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“Power laws and network robustness”



Network models studied so far

• Erdős-Rényi random graphs, G(N, p)
– Initialized with N isolated nodes
– Edges arrive in discrete time process with uniform prob.
– Poisson degree distribution
– No clustering
– Emergence of a giant component

• Preferential attachment graphs
– Initialized with one (or a small set) of seed nodes
– Nodes arrive and attach with m edges choosing “parent” with
prob proportional to parent’s degree.
– Power law deg dist with γ = 3

– Clustering tuned by setting m
– Fully connected network by construction



Barabási-Albert model: “Preferential attachment”

• A network growth model, starting from a small number m0 of seed nodes.

• Each discrete time step a new node arrives and adds m edges to the graph.

• Each new edge connects to a node of degree k with probability dk/
∑
k dk.

The definition of the Barabási-Albert model leaves many mathematical details
open:

• It does not specify the precise initial configuration of the first m0 nodes.

• It does not specify whether the m links assigned to a new node are added
one by one, or simultaneously. (We assume simultaneously and analyze
the process for large n. In the limit n → ∞, the likelihood of multi-edges
approaches zero.)



PA via “rate eqns” / “kinetic theory”

Evolution of the typical (mean-field) graph

– Let nk,t denote the expected number of nodes of degree k at time t.
– Thus pk,t = nk,t/nt.

For each arriving link:

• For k > m : nk,t+1 = nk,t +
(k−1)
2mt nk−1,t − k

2mt nk,t

• For k = m : nm,t+1 = nm,t − m
2mt nm,t

Each new node contributes m links (and one new node). Assuming n→∞
there are no multi-edges:

• For k > m : nk,t+1 = nk,t +
m(k−1)
2mt nk−1,t − mk

2mt nk,t

• For k = m : nm,t+1 = nm,t + 1− m2

2mt nm,t



PA analyzed via rate equation approach , solving for pk

By definition, pk,t = nk,t/nt.

Rewriting and assuming steady-state, that pk,t → pk, yields:

• For k > m : pk =
(k−1)
(k+2) pk−1

• For k = m : pm = 2
(m+2)

Yields: pk =
2m(m+1)

(k+2)(k+1)k

For k � 1

pk ∼ k−3



Did we prove the behavior of the degree distribution?



Details glossed over

1. Proof of convergence to steady-state (i.e. prove pk,t → pk)

2. Proof of concentration (Need to show fluctuations in each realization
are small, so that the average nk describes well most realizations of the
process).

– For this model, we can use the second-moment method (show that the
effect of one different choice at time t dies out exponentially in time).

• see: B. Bollobás, O. Riordan, J. Spencer, and G. Tusnady, “The
degree sequence of a scale-free random process”, Random Structures and
Algorithms 18(3), 279-290, 2001.



Summary of kinetic theory / rate eqn approach

• A stochastic, discrete time process for an evolving graph G(t)→ G(t+ 1).

• Assumption 1: Study the average (“mean-field”) random graph in limit
N →∞.

• Let nk,t denote the expected (i.e. average) number of nodes of degree k at
time t into the process. (So nk,t is a real number, not an integer.)

• Write nk,t+1 in terms of the nk,t’s, accounting for the rates at which node
degree is expected to change.

• Note pk,t = nk,t/nt and rewrite in terms of probabilities. (Note you can
formulate the equation in terms of probabilities from beginning).

• Assumption 2: Assume steady state pk,t → pk.

• Solve for a recurrence relation for the pk’s. For PA, pk = k−3 for large k.

• Need to show concentration (Assump 1) and convergence (Assump 2)



Cambridge Univ Press, 2010.



Further mathematical details

PA analyzed via rate equation approach

• Krapivsky, Redner, Leyvraz, PRL 2000

• Dorogovtsev, Mendes, Samukhin, PRL 2000

Proof of PA (including concentration and convergence)

• Bollobas, O. Riordan, J. Spencer, and G. Tusnady, “The degree sequence
of a scale-free random process”, Random Struc. Alg. 18(3), 279-290, 2001



Barabasi, Network Science book



For more on master equations

• “Rate Equations Approach for Growing Networks”, P. L. Krapivsky, and
S. Redner, invited contribution to the Proceedings of the XVIII Sitges
Conference on “Statistical Mechanics of Complex Networks”.

• Dynamical Processes on Complex Networks, Barratt, Barthelemy,
Vespignani

Applications to cluster aggregation (e.g. Erdos-Renyi)

• “Kinetic theory of random graphs: From paths to cycles”, E. Ben-Naim and
P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

• “Local cluster aggregation models of explosive percolation”, R. M. D’Souza
and M. Mitzenmacher, Physical Review Letters, 104, 195702, 2010.



Issues with preferential attachment networks

• Whether there are really true power-laws in networks? (Usually requires
huge systems, and no constraints on resources).

• Only get γ = 3!

• Note only the old nodes are capable of attaining high degree.



Generalizations of Pref. Attach.

