
ECS 253 / MAE 253, Lecture 2
April 5, 2023
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“Power laws, Random graphs, phase
transitions”



Class structure

• Two tracks to the class:

Track A: Project
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

• Track A: Project
– Teams of 5-6 people ideal
– Negative results are OK
– Ideally aim to have a result for a journal or conference



Complex networks are ubiquitous:

!"#$%&'()*+",-./'
0#"("1$#.'2'03$4)1$#.!

5,$6#%&'7(8,%.*,9#*9,)!

:$"&";$#%&'2'0#"&";$#%&'
()*+",-.'

7(8",1%6"('%(4'5"119($#%6"(''
*)#<("&";=!



Networks: Physical, Biological, Social, Technological

• Geometric versus virtual (Internet versus WWW).

• Natural /spontaneously arising versus engineered /built.

• Directed versus undirected edges.

• Each network may optimize something unique.

• Identifying similarities and fundamental differences can
guide future design/understanding.

• Interplay of topology and function ?

• Unifying features: – Broad heterogeneity in node degree.
– Small Worlds (Diameter ∼ log(N)).



What are networks? 

!  Networks are collections of 
points joined by lines. 

node 

edge 

1 2 

3 

4 

5 

“Network” ≡ “Graph” 

points lines 
vertices edges, arcs math 
nodes links computer science 
sites bonds physics 
actors ties, relations sociology 

Slide from Adamic’s course



Subtle details of edges
Network elements: edges 

!  Directed (also called arcs) 
!  A -> B  (EBA) 

!  A likes B, A gave a gift to B, A is B�s child 

!  Undirected  
!  A <-> B or A – B 

!  A and B like each other 
!  A and B are siblings 
!  A and B are co-authors 

!  Edge attributes 
!  weight (e.g. frequency of communication) 
!  ranking (best friend, second best friend…) 
!  type (friend, relative, co-worker) 
!  properties depending on the structure of the rest of the graph: 

e.g. betweenness 
!  Multiedge: multiple edges between two pair of nodes 
!  Self-edge: from a node to itself 

3 

Slide from Adamic’s course



Adjacency matrices 

n  Representing edges (who is adjacent to whom) as a 
matrix 
n  Aij = 1 if node i has an edge to node j 

   = 0 if node i does not have an edge to j 

n  Aii = 0 unless the network has self-loops 
n  If self-loop, Aii=1 

n  Aij = Aji if the network is undirected, 
or if i and j share a reciprocated edge 

i 
j 

i 

i 
j 

1 

2 

3 

4 

Example: 

5 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 0 0 0 1 

1 1 0 0 0 

A = 

6 

Slide from Gunes course, UNR



Adjacency lists 

n  Edge list 
n  2 3 
n  2 4 
n  3 2 
n  3 4 
n  4 5 
n  5 2 
n  5 1 
 

n  Adjacency list 
n  is easier to work with if network is 

n  large 
n  sparse 

n  quickly retrieve all neighbors for a node 
n  1: 
n  2: 3 4 
n  3: 2 4 
n  4: 5 
n  5: 1 2 

1 

2 

3 

4 
5 

7 Slide from Gunes course, UNR



Beyond simple networks:

Bipartite (two-mode) networks 

n  edges occur only between two groups of nodes, not 
within those groups 

n  for example, we may have individuals and events 
n  directors and boards of directors 
n  customers and the items they purchase 
n  metabolites and the reactions they participate in 

Slide from Gunes course, UNR



Beyond simple networks: Multiplex and multi-layered
Image from Alves et al, Entropy, 2018

• B) Multiplex: the same set of nodes have multiple types of relationships, each one
described by a layer.

• C) Multi-layer: The nodes in each layer can be distinct.



Beyond simple networks:

HyperGraphs 

n  Edges join more than two nodes at a time (hyperEdge) 

n  Affliation networks 

n  Examples 
n  Families 
n  Subnetworks 

Can be transformed to a bipartite network 

9 

C D

A B

C D

A B

Slide from Gunes course, UNR

• Chemical reactions

• co-author networks



NETWORK TOPOLOGY; simple edges

Binary connectivity matrix, M :

Mij =

{
1 if edge exists between i and j

0 otherwise.


