ECS 253 / MAE 253, Lecture 2
April 5, 2023

“Power laws, Random graphs, phase
transitions”



Class structure

e [wo tracks to the class:

Track A: Project

(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs

(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

e Track A: Project
— Teams of 5-6 people ideal
— Negative results are OK
— |deally aim to have a result for a journal or conference



Complex networks are ubiquitous:

Government
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Oil and Natural Gas
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Biological & Ecological
networks

Information and Communication
technology



Networks: Physical, Biological, Social, Technological

e Geometric versus virtual (Internet versus WWW).

e Natural /spontaneously arising versus engineered /built.
e Directed versus undirected edges.

e Each network may optimize something unique.

e Identifying similarities and fundamental differences can
guide future design/understanding.

e Interplay of topology and function ?

e Unifying features: — Broad heterogeneity in hode degree.
— Small Worlds (Diameter ~ log(V)).



What are networks?

Networks are collections of
points joined by lines.

1

“Network” = “Graph”

A2/ node
\ 3~
/ .— edge
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points lines
vertices edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations sociology

Slide from Adamic’s course



Subtle details of edges

Network elements: edges

Directed (also called arcs)
mA->B (Egp)
m A likes B, A gave a gift to B, Ais B’ s child
Undirected
mA<->BorA-B
m A and B like each other
m A and B are siblings
m A and B are co-authors
Edge attributes
m weight (e.g. frequency of communication)
m ranking (best friend, second best friend...)
m type (friend, relative, co-worker)

m properties depending on the structure of the rest of the graph:
e.g. betweenness

Multiedge: multiple edges between two pair of nodes
Self-edge: from a node to itself

Slide from Adamic’s course



Adjacency matrices

Representing edges (who is adjacent to whom) as a
matrix

® A; = 1if node i has an edge to node | "
= 0 if node i does not have an edge to | ﬂ

®m A, = 0 unless the network has self-loops i

If self-loop, A;=1 _
i/j
m A; = A if the network is undirected,
or if i and j share a reciprocated edge
Example: 0 0 0 0 0
: 0 0 1 1 0
3 =
1 A 0 1 0 1 0
O 0 O O 1
5 4 .1 1 0 0 0_

Slide from Gunes course, UNR



Adjacency lists

Edge list
23

24

32 3
34

45

52

51 5 4

Adjacency list
H |s easier to work with if network is
large
sparse

m quickly retrieve all neighbors for a node
1:
2:34
3:24
4:5
5:12

Slide from Gunes course, UNR



Beyond simple networks:

Bipartite (two-mode) networks

edges occur only between two groups of nodes, not
within those groups

for example, we may have individuals and events
m directors and boards of directors
®m customers and the items they purchase
m metabolites and the reactions they participate in

Slide from Gunes course, UNR



Beyond simple networks: Multiplex and multi-layered

Image from Alves et al, Entropy, 2018
R) ﬁ ﬁ

Single-layer

B) C)

Multiplex Multi-layer

e B) Multiplex: the same set of nodes have multiple types of relationships, each one
described by a layer.

e C) Multi-layer: The nodes in each layer can be distinct.



Beyond simple networks:
HyperGraphs

Edges join more than two nodes at a time (hyperEdge)

Affliation networks
%

VvV
Examples 7
®m Families
m Subnetworks

® ®
® &

Can be transformed to a bipartite network

e Chemical reactions

e co-author networks

Slide from Gunes course, UNR



NETWORK TOPOLOGY; simple edges

Binary connectivity matrix, M:

{1 if edge exists between ¢ and j

0 otherwise.

S /(1 1110)
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Node degree is number of links.



Network Activity: FLOWS on NETWORKS

(Spread of disease, routing data, materials transport/flow,
gossip spread/marketing)



FLOWS on NETWORKS : Random walks

Random walk on the network has state transition matrix, P:
(Column normalize the adjacency matrix)
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2l 14 0 12 0 0 |=P
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The eigenvalues and eigenvectors convey much information.
Markov Chains, Spectral Gap.



Random walk on the WWW is the “Page Rank”

Page Rank of a node is the steady-state random walk
occupancy probabilty.

(We will discuss building a search engine in detalil later.)