• Vary steps of P.A. with steps of random attachment.

Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Phys Rev Lett 85.

Achieves 2 < γ < 3.

• Consider non-linear P.A., where prob of attaching to node of degree k ∼
(dk)

b.

“Organization of growing random networks”, P. L. Krapivsky and S. Redner,
Phys. Rev. E 63, 066123 (2001).

– Sublinear (b < 1); deg dist decays faster than power law.

– Superlinear (b > 1): one node emerges as the center of a “star”-like
topology.



Alternatives to PA that yield pk ∼ k−γ

• Copying models
– WWW:
• “The web as a graph: measurements, models, and methods”, J. M. Kleinberg, R. Kumar,
P. Raghavan, S. Rajagopalan, A. S. Tomkins, Proceedings of the 5th annual international
conference on Computing and combinatorics, 1999.
• “Stochastic models for the Web graph”, R. Kumar, P. Raghavan, S. Rajagopalan, D.
Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In Proc. 41st
IEEE Symp. on Foundations of Computer Science, pages 57-65, 2000.

– Biology (Duplication-Mutation-Complementation)
• “Modeling of Protein Interaction Networks”, Alexei Vázquez, Alessandro Flammini, Amos
Maritan, Alessandro Vespignani, Complexus Vol. 1, No. 1, 2003

• Optimization models (trade-off between tree-metic and space-metric)

– Fabrikant-Koutsoupias-Koutsoupias (2002).
– D’Souza-Borgs-Chayes-Berger-Kleinberg (2007).



Other approaches

• “Winners don’t take all: Characterizing the competition for links on the web”,
D M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, C. Lee Giles, PNAS
99 (2002).

• First mover advantage

• Second mover advantage



Edge arrival PA can be more useful

• Edge-arrival PA graph
• K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, (2001).
• W. Aiello, F. Chung, and L. Lu. “A random graph model for power law
graphs.” Experimental Mathematics 10.1 (2001)
• F. Chung and L. Lu, Annals of Combinatorics 6, 125 (2002). *

– Initialized with N isolated nodes, labeled i ∈ {1, 2, ..., N}, where each
node i has a weight wi = (i+ i0 − 1)−µ.

– Two vertices (i, j) selected with probability wi/
∑
kwk and wj/

∑
kwk

respectively and connected by an edge.

– Yields pk = Ak−γ with γ = µ = −1/(γ − 1).

– (Master eqn analysis: Lee, Goh, Kahng and Kim, Nucl. Phys. B 696, 351 (2004).)

* “Chung-Lu” model used extensively to generate graphs.



Difference between ER and PA is not due to edge versus
node arrival

• Erdős-Rényi-like process with node arrival
Callaway, Hopcroft, Kleinberg, Newman, Strogatz.
Phys Rev E 64 (2001).

– At each discrete time step a new node arrives, and with
probability δ a new randomly selected edge arrives.

– Emergence of giant component only if δ ≥ 1/8.

– Infinite order phase transition. (Kosterlitz Thouless transition.)

– (That “giant” is finite even as n→∞).

– Positive degree-degree correlations (higher degree by virtue
of age).



Preferential Attachment and “Scale-free networks”
Why a power law is “scale-free”

• Power law for “x”, means “scale-free” in x:

p(bx) = (bx)−γ = b−γp(x)

p(bk)
p(k) = b−γ regardless of k.

In contrast consider: p(k) = A exp(−k).

So p(bk) = A exp(−bk).

p(bk)
p(k) = exp[−k(b− 1)] dependent on k



Power law degree distribution 6= “scale-free network”

• Power law for “x”, means “scale-free” in x.

• BUT only for that aspect, “x”. May have a lot of different
structures at different scales.

• More precise: “network with scale-free degree distribution”

Power Law Random Graph (PLRG) is a more precise term

Yet “Scale free network” now used pervasively: e.g.,
Wikipedia: “a network whose degree distribution follows a
power law, at least asymptotically. ”



Power laws in real-world networks?

Fitting power laws to data

• Newman Review, pages 12-13.

• M. Mitzenmacher, “A Brief History of Generative Models
for Power Law and Lognormal Distributions”, Internet
Mathematics 1 (2), 226-251, 2003.

• A. Clauset, C. R. Shalizi and M.E.J. Newman, “Power-law
distributions in empirical data”, SIAM review, 2009.



The controversy continues

• Arxiv posting from Jan 2018, Anna D. Broido, Aaron Clauset
“Scale-free networks are rare”

• Quanta Magazine, Feb 15, 2018, “Scant Evidence of Power
Laws Found in Real-World Networks”

• Quanta article is carried by The Atlantic

• Barabasi response: https://www.barabasilab.com/post/love-is-
all-you-need

• Broido and Clauset article published, Nature communications
10 1017 (2019).

In part, the implications of Power Law Random Graphs have
consequences on robustness and vulnerability as we see next.



Robustness of a network

• Robustness/Resilience: A network should be able to absorb
disturbance, undergo change and essentially maintain its
functionality despite failure of individual components of the
network.