1 1 1 1 0

1 1 0 1 0

1 0 1 0 0

1 1 0 1 1

0 0 0 1 1

 =M

Node degree is number of links.



Network Activity: FLOWS on NETWORKS

(Spread of disease, routing data, materials transport/flow,
gossip spread/marketing)



FLOWS on NETWORKS : Random walks

Random walk on the network has state transition matrix, P :
(Column normalize the adjacency matrix)


1/4 1/3 1/2 1/4 0

1/4 1/3 0 1/4 0

1/4 0 1/2 0 0

1/4 1/3 0 1/4 1/2

0 0 0 1/4 1/2

 = P

The eigenvalues and eigenvectors convey much information.
Markov Chains, Spectral Gap.



Random walk on the WWW is the “Page Rank”

Page Rank of a node is the steady-state random walk
occupancy probabilty.

(We will discuss building a search engine in detail later.)



Example Eigen-technique: Community structure
(Political Books 2004)

M. Girvan and M. E. J. Newman



Back to topology: Broad scale degree distributions

Illustration: Analysis of the Flight Weighted 
U.S. Air Transportation Network

! The flight weighted U.S. air 

transportation network exhibits a 

partial power law distribution

! Power law distribution for small and 

medium size nodes up to approximately 

250,000 flights per year

! Non power law distribution (above 250,000 

flights per year)

! Hypothesis: Limits to scale and 

capacitated nodes (i.e. capacity 

constrained airports) are present in the 
non power law part of the distribution

10

U.S. Air Transportation Network
(Airport level)

Analysis of the U.S. Air Transportation Network

*

Social contacts Airport traffic
Szendröi and Csányi Bounova 2009

We first identified protein classes significant-
ly enriched or depleted in the high-confi-
dence network (table S5). Enriched classes
relate primarily to DNA metabolism, tran-
scription, and translation. Depleted classes
are primarily plasma membrane proteins, in-
cluding receptors, ion channels, and pepti-
dases. Enrichment and depletion of specific
classes may be due to technical biases of the
two-hybrid assay.

We then classified each interaction ac-
cording to its corresponding pair of protein
classes to identify class-pairs that are en-
riched in the network. Rather than using a
contingency table (13), we used a random-
ization method to calculate statistical sig-
nificance (6 ). Enriched class-pairs involv-
ing structural domains (Pfam annotations)
may represent binding modules and could
provide the biological rules for building
multiprotein complexes. We identified 67
pairs of Pfam domains enriched with a P
value of 0.05 or better after correcting for
multiple testing (table S6). These include
known domain pairs (F-box/Skp1, P ! 9 "
10#20; LIM/LIM binding, P ! 5 " 10#8;
actin/cofilin, P ! 2 " 10#7) as well as
domain pairs involving domains of un-
known function (DUF227/DUF227, P !
9 " 10#5; cullin/DUF298, P ! 0.0003). An
additional 88 domain pairs are significant
at P ! 0.05 before correcting for multiple
testing and may represent additional bio-
logically relevant binding patterns.
Properties of the high-confidence pro-

tein-interaction network. Protein networks
are of great interest as examples of small-
world networks (14–16). Small-world net-
works exhibit short-range order (two proteins
interacting with a third protein have an en-
hanced probability of interacting with each
other) but long-range disorder (two proteins
selected at random are likely to be connect-
ed by a small number of links, as in a
random network).

Small-world properties arise in part
from the existence of hub proteins, those
having many interaction partners. Hubs are
characteristic of scale-free networks, and
the Drosophila network resembles a scale-
free network in that the distribution of in-
teractions per protein decays slowly, close
to a power law (Fig. 2D). To determine the
signature of biological organization in
small-world properties beyond what would
be expected of scale-free networks in gen-
eral, we calculated properties for both the
actual Drosophila network and an ensem-
ble of randomly rewired networks with the
same distribution of interactions per protein
as in the original network. We considered
only the giant connected component to
avoid ill-defined mathematical quantities.

