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“Preferential Attachment, Network Growth,
Master Equations”



Announcements

e [Two tracks to the class:

Track A: (1) Common homeworks (e.g. HW1.pdf, HW2.pdf)
and (2) HW1a.pdf, HW2a.pdf etc. (HW1a, posted by Thurs.)

Track B: (1) Common homeworks (e.g. HW1.pdf, HW2.pdf)
and (2) HW1b.pdf, HW2b.pdf etc.

e Project
— Teams of 5-6 people ideal
— Negative results are OK
— ldeally aim to have a result for a journal or conference
— HWH1a is the starting point
— Today: time to pitch your idea



Back to basics of networks
Recall: broad scale degree distribution
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Approximating broad scale by a Power Law
Properties of a power law PDF

(PDF = probability density function)

pr = Ak™7

To be a properly defined probability distribution need ~ > 1.
For1 < v < 2, both the average (k) and variance o* are infinite!
For 2 < v < 3, average (k) is finite, but variance o is infinite!

For v > 3, both average and variance are finite.



Recall: The “classic” random graph, G(N, p)
(A Classic Null Model)

e P. Erdds and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.

e P. Erdds and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 1960.

e E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.
e Start with NV isolated vertices.
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e Expected number of edges
IR (m) =pN(N —1)/2

What does the resulting graph look like?
(Typical member of the ensemble)



Kinetic theory equivalent — e.g., HW1b

“Kinetic theory of random graphs: From paths to cycles”, E.
Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

e Add random edges one-at-a-time. After ¢ edges, probability p
of any edgeis p =2t/ N(N — 1)

e Allows a mapping between p and ¢.

e Kinetic theory allows us to interpret this as a dynamical
process, as seen in remainder of lecture.



Emergence of a “giant component”
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Branching process (Galton-Watson); “tree”-like at t. = 1.



Phase transition in connectivity

e Below p = 1/n, only small disconnected components.

e Above p = 1/n, one large component, which quickly gains
more mass. All other components remain sub-linear.

e Note the average node degree, z:

z = (2 X #edges)/#vertices
= (2pn(n—1)/2)/n=pn(n—1)/n=(n—1)p = np.

(Factor of 2 since each edge contributes degree to two vertices
— each end of the edge contributes.)
Recall, expected number of edges, is pn(n-1)/2 .

e At the phase transition, z = np = 1. The phase transition
occurs when the average vertex degree is one!



Degree distribution of a graph

e The degree of a node is how many edges connect that node to
others.

e If edges are directed, a node has a distinct in-degree and out-
degree. (Edges in G(n,p) are undirected, so don’t have to
make that distinction here).

The degree distribution of the graph is the distribution over all
the degrees of all the nodes.



Degree distribution of G(n, p)

e Now consider GG(n, p) for a fixed value of p.
e The mean degree z = (n — 1)p is constant.

e The absence or presence of an edge is independent for all
edges.

— Probability for node i to connect to all other n nodes is p™.

— Probability for node i to be isolated is (1 — p)™.

— Probabillity for a vertex to have degree k follows a binomial
distribution:

pr = (1)p"(1 — p)" "




Binomial converges to Poisson as n — o

e Recall that z = (n — 1)p = np (for large n).

e Substituting p = z/n in the second line:

lim p;
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For more details see for instance: http://en.wikipedia.org/wiki/Poisson_distribution



Poisson Distribution

Convention is that average is \.
(We use z to relate to the literature. )

Calcworkshop.com



Diameter

The diameter of a graph is the maximum distance between any
two connected vertices in the graph.

e Below the phase transition, only tiny components exist. In
some sense, the diameter is infinite.

e Above the phase transition, all vertices in the giant component
connected to one another by some path.

e The mean number of neighbors a distance [ away is z!. To
determine the diameter we want z! ~ n. Thus the typical

distance through the network,

| ~logn/logz

e This is a small-world network: diameter d ~ O(log V).



Clustering coefficient

A measure of transitivity: If node A is known to be connected to
B and to C, does this make it more likely that B and C' are
connected?

(i.e., The friends of my friends are my friends)

e In E-R random graphs, all edges created independently, so
no clustering coefficient !



Properties of Erdos-Rényi random graphs:

1. Phase transition in connectivity at average node degree, z = 1
(i.,e., p=1/n).

2. Poisson degree distribution, p, = 2zFe™* /k!.

3. Diameter, d ~ log IV, a small-world network.

4. Clustering coefficient; none.



So, how well does GG(N, p) model common real-world
networks?

