF (the CDF): $P_{k}=\sum_{l=k}^{\infty} p_{l}$.

Good reviews:

- Aaron Clauset, Cosma R. Shalizi, M. E. J. Newman. "PowerLaw Distributions in Empirical Data", SIAM Review, Vol. 51, No. 4. (2009), pp. 661-703.
- A Brief History of Generative Models for Power Law and Lognormal Distributions Michael Mitzenmacher, Internet Math. Vol 1 (2003), 226-251.

Power law with exponential tail

Ubiquitous empirical measurements:

System with: $p(x) \sim x^{-B} \exp (-x / C)$	B	C
Full protein-interaction map of Drosophila	1.20	0.038
High-confidence protein-interaction map of Drosophila	1.26	0.27
Gene-flow/hydridization network of plants as function of spatial distance	0.75	$10^{5} \mathrm{~m}$
Earthquake magnitude	$1.35-1.7$	$\sim 10^{21} \mathrm{Nm}$
Avalanche size of ferromagnetic materials	$1.2-1.4$	$L^{1.4}$
ArXiv co-author network	1.3	53
MEDLINE co-author network	2.1	~ 5800
PNAS paper citation network	0.49	4.21

True power laws are observed in many systems

- Signature of a system at the "critical point" of a phase transition.
Foundation of renormalization group approach to critical phenomena
- Random graphs at critical point; component sizes: $N_{k} \sim k^{-5 / 2}$ (Note, $\gamma=2.5$)

The origins of network theory: Random graphs

What does a "typical" graph with n vertices and m edges look like?

- P. Erdös and A. Rényi, "On random graphs", Publ. Math. Debrecen. 6, 1959.
- P. Erdös and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hungar. Acad. Sci. 5, 1960.
- E. N. Gilbert, "Random graphs", Annals of Mathematical Statistics 30, 1959.

Erdös-Rényi random graphs

- Consider a labelled graph. Each vertex has a label ranging from $[1,2,3, \cdots n]$, for a set of n vertices. (This will make counting and analysis easier.)
- Let E denote the total number of edges possible:

$$
E=\binom{N}{2}=\frac{N!}{2!(N-2)!}=\frac{N(N-1)}{2}
$$

(If directed edges, we would not divide by 2).

Two formulations

- 1) $\mathcal{G}(n, p)$: The ensemble of graphs constructed by putting in edges with probability p, independent of one another. (An edge is present with probability p and absent with probability $[1-p]$.) Let $G(n, p)$ denote a random realization of $\mathcal{G}(n, p)$.
- 2) $\mathcal{G}(n, m)$: The ensemble of all graphs with n nodes and exactly m edges.

Let $G(n, m)$ denote a random realization of $\mathcal{G}(n, m)$.

- The two are almost interchangeable with $m=p E$. (Recall, E is total number of edges possible).
- We will focus on $G(n, p)$.

The "classic" random graph, $G(N, p)$ (The Null Model)

- P. Erdös and A. Rényi, "On random graphs", Publ. Math. Debrecen. 1959.
- P. Erdös and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hungar. Acad. Sci. 1960.
- E. N. Gilbert, "Random graphs", Annals of Mathematical Statistics, 1959.
- Start with N isolated vertices.
- Add random edges one-at-a-time. $N(N-1) / 2$ total edges possible.
- After E edges, probability p of any edge is $\quad p=2 E / N(N-1)$

What does the resulting graph look like?
(Typical member of the ensemble)

Explicitly building $G(n, p)$

- Build a realization of $G(n, p)$ by the following graph process:
- Start with n isolated vertices.
- At each discrete time step, add one edge chosen at random from edges not yet present on the graph.
- At "time" t (i.e., at the addition of t edges), we have built a realization of $G(n, p)$ where $p=t / E$.
- This is a Markov process (build graph at time $t+1$ from graph at time t).

Ben-Naim, Krapivsky, "Kinetic theory of random graphs", PRE, 2005.

$\mathrm{N}=300$

$p=1 / 400=0.0025$

$p=1 / 200=0.005$

Component

A component is a subset of vertices in the graph each of which is reachable from the other by some path through the network.

Behavior for small p

- Consider a realization $G(n, p)$ for $0<p<1$ and $n \rightarrow \infty$. (A number of interesting properties of random graphs can be proven in this limit. The $n \rightarrow \infty$ limit is also called the "thermodynamic limit".)
- Let $C_{\max }(p)$ denote the size of the largest component of $G(n, p)$ as a function of p.
- For small p, few edges on the graph. Almost all vertices disconnected. The components are small, with size $O(\log n)$, independent of p.
- Keep increasing p (or equivalently t in our model). At $p=1 / n$ (i.e. $t=E / n$), something surprising happens:

Emergence of a "giant component"

- $p_{c}=1 / N$.
- $p<p_{c}, C_{\max } \sim \log (N)$
- $p>p_{c}, C_{\max } \sim A \cdot N$
(Ave node degree $t=p N$

$$
\text { so } t_{c}=1 \text {.) }
$$

Branching process (Galton-Watson); "tree"-like at $t_{c}=1$.