The distribution of the shortest path be-
tween pairs of proteins peaks at 9 to 10

protein-protein links (Fig. 3A). A logistic-
growth mathematical model for the probabil-
ity that the shortest path between two distinct
proteins has ! links is (N #1)#1 K$(!; N, J ),
where K(!; N, J ) ! N/ [1% (N # 1) J#!] is
the number of proteins within ! links of a
central protein and the symbol $ indicates
differentiation with respect to !, K$(d; N,
J ) ! N(N # 1)(ln J )J#!/[1 % (N #1)J#!]2.
Although this model fits the ensemble of
random networks, the fit to the actual net-
work is less adequate.

Small-world properties of biological
networks may reflect biological organiza-
tion, and hierarchical organization has been
used to describe the properties of metabolic
networks (7). We tested the ability of a
simple, two-level hierarchical model to de-
scribe the properties of the Drosphila pro-
tein-interaction network. The lower level of
organization in this model represents pro-
tein complexes, and the high level repre-
sents interconnections of these complexes.
In this case, the probability Pr(!) that the

Fig. 2. Confidence scores for protein-protein interactions (A) Drosophila protein-protein interac-
tions have been binned according to confidence score for the entire set of 20,405 interactions
(black), the 129 positive training set examples (green), and the 196 negative training set examples
(red). (B) The 7048 proteins identified as participating in protein-protein interactions have been
binned according to the minimum, average, and maximum confidence score of their interactions.
Proteins with high-confidence interactions total 4679 (66% of the proteins in the network, and
34% of the protein-coding genes in the Drosophila genome). (C) The correlation between GO
annotations for interacting protein pairs decays sharply as confidence falls from 1 to 0.5, then
exhibits a weaker decay. Correlations were obtained by first calculating the deepest level in the GO
hierarchy at which a pair of interacting proteins shared an annotation (interactions involving
unannotated proteins were discarded). The average depth was calculated for interactions binned
according to confidence score, with bin centers at 0.05, 0.1, . . . , 0.95. Finally, the correlation for
the bin centered at x was defined as [Depth(x) # Depth(0)]/[Depth(0.95) # Depth(0)]. This
procedure effectively controls for the depth of each hierarchy and for the probability that a pair of
random proteins shares an annotation. (D) The number of interactions per protein is shown for all
interactions (black circles) and for the high-confidence interactions (green circles). Linear behavior
in this log-log plot would indicate a power-law distribution. Although regions of each distribution
appear linear, neither distribution may be adequately fit by a single power-law. Both may be fit,
however, by a combination of power-law and exponential decay, Prob(n) & n#'exp#(n, indicated
by the dashed lines, with r 2 for the fit greater than 0.98 in either case (all interactions: ' ! 1.20)
0.08, ( ! 0.038 ) 0.006; high-confidence interactions: ' ! 1.26 ) 0.25, ( ! 0.27 ) 0.05). Note
that the power-law exponents are within 1* for the two interaction sets.

R E S E A R C H A R T I C L E

www.sciencemag.org SCIENCE VOL 302 5 DECEMBER 2003 1729
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Protein interactions
Giot et al Science 2003

• A few hubs, dominated by leaves

• Small data sets, power laws vs log normal, stretched-exponential, etc...
• Exceptions: Power grids? Router-level Internet?



Degree distribution

• Often observe “heavy-tailed” / “broad-scale”
degree distributions.

• The simplest example of such a distribution is a power law
(Pareto distribution).

pk ∼ k−γ

ln pk ∼ −γ ln k
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Power Laws versus Bell Curves:
“Heavy tails”

• Power law distribution: pk ∼ k−γ.

• Gaussian distribution: pk ∼ exp(−k2/2σ2).
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• Most nodes have low degree
• But a few nodes are hubs, with massive degree



Many network growth models produce power law degree
distribution (we will study some of these)

• Preferential attachment

• Copying models (WWW, biological networks, ...)

• Optimization models

Degree distribution misses other structure.

• Doyle, et. al.,
PNAS 102 (4)2005.

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.



Power law probability distributions: pk = Ak−γ with γ > 0

• 0 ≤ pk ≤ 1 ∀k which are valid degrees (typically k ∈ Z+).

