
ECS 253 / MAE 253, Lecture 3
April 10, 2023

“Preferential Attachment, Network Growth,
Master Equations”



Announcements

• Two tracks to the class:

Track A: (1) Common homeworks (e.g. HW1.pdf, HW2.pdf)
and (2) HW1a.pdf, HW2a.pdf etc. (HW1a, posted by Thurs.)

Track B: (1) Common homeworks (e.g. HW1.pdf, HW2.pdf)
and (2) HW1b.pdf, HW2b.pdf etc.

• Project
– Teams of 5-6 people ideal
– Negative results are OK
– Ideally aim to have a result for a journal or conference
– HW1a is the starting point
– Today: time to pitch your idea



Back to basics of networks
Recall: broad scale degree distribution

Illustration: Analysis of the Flight Weighted 
U.S. Air Transportation Network

! The flight weighted U.S. air 

transportation network exhibits a 

partial power law distribution

! Power law distribution for small and 

medium size nodes up to approximately 

250,000 flights per year

! Non power law distribution (above 250,000 

flights per year)

! Hypothesis: Limits to scale and 

capacitated nodes (i.e. capacity 

constrained airports) are present in the 
non power law part of the distribution

10

U.S. Air Transportation Network
(Airport level)

Analysis of the U.S. Air Transportation Network

*

Social contacts Airport traffic
Szendröi and Csányi Bounova 2009

We first identified protein classes significant-
ly enriched or depleted in the high-confi-
dence network (table S5). Enriched classes
relate primarily to DNA metabolism, tran-
scription, and translation. Depleted classes
are primarily plasma membrane proteins, in-
cluding receptors, ion channels, and pepti-
dases. Enrichment and depletion of specific
classes may be due to technical biases of the
two-hybrid assay.

We then classified each interaction ac-
cording to its corresponding pair of protein
classes to identify class-pairs that are en-
riched in the network. Rather than using a
contingency table (13), we used a random-
ization method to calculate statistical sig-
nificance (6 ). Enriched class-pairs involv-
ing structural domains (Pfam annotations)
may represent binding modules and could
provide the biological rules for building
multiprotein complexes. We identified 67
pairs of Pfam domains enriched with a P
value of 0.05 or better after correcting for
multiple testing (table S6). These include
known domain pairs (F-box/Skp1, P ! 9 "
10#20; LIM/LIM binding, P ! 5 " 10#8;
actin/cofilin, P ! 2 " 10#7) as well as
domain pairs involving domains of un-
known function (DUF227/DUF227, P !
9 " 10#5; cullin/DUF298, P ! 0.0003). An
additional 88 domain pairs are significant
at P ! 0.05 before correcting for multiple
testing and may represent additional bio-
logically relevant binding patterns.
Properties of the high-confidence pro-

tein-interaction network. Protein networks
are of great interest as examples of small-
world networks (14–16). Small-world net-
works exhibit short-range order (two proteins
interacting with a third protein have an en-
hanced probability of interacting with each
other) but long-range disorder (two proteins
selected at random are likely to be connect-
ed by a small number of links, as in a
random network).

Small-world properties arise in part
from the existence of hub proteins, those
having many interaction partners. Hubs are
characteristic of scale-free networks, and
the Drosophila network resembles a scale-
free network in that the distribution of in-
teractions per protein decays slowly, close
to a power law (Fig. 2D). To determine the
signature of biological organization in
small-world properties beyond what would
be expected of scale-free networks in gen-
eral, we calculated properties for both the
actual Drosophila network and an ensem-
ble of randomly rewired networks with the
same distribution of interactions per protein
as in the original network. We considered
only the giant connected component to
avoid ill-defined mathematical quantities.

The distribution of the shortest path be-
tween pairs of proteins peaks at 9 to 10

protein-protein links (Fig. 3A). A logistic-
growth mathematical model for the probabil-
ity that the shortest path between two distinct
proteins has ! links is (N #1)#1 K$(!; N, J ),
where K(!; N, J ) ! N/ [1% (N # 1) J#!] is
the number of proteins within ! links of a
central protein and the symbol $ indicates
differentiation with respect to !, K$(d; N,
J ) ! N(N # 1)(ln J )J#!/[1 % (N #1)J#!]2.
Although this model fits the ensemble of
random networks, the fit to the actual net-
work is less adequate.