A Phase Transition!

An abrupt sudden change in one or more physical properties, resulting from a small change in a external control parameter. Examples from physical systems:

- Magnetization
- Superconductivity
- Liquid/Gas
- Bose-Einstein condensation

Giant component observed in real-world networks

- Formation reminiscent of many real-world networks. "Gain critical mass".
- Lower bound on emergence of epidemic outbreak.
- The giant component/Strongly Connected Component used extensively to categorize networks.

Phase transition in connectivity

- Below $p=1 / n$, only small disconnected components.
- Above $p=1 / n$, one large component, which quickly gains more mass. All other components remain sub-linear.
- Note the average node degree, z:

$$
\begin{aligned}
z & =(2 \times \# \text { edges }) / \# \text { vertices } \\
& =(2 p n(n-1) / 2) / n=p n(n-1) / n=(n-1) p \approx n p .
\end{aligned}
$$

(Factor of 2 since each edge contributes degree to two vertices - each end of the edge contributes.)

Recall, expected number of edges, is pn($n-1$)/2 .

- At the phase transition, $z=n p=1$. The phase transition occurs when the average vertex degree is one!

Erdős-Rényi, a continuous, second order transition: Mean-field scaling behaviors

- Divergence of susceptibility: $\quad \chi=\frac{\partial m}{\partial h} \sim\left|T-T_{c}\right|^{-\gamma}$
- Random graph "susceptibility" (second moment of the component sizes):

$$
\chi=\sum_{i=1}^{\infty} i^{2} n_{i}
$$

- For Erdős-Rényi,
$\chi \sim\left|t_{c}-t\right|^{-\gamma}$, with $\gamma=1$.

Power law correlation lengths and response functions \rightarrow

$$
\begin{aligned}
& \text { Potential EARLY WARNING SIGNALS } \\
& \text { (e.g., Scheffer et al. Nature 461, 2009) }
\end{aligned}
$$

Is connectivity a good thing?

- Communication, transportation networks
- Spreading of a virus (human or computer)

Algorithms for suppressing the emergence of the Giant Component

e.g. "Explosive percolation", Achlioptas, D'Souza, Spencer, Science, 2009.

Random graphs as real-world networks?

- What about degree distribution, clustering, assortativity....?
- Shown later, Erdos-Renyi yields a Poisson degree distribution, but "configuration" models work around this.
- Still need null models to match other properties.
- e.g., "Network Analysis in the Social Sciences", S. P. Borgatti, A. Mehra, D. J. Brass, G. Labianca, Science 323, 892-895, 2009.
- Why would a real network look like a random one?
- Local properties of nodes and edges, not statistics of the network.
- Developing the correct null models?

The giant component/Strongly Connected Component of the WWW

From "The web is a bow tie" Nature 405, 113 (11 May 2000)

Summary: Terms introduced today

- Component
- Phase transition
- Degree distribution
- Graph diameter

Further reading on random graphs

- M. E. J. Newman review, pages 20-25. (Heuristic arguments)
- R. Durrett book, Chaps 1 and 2. (Technical proofs)
- B. Bollobás, Random Graphs, 2nd Edition, Cambridge U Press, 2001 (the seminal text on the mathematics of random graphs).

Class structure

- Two tracks to the class:

Track A: Project
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

- Track A: Project
- Teams of 5-6 people ideal
- Negative results are OK
- Ideally aim to have a result for a journal or conference
e.g., "Latent social structure in open source projects", C Bird, D Pattison, R D'Souza, V Filkov, P Devanbu, ACM SIGSOFT 2008.

Project pitch - HW1a

- One page describing your idea. Submitted via Canvas and shared with the class.
- Skill sets to merge:

Domain specific questions / Methods / Data sets

Jumpstart: In-class on Monday (April 10th) — pitch your idea and build a team!

Possible topic areas

- Transportation networks and flows; multi-modal transportation
- Open source software - e.g., social and technological networks in github
- Machine learning - e.g., bring network connectivity into binary classifiers
- Power grid modeling
- Opinion dynamics / social unrest / multiplex opinion dynamics
- Ranking in networks; especially temporal, multilayered, higher-order
- Multilayered and temporal macaque monkey networks
- Shocks and tipping points
- Extend standard metrics to multilayered, temporal, or higher-order networks
- Co-author and citation networks
- Food networks
- Recommendation systems
- Biological networks
- Terrorist networks
- See also class homepage "Projects" tab