• Must be properly normalized:
∞∑
k=1

pk =

∞∑
k=1

A

kγ
= 1

• Approximating discrete sum by integral:

1 =

∫ ∞
k=1

A

kγ
= −

(
A

γ − 1

)
1

k(γ−1)

∣∣∣∣∞
k=1

=

(
A

1− γ

)(
1

∞(γ−1) − 1

)

• Finite requirement means γ > 1, in which case A = (γ − 1) .



The first moment (the mean)

Recall, pk = A
kγ

• Mean degree:

〈k〉 =
∞∑
k=1

kpk ≈
∫ ∞
k=1

kpkdk =

∫ ∞
k=1

A

k(γ−1)
dk

Diverges (i.e., 〈k〉 → ∞) if γ ≤ 2.



The second moment and the variance

• Second moment:

〈
k2
〉
=

∞∑
k=1

k2pk ≈
∫ ∞
k=1

k2pkdk =

∫ ∞
k=1

A

k(γ−2)
dk

Diverges (i.e.,
〈
k2
〉
→∞) if γ ≤ 3.

• Variance =
〈
k2
〉
− 〈k〉2, likewise diverges if γ ≤ 3.



Properties of a power law PDF (Summary)

(PDF = probability density function)

• To be a properly defined probability distribution need γ > 1.

• For 1 < γ ≤ 2, both the average 〈k〉 and variance σ2 are infinite!

• For 2 < γ ≤ 3, average 〈k〉 is finite, but variance σ2 is infinite!

• For γ > 3, both average and variance finite.
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Why a power law is “scale-free”

• Power law for “x”, means “scale-free” in x:

p(bx) = (bx)−γ = b−γp(x)

p(bk)
p(k) = b−γ regardless of k.

In contrast consider: p(k) = A exp(−k).

So p(bk) = A exp(−bk).

p(bk)
p(k) = exp[−k(b− 1)] dependent on k



Self-similar/scale-free fractal structures

Sierpinski Sieve/Gasket/Fractal, N ∼ rd.

When r doubles, N triples: 3 = 2d

d = logN/ log r = log 3/ log 2



Power laws in the real world

Confusion

• Power law

• Log normal

• Weibull

• Stretched exponential

All of these distributions can look the same! (Especially when we
are dealing with finite data sets — not enough data to get good
statistics).



How to deal with real data

• Can adjust bin size: increase exponentially with degree.

• Consider the Cumulative PDF (the CDF): Pk =
∑∞
l=k pl.

Good reviews:

• Aaron Clauset, Cosma R. Shalizi, M. E. J. Newman. “Power-
Law Distributions in Empirical Data”, SIAM Review, Vol. 51,
No. 4. (2009), pp. 661-703.

• A Brief History of Generative Models for Power Law and
Lognormal Distributions Michael Mitzenmacher, Internet Math.
Vol 1 (2003), 226-251.



Power law with exponential tail
Ubiquitous empirical measurements:

System with: p(x) ∼ x−B exp(−x/C) B C

Full protein-interaction map of Drosophila 1.20 0.038

High-confidence protein-interaction map of Drosophila 1.26 0.27

Gene-flow/hydridization network of plants
as function of spatial distance 0.75 105 m

Earthquake magnitude 1.35 - 1.7 ∼ 1021 Nm

Avalanche size of ferromagnetic materials 1.2 - 1.4 L1.4

ArXiv co-author network 1.3 53

MEDLINE co-author network 2.1 ∼ 5800

PNAS paper citation network 0.49 4.21

We first identified protein classes significant-
ly enriched or depleted in the high-confi-
dence network (table S5). Enriched classes
relate primarily to DNA metabolism, tran-
scription, and translation. Depleted classes
are primarily plasma membrane proteins, in-
cluding receptors, ion channels, and pepti-
dases. Enrichment and depletion of specific
classes may be due to technical biases of the
two-hybrid assay.