Example Eigen-technique: Community structure
(Political Books 2004)
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M. Girvan and M. E. J. Newman



Back to topology: Broad scale degree distributions

Non Power Law

Power LawL Distribution Distribution
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Protein interactions
Giot et al Science 2003

e A few hubs, dominated by leaves

e Small data sets, power laws vs log normal, stretched-

10000 100000 1000000
FAightweighted degree {i.e.number of flights)

Airport traffic
Bounova 2009

exponential, etc...

e Exceptions: Power grids? Router-level Internet?



Degree distribution

e Often observe “heavy-tailed” / “broad-scale”
degree distributions.

e The simplest example of such a distribution is a power law
(Pareto distribution).
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p(k)

Power Laws versus

Bell Curves:

“Heavy tails”
Power law distribution: pp ~ k77,

Gaussian distribution: pj, ~ exp(—k?*/20?).
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e Most nodes have low degree
e But a few nodes are hubs, with

1 2 5 10 20 50 100 500

k

massive degree



Many network growth models produce power law degree
distribution (we will study some of these)

e Preferential attachment
e Copying models (WWW, biological networks, ...)

e Optimization models
Degree distribution misses other structure.

e Doyle, et. al.,
PNAS 102 (4)2005.

0
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Power law probability distributions: p,, = Ak~ with v > 0

e 0 <p, <1 Vkwhich are valid degrees (typically &k € Z™).

e Must be properly normalized:
o o A
Ppe=) =1
k=1 k=1

e Approximating discrete sum by integral:

1_/“&__ A 1
S kB v—1/) k(=1
[ A 1 |
- 1—fy QQ(’Y_l)_

e Finite requirement means v > 1, inwhichcase A = (v —1) .

©.)

k=1




The first moment (the mean)

Recall, p, = &

e Mean degree:

S o0 o0 A
By =Y kpp~ kprdk = dk
CROILY | k= [

=1

Diverges (i.e., (k) — oo) if v < 2.



The second moment and the variance

e Second moment:

oo o0 00 A
<k2> _ ,; k2p, ~ /k k*prdk = /k_l k(v_Q)dk

=1

Diverges (i.e., (k*) — oo) if v <3.

e Variance = (k?) — (k)?, likewise diverges if y < 3.



Properties of a power law PDF (Summary)
(PDF = probability density function)

To be a properly defined probability distribution need ~ > 1.
For1 < ~ < 2, both the average (k) and variance o* are infinite!
For 2 < v < 3, average (k) is finite, but variance o is infinite!

For v > 3, both average and variance finite.
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Why a power law is “scale-free”

e Power law for “x”, means “scale-free” in x:

p(bx) = (bx)™" = b~ "p(x)

k) — = | regardless of .

In contrast consider: p(k) = Aexp(—k).

So p(bk) = Aexp(—bk).

exp|—k(b—1)| |dependent on k




Self-similar/scale-free fractal structures

Sierpinski Sieve/Gasket/Fractal, N ~ r<.
When r doubles, N triples: 3 = 2¢
d = log N/logr = log 3/ log 2



Power laws in the real world

Confusion

e Power law
e Log normal

e Weibull

e Stretched exponential

All of these distributions can look the same! (Especially when we
are dealing with finite data sets — not enough data to get good
statistics).



How to deal with real data

e Can adjust bin size: increase exponentially with degree.

e Consider the Cumulative PDF (the CDF): P, = >~ pi.

Good reviews:

e Aaron Clauset, Cosma R. Shalizi, M. E. J. Newman. “Power-
Law Distributions in Empirical Data”, SIAM Review, Vol. 51,
No. 4. (2009), pp. 661-703.

e A Brief History of Generative Models for Power Law and
Lognormal Distributions Michael Mitzenmacher, Internet Math.
Vol 1 (2003), 226-251.