. Phase transtion: Yes! We see the emergence of a giant
component in social and in technological systems.

. Poisson degree distribution: NO! Many real networks have
much broader distributions.

. Small-world diameter:YES! Social systems, subway systems,
the Internet, the WWW, biological networks, etc.

. Clustering coefficient: NO!



Well then, why are random graphs important?
e Much of our basic intuition comes from random graphs.

e Phase transition and the existence of the giant component.
Even if not a giant component, many systems have a dominate
component much larger than all others.

From “The web is a bow tie” Nature 405, 113 (11 May 2000)



The configuration model,
Bollobas (1970’s) ® ./ #% é

Molloy and Reed (1995)

Generalized random graph — later advanced HW
accommodate any degree sequence

Specify a degree distribution p,, such that p,. is the fraction of vertices in
the network having degree k.

The degree sequence is the explicit set of n values for the exact degree,
k;, of vertex i. It is generated by sampling in some unbiased way from py.

Think of attaching k; “spokes” or “stubs” to each vertex 1.

Choose pairs of “stubs” (from two distinct vertices) at random, and join
them. lterate until done.

Technical details: self-loops, parallel edges, ... (neglect in n — oo limit).

Emergence of a giant component when expected number of second
neighbors greater than expected number of first neighbors.



“Are randomly grown graphs really random?”

Callaway, Hopcroft, Kleinberg, Newman, Strogatz. Phys Rev E 64 (2001)

e Rather than Erdos-Renyi, add vertices one-by-one.

e At each discrete step, t:
— a new vertex arrives, and
— with probability 4 a new randomly selected edge is added.

e In large t limit see emergence of giant component as function of § (giant
exists for § > 1/8).

e But size of “giant” is finite (even as n — o).

e Positive degree-degree correlations (higher degree by virtue of age).



Back to power laws
Power laws in social systems

e Popularity of web pages and web search terms: N, ~ k1
e Rank of city sizes (“Zipf’'s Law” ): N ~ k1

e Pareto. In 1906, Pareto made the now famous observation
that twenty percent of the population owned eighty percent
of the property in ltaly, later generalised by Joseph M. Juran
and others into the so-called Pareto principle (also termed the
80-20 rule) and generalised further to the concept of a Pareto
distribution.

e Usually explained in social systems by “the rich get richer”
(preferential attachment).



Known Mechanisms for Power Laws

e Phase transitions (e.g., power law behavior at the critical point,
e.g., the distribution of component sizes (see HW1Db).)

e Random multiplicative processes (fragmentation)
e Combination of exponentials (e.g. word frequencies)

e Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabasi and Albert 1999)

Attractiveness (rate of growth) is proportional to size,

ds
dtOCS



Origins of preferential attachment

e 1923 — Polya, urn models.
e 1925 — Yule, explain genetic diversity.
e 1949 — Zipf, distribution of city sizes (1/f).

e 1955 — Simon, distribution of wealth in economies. (“The rich
get richer”).

e [Interesting note, in sociology this is referred to as the Matthew
effect after the biblical edict, “For to every one that hath shall
be given ... 7 (Matthew 25:29)]



Preferential attachment in networks

D. J. de S. Price: “Cumulative advantage”

e D. J. de S. Price, “Networks of scientific papers” Science, 1965.
First observation of power laws in a network context.
Studied paper co-citation network.

e D. J. de S. Price, “A general theory of bibliometric and other
cumulative advantage processes” J. Amer. Soc. Info. Sci.,
1976.

Cumulative advantage seemed like a natural explanation for
paper citations:

The rate at which a paper gains citations is proportional to
the number it already has. (Probability to learn of a paper
proportional to number of references it currently has).



Preferential attachment in networks, continued

e Cumulative advantage did not gain traction at the time. But was
rediscovered some decades later by Barabasi and Albert , in the
now famous paper (over 30,000 citations c.f. Google Scholar):

e “Emergence of Scaling in Random Networks”,
Science 286, 1999.

e They coined the term “preferential attachment” to describe the
phenomena.

(de S. Price’s work resurfaced after BA became widely reknown.)