We then classified each interaction ac-
cording to its corresponding pair of protein
classes to identify class-pairs that are en-
riched in the network. Rather than using a
contingency table (13), we used a random-
ization method to calculate statistical sig-
nificance (6 ). Enriched class-pairs involv-
ing structural domains (Pfam annotations)
may represent binding modules and could
provide the biological rules for building
multiprotein complexes. We identified 67
pairs of Pfam domains enriched with a P
value of 0.05 or better after correcting for
multiple testing (table S6). These include
known domain pairs (F-box/Skp1, P ! 9 "
10#20; LIM/LIM binding, P ! 5 " 10#8;
actin/cofilin, P ! 2 " 10#7) as well as
domain pairs involving domains of un-
known function (DUF227/DUF227, P !
9 " 10#5; cullin/DUF298, P ! 0.0003). An
additional 88 domain pairs are significant
at P ! 0.05 before correcting for multiple
testing and may represent additional bio-
logically relevant binding patterns.
Properties of the high-confidence pro-

tein-interaction network. Protein networks
are of great interest as examples of small-
world networks (14–16). Small-world net-
works exhibit short-range order (two proteins
interacting with a third protein have an en-
hanced probability of interacting with each
other) but long-range disorder (two proteins
selected at random are likely to be connect-
ed by a small number of links, as in a
random network).

Small-world properties arise in part
from the existence of hub proteins, those
having many interaction partners. Hubs are
characteristic of scale-free networks, and
the Drosophila network resembles a scale-
free network in that the distribution of in-
teractions per protein decays slowly, close
to a power law (Fig. 2D). To determine the
signature of biological organization in
small-world properties beyond what would
be expected of scale-free networks in gen-
eral, we calculated properties for both the
actual Drosophila network and an ensem-
ble of randomly rewired networks with the
same distribution of interactions per protein
as in the original network. We considered
only the giant connected component to
avoid ill-defined mathematical quantities.

The distribution of the shortest path be-
tween pairs of proteins peaks at 9 to 10

protein-protein links (Fig. 3A). A logistic-
growth mathematical model for the probabil-
ity that the shortest path between two distinct
proteins has ! links is (N #1)#1 K$(!; N, J ),
where K(!; N, J ) ! N/ [1% (N # 1) J#!] is
the number of proteins within ! links of a
central protein and the symbol $ indicates
differentiation with respect to !, K$(d; N,
J ) ! N(N # 1)(ln J )J#!/[1 % (N #1)J#!]2.
Although this model fits the ensemble of
random networks, the fit to the actual net-
work is less adequate.

Small-world properties of biological
networks may reflect biological organiza-
tion, and hierarchical organization has been
used to describe the properties of metabolic
networks (7). We tested the ability of a
simple, two-level hierarchical model to de-
scribe the properties of the Drosphila pro-
tein-interaction network. The lower level of
organization in this model represents pro-
tein complexes, and the high level repre-
sents interconnections of these complexes.
In this case, the probability Pr(!) that the

Fig. 2. Confidence scores for protein-protein interactions (A) Drosophila protein-protein interac-
tions have been binned according to confidence score for the entire set of 20,405 interactions
(black), the 129 positive training set examples (green), and the 196 negative training set examples
(red). (B) The 7048 proteins identified as participating in protein-protein interactions have been
binned according to the minimum, average, and maximum confidence score of their interactions.
Proteins with high-confidence interactions total 4679 (66% of the proteins in the network, and
34% of the protein-coding genes in the Drosophila genome). (C) The correlation between GO
annotations for interacting protein pairs decays sharply as confidence falls from 1 to 0.5, then
exhibits a weaker decay. Correlations were obtained by first calculating the deepest level in the GO
hierarchy at which a pair of interacting proteins shared an annotation (interactions involving
unannotated proteins were discarded). The average depth was calculated for interactions binned
according to confidence score, with bin centers at 0.05, 0.1, . . . , 0.95. Finally, the correlation for
the bin centered at x was defined as [Depth(x) # Depth(0)]/[Depth(0.95) # Depth(0)]. This
procedure effectively controls for the depth of each hierarchy and for the probability that a pair of
random proteins shares an annotation. (D) The number of interactions per protein is shown for all
interactions (black circles) and for the high-confidence interactions (green circles). Linear behavior
in this log-log plot would indicate a power-law distribution. Although regions of each distribution
appear linear, neither distribution may be adequately fit by a single power-law. Both may be fit,
however, by a combination of power-law and exponential decay, Prob(n) & n#'exp#(n, indicated
by the dashed lines, with r 2 for the fit greater than 0.98 in either case (all interactions: ' ! 1.20)
0.08, ( ! 0.038 ) 0.006; high-confidence interactions: ' ! 1.26 ) 0.25, ( ! 0.27 ) 0.05). Note
that the power-law exponents are within 1* for the two interaction sets.