Power law with exponential tail
Ubiquitous empirical measurements:

System with: p(z) ~ 2™~ exp(—z/C) B C
Full protein-interaction map of Drosophila 1.20 0.038
High-confidence protein-interaction map of Drosophila | 1.26 0.27
Gene-flow/hydridization network of plants
as function of spatial distance 0.75 10° m
Earthquake magnitude 1.35-1.7 | ~ 10°° Nm
Avalanche size of ferromagnetic materials 12-14 | L'
ArXiv co-author network 1.3 53
MEDLINE co-author network 2.1 ~ 5800
PNAS paper citation network 0.49 4.21

5000
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e High-confidence interactions
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True power laws are observed in many systems

e Signature of a system at the “critical point” of a phase
transition.
Foundation of renormalization group approach to critical
phenomena

Ci=A*iV;y=2.054247

e Random graphs at critical point;
component sizes: Nj, ~ k—5/2
(Note, v = 2.5)

100 1000 10000

10

1 2 5 10 20 50 100 200

size, i



The origins of network theory: Random graphs

What does a “typical” graph with n vertices
and m edges look like?

e P. Erdds and A. Rényi, “On random graphs”, Publ. Math.
Debrecen. 6, 1959.

e P. Erdds and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 5, 1960.

e E. N. Gilbert, “Random graphs”, Annals of Mathematical
Statistics 30, 1959.



Erdos-Rényi random graphs

e Consider a labelled graph. Each vertex has a label ranging

from [1,2,3,---n], for a set of n vertices. (This will make
counting and analysis easier.)
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e Let E denote the total number of edges possible:

__ (N\ N __ N(N-1)
b = (2) T 2(N=2)! T 2

(If directed edges, we would not divide by 2).



Two formulations

e 1) G(n,p): The ensemble of graphs constructed by putting in
edges with probabillity p, independent of one another. (An edge
is present with probability p and absent with probability |1 — p|.)

Let G(n,p) denote a random realization of G(n, p).

e 2) G(n,m): The ensemble of all graphs with » nodes and
exactly m edges.

Let G(n, m) denote a random realization of G(n,m).

e The two are almost interchangeable with m = pFE.
(Recall, E is total number of edges possible).

e We will focus on G(n, p).



The “classic” random graph, G(N, p)
(The Null Model)

e P. Erdds and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.

e P. Erdds and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 1960.

e E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.

002000005 S0, e Start with IV isolated vertices.
o OO o © © o0

@) .
090° 0 02 0 20009 o Add random edges one-at-a-time.
N(N —1)/2 total edges possible.

C?OOOoOoOoooOOo .

%00 22 ©°,%%°°2%%00 o After £ edges, probability p of any
@ @

0 ©90 %0 g 0000°

000200 edgeis p=2F/N(N —1)

O

What does the resulting graph look like?
(Typical member of the ensemble)



Explicitly building G(n, p)

e Build a realization of G(n, p) by the following graph process:
e Start with n isolated vertices.

e At each discrete time step, add one edge chosen at random
from edges not yet present on the graph.

e At “time” ¢ (i.e., at the addition of ¢ edges), we have built a
realization of G(n,p) where p =t/FE.

e This is a Markov process (build graph at time ¢ + 1 from graph
at time t).

Ben-Naim, Krapivsky, “Kinetic theory of random graphs”, PRE,
2005.



N=300

p = 1/200 = 0.005

p = 1/400 = 0.0025



Component

A component is a subset of vertices in the graph each of which
Is reachable from the other by some path through the network.



Behavior for small p

e Consider a realization G(n,p) for0 < p < 1 and n — oc.

(A number of interesting properties of random graphs can be proven in this limit.

The n — oo limit is also called the “thermodynamic limit”. )

e Let C,...(p) denote the size of the largest component of
G(n,p) as a function of p.

e For small p, few edges on the graph. Almost all vertices
disconnected. The components are small, with size O(logn),
iIndependent of p.

e Keep increasing p (or equivalently ¢ in our model).
At p=1/n (i.e. t = E/n), something surprising happens:



Emergence of a “giant component”

S ep.=1/N.

8 ® D < Pes Crax ~ log(V)
-
gﬂ. .p>pc=CmaxNA'N
O s

o (Ave node degree t = pN

> SO t.=1.)

00 05 10 15 20 25 30
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Branching process (Galton-Watson); “tree”-like at t. = 1.



A Phase Transition!