Small-world properties of biological
networks may reflect biological organiza-
tion, and hierarchical organization has been
used to describe the properties of metabolic
networks (7). We tested the ability of a
simple, two-level hierarchical model to de-
scribe the properties of the Drosphila pro-
tein-interaction network. The lower level of
organization in this model represents pro-
tein complexes, and the high level repre-
sents interconnections of these complexes.
In this case, the probability Pr(!) that the

Fig. 2. Confidence scores for protein-protein interactions (A) Drosophila protein-protein interac-
tions have been binned according to confidence score for the entire set of 20,405 interactions
(black), the 129 positive training set examples (green), and the 196 negative training set examples
(red). (B) The 7048 proteins identified as participating in protein-protein interactions have been
binned according to the minimum, average, and maximum confidence score of their interactions.
Proteins with high-confidence interactions total 4679 (66% of the proteins in the network, and
34% of the protein-coding genes in the Drosophila genome). (C) The correlation between GO
annotations for interacting protein pairs decays sharply as confidence falls from 1 to 0.5, then
exhibits a weaker decay. Correlations were obtained by first calculating the deepest level in the GO
hierarchy at which a pair of interacting proteins shared an annotation (interactions involving
unannotated proteins were discarded). The average depth was calculated for interactions binned
according to confidence score, with bin centers at 0.05, 0.1, . . . , 0.95. Finally, the correlation for
the bin centered at x was defined as [Depth(x) # Depth(0)]/[Depth(0.95) # Depth(0)]. This
procedure effectively controls for the depth of each hierarchy and for the probability that a pair of
random proteins shares an annotation. (D) The number of interactions per protein is shown for all
interactions (black circles) and for the high-confidence interactions (green circles). Linear behavior
in this log-log plot would indicate a power-law distribution. Although regions of each distribution
appear linear, neither distribution may be adequately fit by a single power-law. Both may be fit,
however, by a combination of power-law and exponential decay, Prob(n) & n#'exp#(n, indicated
by the dashed lines, with r 2 for the fit greater than 0.98 in either case (all interactions: ' ! 1.20)
0.08, ( ! 0.038 ) 0.006; high-confidence interactions: ' ! 1.26 ) 0.25, ( ! 0.27 ) 0.05). Note
that the power-law exponents are within 1* for the two interaction sets.

R E S E A R C H A R T I C L E

www.sciencemag.org SCIENCE VOL 302 5 DECEMBER 2003 1729
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Protein interactions
Giot et al Science 2003

(node degree)



Approximating broad scale by a Power Law
Properties of a power law PDF

(PDF = probability density function)

pk = Ak−γ

• To be a properly defined probability distribution need γ > 1.

• For 1 < γ ≤ 2, both the average 〈k〉 and variance σ2 are infinite!

• For 2 < γ ≤ 3, average 〈k〉 is finite, but variance σ2 is infinite!

• For γ > 3, both average and variance are finite.



Recall: The “classic” random graph, G(N, p)
(A Classic Null Model)

• P. Erdös and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.
• P. Erdös and A. Rényi, “On the evolution of random graphs”,

Publ. Math. Inst. Hungar. Acad. Sci. 1960.
• E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.
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• Start with N isolated vertices.
– Undirected, so N(N − 1)/2 total edges
possible.

• Each possible edge added with
probability p.

• Expected number of edges
〈m〉 = pN(N − 1)/2

What does the resulting graph look like?
(Typical member of the ensemble)



Kinetic theory equivalent — e.g., HW1b

“Kinetic theory of random graphs: From paths to cycles”, E.
Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

• Add random edges one-at-a-time. After t edges, probability p
of any edge is p = 2t/N(N − 1)

• Allows a mapping between p and t.

• Kinetic theory allows us to interpret this as a dynamical
process, as seen in remainder of lecture.



Emergence of a “giant component”

• pc = 1/N .