R E S E A R C H A R T I C L E
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True power laws are observed in many systems

• Signature of a system at the “critical point” of a phase
transition.
Foundation of renormalization group approach to critical
phenomena

• Random graphs at critical point;
component sizes: Nk ∼ k−5/2
(Note, γ = 2.5)
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The origins of network theory: Random graphs

What does a “typical” graph with n vertices
and m edges look like?

• P. Erdös and A. Rényi, “On random graphs”, Publ. Math.
Debrecen. 6, 1959.

• P. Erdös and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 5, 1960.

• E. N. Gilbert, “Random graphs”, Annals of Mathematical
Statistics 30, 1959.



Erdös-Rényi random graphs

• Consider a labelled graph. Each vertex has a label ranging
from [1, 2, 3, · · ·n], for a set of n vertices. (This will make
counting and analysis easier.)
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• Let E denote the total number of edges possible:

E =
(
N
2

)
= N !

2!(N−2)! =
N(N−1)

2

(If directed edges, we would not divide by 2).



Two formulations

• 1) G(n, p): The ensemble of graphs constructed by putting in
edges with probability p, independent of one another. (An edge
is present with probability p and absent with probability [1−p].)

Let G(n, p) denote a random realization of G(n, p).

• 2) G(n,m): The ensemble of all graphs with n nodes and
exactly m edges.

Let G(n,m) denote a random realization of G(n,m).

• The two are almost interchangeable with m = pE.
(Recall, E is total number of edges possible).

• We will focus on G(n, p).



The “classic” random graph, G(N, p)
(The Null Model)

• P. Erdös and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.
• P. Erdös and A. Rényi, “On the evolution of random graphs”,

Publ. Math. Inst. Hungar. Acad. Sci. 1960.
• E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.
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• Start with N isolated vertices.

• Add random edges one-at-a-time.
N(N − 1)/2 total edges possible.

• After E edges, probability p of any

edge is p = 2E/N(N − 1)

What does the resulting graph look like?
(Typical member of the ensemble)



Explicitly building G(n, p)

• Build a realization of G(n, p) by the following graph process:

• Start with n isolated vertices.

• At each discrete time step, add one edge chosen at random
from edges not yet present on the graph.

• At “time” t (i.e., at the addition of t edges), we have built a
realization of G(n, p) where p = t/E.

• This is a Markov process (build graph at time t+ 1 from graph
at time t).

Ben-Naim, Krapivsky, “Kinetic theory of random graphs”, PRE,
2005.



N=300
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p = 1/400 = 0.0025 p = 1/200 = 0.005



Component

A component is a subset of vertices in the graph each of which
is reachable from the other by some path through the network.



Behavior for small p

• Consider a realization G(n, p) for 0 < p < 1 and n→∞.
(A number of interesting properties of random graphs can be proven in this limit.

The n→∞ limit is also called the “thermodynamic limit”. )

• Let Cmax(p) denote the size of the largest component of
G(n, p) as a function of p.

• For small p, few edges on the graph. Almost all vertices
disconnected. The components are small, with size O(log n),
independent of p.

• Keep increasing p (or equivalently t in our model).
At p = 1/n (i.e. t = E/n), something surprising happens:



Emergence of a “giant component”

• pc = 1/N .

• p < pc, Cmax ∼ log(N)

• p > pc, Cmax ∼ A ·N

(Ave node degree t = pN

so tc = 1.)

Branching process (Galton-Watson); “tree”-like at tc = 1.



A Phase Transition!

An abrupt sudden change in one or more physical properties,
resulting from a small change in a external control parameter.