The Barabasi and Albert model

e A discrete time network evolution process,
relating the graph G(t + 1) to G(t).

e Start at t=0 with a single isolated node.
e At each discrete time step, a new node arrives.

e This new node makes m edges to already existing nodes.
(Why m edges? i.e., what happens if m = 17)

e The likelihood of a new edge to connect to an existing node j
IS proportional to the degree of node j, denoted d;,.

e We are interested in the limit of large graph size, n — .



Visualizing a PA graph (m = 1) at n = 5000
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Probabilistic treatment (kinetic theory)

Start at t = 0 with one isolated node (or a small core set).
— At time ¢ the total number of nodes added n = t.
— At time ¢ the total number of edges added is mt.

Let d;(¢) denote the degree of node j at time ¢.

Probability an edge added at ¢t + 1 connects to node j:
Prt+1—j)=4d;(t)/ )., d;¢).
Normalization constant easy (but time dependent):

> dy(t) = 2mi

(Each node 1 through t, contributes m edges.)
(Each edge augments the degree of two nodes.)



Network evolution
Process on the degree sequence

e The probability a new edge connects to a particular node ; of degree k at
time t¢:

d;()/ 32 ds(t) = k/2m
e Also, when a node of degree k gains an attachment, it becomes a node of
degree k + 1.

e When the new node arrives, it increases by one the number of nodes of
degree m.



The “Master Equation™ / “rate eqns” / “kinetic theory”
Evolution of the typical graph

(Let nx . = expected number of nodes of degree k at time ¢,
and n; = total number of nodes added by time ¢: Note n; = )

For each arriving link:

. _ k—1 k
e Fork >m: Nk t1+1 = Nkt T+ (th) Nk—1,t = 5,7 Nkt

N . _ m
e Fork=m: ngir1="Nmt— 57 Mt



The “Master Equation™ / “rate eqns” / “kinetic theory”
Evolution of the typical graph

For each arriving link (from last page):

: _ (k—1) k
o Fork > m . Nk t+1 — Nkt + St Nk—1,t — it Nt

e Fork=m: Nmt+1 = Nm,t — #nt Nm,t
Each new node contributes m links (and one new node). Assuming n — oo
there are no multi-edges:

. m(k—1 k
o Fork>m: ngip1=nks+ émt ) Nk—1,t — 57 Tkt

m2
e Fork=m: ngpi1=nmi+1—5=nmy



Translating from number of nodes n; ; to probabilities py, ,

Prt = Nit/n(t) = ng ¢/t
— Nkt =t Pi.t

For each arriving node, after m edges added:

e Fork >m: (t+1)pkt+1—tpkt‘|‘( L 2pl€t

e Fork=m: ({t+1)pmit1 =tDPmit+1— 5 Dmy



Steady-state distribution

We want to consider the final, steady-state: py ¢ = px.

Fork > m: (t—l—l)pk:tpk—l—( 3 5 Dk

Fork=m: (t+1)pmn=tpm+1—5pn

Rearranging and solving for py:

Fork > m: pk—gz+;gpk 1

2



Recursing p;. to p,,

(k—1)(k—2)---(m) _ m(m+1)(m+2) 2

Pk = )kt ) -(m+3)  Pm = T2y (k1DE " (mr2)




For more on master equations

“Rate Equations Approach for Growing Networks”, P. L. Krapivsky, and
S. Redner, invited contribution to the Proceedings of the XVIII Sitges
Conference on “Statistical Mechanics of Complex Networks”.

Dynamical Processes on Complex Networks, Barratt, Barthelemy,
Vespignani

Applications to cluster aggregation (e.g. Erdos-Renyi)

“Kinetic theory of random graphs: From paths to cycles”, E. Ben-Naim and
P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

“Local cluster aggregation models of explosive percolation”, R. M. D’Souza
and M. Mitzenmacher, Physical Review Letters, 104, 195702, 2010.



Possible topic areas, 1
Transportation networks and flows; multi-modal transportation
Open source software — e.g., social and technological networks in github
Machine learning — e.g., bring network connectivity into binary classifiers
Power grid modeling
Opinion dynamics / social unrest / multiplex opinion dynamics
Ranking in networks; especially temporal, multilayered, higher-order
Multilayered and temporal macaque monkey networks
Shocks and tipping points
Metrics for multilayered, temporal, or higher-order networks

Co-author and citation networks



Possible topic areas, 2
Math network of theorems and proofs
Control of complex networks
Neuroscience
Food networks
Recommendation systems
Biological networks
Terrorist networks

See also class homepage “Projects” tab

Your ideas?