• p < pc, Cmax ∼ log(N)

• p > pc, Cmax ∼ A ·N

(Ave node degree t = pN

so tc = 1.)

Branching process (Galton-Watson); “tree”-like at tc = 1.



Phase transition in connectivity

• Below p = 1/n, only small disconnected components.

• Above p = 1/n, one large component, which quickly gains
more mass. All other components remain sub-linear.

• Note the average node degree, z:

z = (2×#edges)/#vertices

= (2pn(n− 1)/2)/n = pn(n− 1)/n = (n− 1)p ≈ np.

(Factor of 2 since each edge contributes degree to two vertices
– each end of the edge contributes.)
Recall, expected number of edges, is pn(n-1)/2 .

• At the phase transition, z = np = 1. The phase transition
occurs when the average vertex degree is one!



Degree distribution of a graph

• The degree of a node is how many edges connect that node to
others.

• If edges are directed, a node has a distinct in-degree and out-
degree. (Edges in G(n, p) are undirected, so don’t have to
make that distinction here).

The degree distribution of the graph is the distribution over all
the degrees of all the nodes.



Degree distribution of G(n, p)

• Now consider G(n, p) for a fixed value of p.

• The mean degree z = (n− 1)p is constant.

• The absence or presence of an edge is independent for all
edges.

– Probability for node i to connect to all other n nodes is pn.

– Probability for node i to be isolated is (1− p)n.

– Probability for a vertex to have degree k follows a binomial
distribution:

pk =
(
n
k

)
pk(1− p)n−k.



Binomial converges to Poisson as n→∞

• Recall that z = (n− 1)p = np (for large n).

• Substituting p = z/n in the second line:

lim
n→∞

pk = lim
n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

n!

(n− k)!k!
(z/n)k(1− z/n)n−k

= lim
n→∞

nk +O(nk−1)

k!
(z/n)k(1− z/n)n−k

= lim
n→∞

zk

k!
(1− z/n)n−k = zke−z/k!

For more details see for instance: http://en.wikipedia.org/wiki/Poisson distribution



Poisson Distribution

Convention is that average is λ.
(We use z to relate to the literature. )



Diameter

The diameter of a graph is the maximum distance between any
two connected vertices in the graph.

• Below the phase transition, only tiny components exist. In
some sense, the diameter is infinite.

• Above the phase transition, all vertices in the giant component
connected to one another by some path.

• The mean number of neighbors a distance l away is zl. To
determine the diameter we want zl ≈ n. Thus the typical
distance through the network, l ≈ log n/ log z

• This is a small-world network: diameter d ∼ O(logN).



Clustering coefficient

A measure of transitivity: If node A is known to be connected to
B and to C, does this make it more likely that B and C are

connected?

(i.e., The friends of my friends are my friends)

• In E-R random graphs, all edges created independently, so
no clustering coefficient !



Properties of Erdös-Rényi random graphs:

1. Phase transition in connectivity at average node degree, z = 1

(i.e., p = 1/n).

2. Poisson degree distribution, pk = zke−z/k!.

3. Diameter, d ∼ logN , a small-world network.

4. Clustering coefficient; none.



So, how well does G(N, p) model common real-world
networks?

1. Phase transtion: Yes! We see the emergence of a giant
component in social and in technological systems.

2. Poisson degree distribution: NO! Many real networks have
much broader distributions.

3. Small-world diameter:YES! Social systems, subway systems,
the Internet, the WWW, biological networks, etc.

4. Clustering coefficient: NO!



Well then, why are random graphs important?

• Much of our basic intuition comes from random graphs.

• Phase transition and the existence of the giant component.
Even if not a giant component, many systems have a dominate
component much larger than all others.

From “The web is a bow tie” Nature 405, 113 (11 May 2000)



Generalized random graph – later advanced HW
accommodate any degree sequence

. . . 
The configuration model,
Bollobás (1970’s)
Molloy and Reed (1995)

• Specify a degree distribution pk, such that pk is the fraction of vertices in
the network having degree k.