Examples from physical systems:

• Magnetization

• Superconductivity

• Liquid/Gas

• Bose-Einstein condensation



Giant component observed in real-world networks

• Formation reminiscent of many real-world networks.
“Gain critical mass”.

• Lower bound on emergence of epidemic outbreak.

• The giant component/Strongly Connected Component used
extensively to categorize networks.



Phase transition in connectivity

• Below p = 1/n, only small disconnected components.

• Above p = 1/n, one large component, which quickly gains
more mass. All other components remain sub-linear.

• Note the average node degree, z:

z = (2×#edges)/#vertices

= (2pn(n− 1)/2)/n = pn(n− 1)/n = (n− 1)p ≈ np.

(Factor of 2 since each edge contributes degree to two vertices
– each end of the edge contributes.)
Recall, expected number of edges, is pn(n-1)/2 .

• At the phase transition, z = np = 1. The phase transition
occurs when the average vertex degree is one!



Erdős-Rényi, a continuous, second order transition:
Mean-field scaling behaviors

• Divergence of susceptibility: χ = ∂m
∂h ∼ |T − Tc|

−γ

• Random graph “susceptibility” (second moment of the
component sizes): χ =

∑∞
i=1 i

2ni

• For Erdős-Rényi, χ ∼ |tc − t|−γ, with γ = 1.

Power law correlation lengths and response functions→
Potential EARLY WARNING SIGNALS

(e.g., Scheffer et al. Nature 461, 2009)



Is connectivity a good thing?

• Communication, transportation networks

• Spreading of a virus (human or computer)



Algorithms for suppressing the emergence of the Giant
Component

e.g. “Explosive percolation”, Achlioptas, D’Souza, Spencer,
Science, 2009.



Random graphs as real-world networks?

• What about degree distribution, clustering, assortativity....?

– Shown later, Erdos-Renyi yields a Poisson degree
distribution, but “configuration” models work around this.

– Still need null models to match other properties.

• e.g., “Network Analysis in the Social Sciences”, S. P. Borgatti,
A. Mehra, D. J. Brass, G. Labianca, Science 323, 892-895,
2009.
– Why would a real network look like a random one?

– Local properties of nodes and edges, not statistics of the
network.

• Developing the correct null models?



The giant component/Strongly Connected Component of
the WWW

From “The web is a bow tie” Nature 405, 113 (11 May 2000)



Summary: Terms introduced today

• Component

• Phase transition

• Degree distribution

• Graph diameter



Further reading on random graphs

• M. E. J. Newman review, pages 20-25. (Heuristic arguments)

• R. Durrett book, Chaps 1 and 2. (Technical proofs)

• B. Bollobás, Random Graphs, 2nd Edition, Cambridge U
Press, 2001 (the seminal text on the mathematics of random
graphs).



Class structure

• Two tracks to the class:

Track A: Project
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1a.pdf, HW2a.pdf etc.

Track B: Advanced HWs
(1) Common homeworks (e.g. HW1.pdf, HW2.pdf) and
(2) HW1b.pdf, HW2b.pdf etc.

• Track A: Project
– Teams of 5-6 people ideal
– Negative results are OK
– Ideally aim to have a result for a journal or conference

e.g., “Latent social structure in open source projects”, C Bird, D Pattison, R D’Souza, V

Filkov, P Devanbu, ACM SIGSOFT 2008.



Project pitch – HW1a

• One page describing your idea. Submitted via Canvas and
shared with the class.

• Skill sets to merge:
Domain specific questions / Methods / Data sets

Jumpstart: In-class on Monday (April 10th) — pitch your idea and
build a team!



Possible topic areas

• Transportation networks and flows; multi-modal transportation

• Open source software – e.g., social and technological networks in github

• Machine learning – e.g., bring network connectivity into binary classifiers

• Power grid modeling

• Opinion dynamics / social unrest / multiplex opinion dynamics

• Ranking in networks; especially temporal, multilayered, higher-order

• Multilayered and temporal macaque monkey networks

• Shocks and tipping points

• Extend standard metrics to multilayered, temporal, or higher-order
networks

• Co-author and citation networks

• Food networks

• Recommendation systems

• Biological networks

• Terrorist networks

• See also class homepage “Projects” tab