An abrupt sudden change in one or more physical properties,
resulting from a small change in a external control parameter.
Examples from physical systems:

e Magnetization
e Superconductivity
e Liquid/Gas

e Bose-Einstein condensation



Giant component observed in real-world networks

e Formation reminiscent of many real-world networks.
“Gain critical mass”.

e Lower bound on emergence of epidemic outbreak.

e The giant component/Strongly Connected Component used
extensively to categorize networks.



Phase transition in connectivity

e Below p = 1/n, only small disconnected components.

e Above p = 1/n, one large component, which quickly gains
more mass. All other components remain sub-linear.

e Note the average node degree, z:

z = (2 X #edges)/#vertices
= (2pn(n—1)/2)/n =pn(n—1)/n = (n— 1)p ~ np.
(Factor of 2 since each edge contributes degree to two vertices

— each end of the edge contributes.)
Recall, expected number of edges, is pn(n-1)/2 .

e At the phase transition, z = np = 1. The phase transition
occurs when the average vertex degree is one!



Erdos-Rényi, a continuous, second order transition:
Mean-field scaling behaviors

e Divergence of susceptibility: —x = 92 ~ |T — T,|

e Random graph “susceptibility” (second moment of the
component sizes): X =D ioq 07Ny

e For Erdds-Rényi, X ~ |te —t|7 7, with v = 1.
Power law correlation lengths and response functions —

Potential EARLY WARNING SIGNALS
(e.g., Scheffer et al. Nature 461, 2009)



Is connectivity a good thing?

e Communication, transportation networks

e Spreading of a virus (human or computer)



Algorithms for suppressing the emergence of the Giant
Component

Crx /Nvst for N = 512000

1.0

0.8
1

0.6
1

Crax /N
0.4

0.2

0.0

time, t

e.g. “Explosive percolation”, Achlioptas, D’'Souza, Spencer,
Science, 20009.



Random graphs as real-world networks?

e What about degree distribution, clustering, assortativity....?

— Shown later, Erdos-Renyi yields a Poisson degree
distribution, but “configuration” models work around this.

— Still need null models to match other properties.

e e.9., “Network Analysis in the Social Sciences”, S. P. Borgatti,

A. Mehra, D. J. Brass, G. Labianca, Science 323, 892-895,
20009.

— Why would a real network look like a random one?

— Local properties of nodes and edges, not statistics of the
network.

e Developing the correct null models?



The giant component/Strongly Connected Component of
the WWW

Central core
56 million pages

Tendrils and tubes
44 million pages

Lizconnected components
17 million pages

From “The web is a bow tie” Nature 405, 113 (11 May 2000)




Summary: Terms introduced today

e Component
e Phase transition
e Degree distribution

e Graph diameter



Further reading on random graphs

e M. E. J. Newman review, pages 20-25. (Heuristic arguments)
e R. Durrett book, Chaps 1 and 2. (Technical proofs)

e B. Bollobas, Random Graphs, 2nd Edition, Cambridge U
Press, 2001 (the seminal text on the mathematics of random
graphs).



Class structure

e [wo tracks to the class:

Track A: Project

(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs

(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

e Track A: Project
— Teams of 5-6 people ideal
— Negative results are OK
— |deally aim to have a result for a journal or conference

e.g., “Latent social structure in open source projects”, C Bird, D Pattison, R D'Souza, V
Filkov, P Devanbu, ACM SIGSOFT 2008.



Project pitch — HW1a

e One page describing your idea. Submitted via Canvas and
shared with the class.

e SKkill sets to merge:

Domain specific questions / Methods / Data sets

Jumpstart: In-class on Monday (April 10th) — pitch your idea and
build a team!



Possible topic areas

Transportation networks and flows; multi-modal transportation

Open source software — e.g., social and technological networks in github
Machine learning — e.g., bring network connectivity into binary classifiers
Power grid modeling

Opinion dynamics / social unrest / multiplex opinion dynamics

Ranking in networks; especially temporal, multilayered, higher-order
Multilayered and temporal macaque monkey networks

Shocks and tipping points

Extend standard metrics to multilayered, temporal, or higher-order
networks

Co-author and citation networks

Food networks

Recommendation systems

Biological networks

Terrorist networks

See also class homepage “Projects” tab