• The degree sequence is the explicit set of n values for the exact degree,
ki, of vertex i. It is generated by sampling in some unbiased way from pk.

• Think of attaching ki “spokes” or “stubs” to each vertex i.

• Choose pairs of “stubs” (from two distinct vertices) at random, and join
them. Iterate until done.

• Technical details: self-loops, parallel edges, ... (neglect in n→∞ limit).

• Emergence of a giant component when expected number of second
neighbors greater than expected number of first neighbors.



“Are randomly grown graphs really random?”

Callaway, Hopcroft, Kleinberg, Newman, Strogatz. Phys Rev E 64 (2001)

• Rather than Erdos-Renyi, add vertices one-by-one.

• At each discrete step, t:
– a new vertex arrives, and
– with probability δ a new randomly selected edge is added.

• In large t limit see emergence of giant component as function of δ (giant
exists for δ ≥ 1/8).

• But size of “giant” is finite (even as n→∞).

• Positive degree-degree correlations (higher degree by virtue of age).



Back to power laws
Power laws in social systems

• Popularity of web pages and web search terms: Nk ∼ k−1

• Rank of city sizes (“Zipf’s Law” ): Nk ∼ k−1

• Pareto. In 1906, Pareto made the now famous observation
that twenty percent of the population owned eighty percent
of the property in Italy, later generalised by Joseph M. Juran
and others into the so-called Pareto principle (also termed the
80-20 rule) and generalised further to the concept of a Pareto
distribution.

• Usually explained in social systems by “the rich get richer”
(preferential attachment).



Known Mechanisms for Power Laws

• Phase transitions (e.g., power law behavior at the critical point,
e.g., the distribution of component sizes (see HW1b).)

• Random multiplicative processes (fragmentation)

• Combination of exponentials (e.g. word frequencies)

• Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabási and Albert 1999)

Attractiveness (rate of growth) is proportional to size,
ds
dt ∝ s



Origins of preferential attachment

• 1923 — Polya, urn models.

• 1925 — Yule, explain genetic diversity.

• 1949 — Zipf, distribution of city sizes (1/f ).

• 1955 — Simon, distribution of wealth in economies. (“The rich
get richer”).

• [Interesting note, in sociology this is referred to as the Matthew
effect after the biblical edict, “For to every one that hath shall
be given ... ” (Matthew 25:29)]



Preferential attachment in networks

D. J. de S. Price: “Cumulative advantage”

• D. J. de S. Price, “Networks of scientific papers” Science, 1965.
First observation of power laws in a network context.
Studied paper co-citation network.

• D. J. de S. Price, “A general theory of bibliometric and other
cumulative advantage processes” J. Amer. Soc. Info. Sci.,
1976.

Cumulative advantage seemed like a natural explanation for
paper citations:

The rate at which a paper gains citations is proportional to
the number it already has. (Probability to learn of a paper
proportional to number of references it currently has).



Preferential attachment in networks, continued

• Cumulative advantage did not gain traction at the time. But was
rediscovered some decades later by Barabási and Albert , in the
now famous paper (over 30,000 citations c.f. Google Scholar):

• “Emergence of Scaling in Random Networks”,
Science 286, 1999.

• They coined the term “preferential attachment” to describe the
phenomena.

(de S. Price’s work resurfaced after BA became widely reknown.)



The Barabási and Albert model

• A discrete time network evolution process,
relating the graph G(t+ 1) to G(t).

• Start at t=0 with a single isolated node.

• At each discrete time step, a new node arrives.

• This new node makes m edges to already existing nodes.
(Why m edges? i.e., what happens if m = 1?)

• The likelihood of a new edge to connect to an existing node j
is proportional to the degree of node j, denoted dj.

• We are interested in the limit of large graph size, n→∞.



Visualizing a PA graph (m = 1) at n = 5000



Probabilistic treatment (kinetic theory)

• Start at t = 0 with one isolated node (or a small core set).
– At time t the total number of nodes added n = t.
– At time t the total number of edges added is mt.

• Let dj(t) denote the degree of node j at time t.

• Probability an edge added at t+ 1 connects to node j:

Pr(t+ 1→ j) = dj(t)/
∑
j dj(t).

• Normalization constant easy (but time dependent):∑
j dj(t) = 2mt

(Each node 1 through t, contributes m edges.)
(Each edge augments the degree of two nodes.)



Network evolution
Process on the degree sequence

• The probability a new edge connects to a particular node j of degree k at
time t:

dj(t)/
∑
j dj(t) = k/2mt

• Also, when a node of degree k gains an attachment, it becomes a node of
degree k + 1.

• When the new node arrives, it increases by one the number of nodes of
degree m.



The “Master Equation” / “rate eqns” / “kinetic theory”
Evolution of the typical graph

(Let nk,t ≡ expected number of nodes of degree k at time t,
and nt ≡ total number of nodes added by time t: Note nt = t)

For each arriving link:

• For k > m : nk,t+1 = nk,t +
(k−1)
2mt nk−1,t − k

2mt nk,t

• For k = m : nm,t+1 = nm,t − m
2mt nm,t



The “Master Equation” / “rate eqns” / “kinetic theory”
Evolution of the typical graph

For each arriving link (from last page):

• For k > m : nk,t+1 = nk,t +
(k−1)
2mt nk−1,t − k

2mt nk,t

• For k = m : nm,t+1 = nm,t − m
2mt nm,t

Each new node contributes m links (and one new node). Assuming n→∞
there are no multi-edges:

• For k > m : nk,t+1 = nk,t +
m(k−1)
2mt nk−1,t − mk

2mt nk,t

• For k = m : nm,t+1 = nm,t + 1− m2

2mt nm,t



Translating from number of nodes nk,t to probabilities pk,t

pk,t = nk,t/n(t) = nk,t/t

→ nk,t = t pk,t

For each arriving node, after m edges added:

• For k > m : (t+ 1) pk,t+1 = t pk,t +
(k−1)

2 pk−1,t − k
2 pk,t

• For k = m : (t+ 1) pm,t+1 = t pm,t + 1− m
2 pm,t



Steady-state distribution

We want to consider the final, steady-state: pk,t = pk.

• For k > m : (t+ 1) pk = t pk +
(k−1)

2 pk−1 − k
2 pk

• For k = m : (t+ 1) pm = t pm + 1− m
2 pm

Rearranging and solving for pk:

• For k > m : pk =
(k−1)
(k+2) pk−1

• For k = m : pm = 2
(m+2)



Recursing pk to pm

pk =
(k−1)(k−2)···(m)

(k+2)(k+1)···(m+3) · pm = m(m+1)(m+2)
(k+2)(k+1)k ·

2
(m+2)

pk =
2m(m+1)

(k+2)(k+1)k

For k � 1

pk ∼ k−3



For more on master equations

• “Rate Equations Approach for Growing Networks”, P. L. Krapivsky, and
S. Redner, invited contribution to the Proceedings of the XVIII Sitges
Conference on “Statistical Mechanics of Complex Networks”.

• Dynamical Processes on Complex Networks, Barratt, Barthelemy,
Vespignani

Applications to cluster aggregation (e.g. Erdos-Renyi)

• “Kinetic theory of random graphs: From paths to cycles”, E. Ben-Naim and
P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

• “Local cluster aggregation models of explosive percolation”, R. M. D’Souza
and M. Mitzenmacher, Physical Review Letters, 104, 195702, 2010.



Possible topic areas, 1

• Transportation networks and flows; multi-modal transportation

• Open source software – e.g., social and technological networks in github

• Machine learning – e.g., bring network connectivity into binary classifiers

• Power grid modeling

• Opinion dynamics / social unrest / multiplex opinion dynamics

• Ranking in networks; especially temporal, multilayered, higher-order

• Multilayered and temporal macaque monkey networks

• Shocks and tipping points

• Metrics for multilayered, temporal, or higher-order networks

• Co-author and citation networks



Possible topic areas, 2

• Math network of theorems and proofs

• Control of complex networks

• Neuroscience

• Food networks

• Recommendation systems

• Biological networks

• Terrorist networks

• See also class homepage “Projects” tab

Your ideas?