• Often studied as maintaining connectivity despite node and
edge deletion.



Albert, Jeong and Barabasi, “Error and attack tolerance of
complex networks”, Nature, 406 (27) 2000.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

N=130, E=215, Red five highest degree nodes; Green their neighbors.

• Exp has 27% of green nodes, SF has 60%.

• PLRG: Connectivity extremely robust to random failure.

• PLRG: Connectivity extremely fragile to targeted attack
(removal of highest degree nodes).



Exponential vs scale-free: Robustness
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

• (Remember, bigger diameter is worse.)

• SF are extremely robust to random failure (blue squares). Remove fraction
of nodes at random, and no change in diameter.

• SF are very fragile to targeted attack (removal of highest degree nodes).



Histogram of a typical PA run
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Degree-targeted removal on real sample topologies
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

• Used the topological map of the Internet, containing 6,209 nodes and
12,200 links < k >= 3.4), collected (in 1999 or 2000) by the National
Laboratory for Applied Network Research
http://moat.nlanr.net/Routing/rawdata/

• World-Wide Web data measured on a sample containing 325,729 nodes
and 1,498,353 links, such that < k >= 4.59.
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“The Achilles Heel of the Internet”

• “How robust is the Internet?” Yuhai Tu,
Nature (New and Views) 406 (27) 2000.

• “Scientists spot Achilles heel of the Internet”,
CNN, July 26, 2000.



Percolation theory to show the similar results follow in an
analytic mathematical formulation

• R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin,
“Resilience of the Internet to Random Breakdowns”,
Phys. Rev. Lett. 85, 4626 (2000).

• Callaway, Duncan S.; M. E. J. Newman, S. H. Strogatz and
D. J. Watts, “Network Robustness and Fragility: Percolation on
Random Graphs”.
Phys. Rev. Lett. 85, 5468 (2000).

• 〈k〉 finite, but
〈
k2
〉
→ ∞ for PLRG with 2 < γ < 3, the

cornerstone for the arguments.



Results from Callaway et al
Robustness to random removal

• Degree dist, pk ∼ k−γe−k/C (power law with cutoff w C →∞).

• Let q be probability that a vertex is “active”/“infected”.
For simplicity assume independent of k.

• Then pkq is probability of having degree k and being infected.

• Calculate 〈s〉, the mean cluster size of infected nodes. Find
(via generating functions ... details later in the course) that

〈s〉 = q +
q2 〈k〉

1− (q 〈k2〉 / 〈k〉)

• 〈s〉 → ∞ when denominator 1− q
〈
k2
〉
/ 〈k〉 = 0, i.e.,

qc =
〈k〉
〈k2〉 Infinite cluster even if probability→ 0, when pk ∼ k−γ for 2 < γ < 3) .



Does the ensemble of random graphs really
model engineered or biological systems?

(Is the Internet a random scale-free graph?)



Random vs engineered vs evolved (e.g. biological) systems

• REDUNDANCY!!! a key principle in engineering
(and evolution?).

• The ‘robust yet fragile’ nature of the Internet
Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger, PNAS 102
(4) 2005.

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Degree distribution is not the whole story.



Wikipedia entry on “scale-free networks”

• Good discussion of the history and controversy

– Faloutsos SIGCOMM 1999 paper on power law in Internet
based on trace route sampling.
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– Although many real-world networks are thought to be scale-
free, the evidence often remains inconclusive, primarily due
to the developing awareness of more rigorous data analysis
techniques.



Effectively breaking up different networks

What other types of nodes play key roles?



Other types of important nodes
A classic example from Social Network Analysis (SNA)

[http://www.fsu.edu/∼spap/water/network/intro.htm]

The “Kite Network”

Who is important and why?



The Kite Network

• Degree – Diane looks important (a “hub”).

• Betweenness – Heather looks important (a “connector”/“broker”).

• Closeness – Fernando and Garth can access anyone via a
short path.

• Boundary spanners – as Fernando, Garth, and Heather are
well-positioned to be “innovators”.

• Peripheral Players – Ike and Jane may be an important
resources for fresh information.



A contemporary social network

(Taken from http://www.thenetworkthinkers.com/)



Betweenness Centrality

[Freeman, L. C. “A set of measures of centrality based on
betweenness.” Sociometry 40 1977]

A measure of how many shortest paths between all other
vertices pass through a given vertex.



Betweenness (formal definition)

For a given vertex i:

B(i) =
∑

s 6=t 6=i
σst(i)
σst

• Where σst is the number of shortest geodesic paths between
s and t.

• And σst(i) are the number of those passing through vertex i.

(Calculating shortest paths efficiently ...
http://en.wikipedia.org/wiki/Dijkstra’s algorithm )



Betweenness and eigenvalues
(bottlenecks)
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• Bottlenecks have large betweenness values.

• In social networks betweenness is a measure of a nodes
“centrality” and importance (could be a proxy for influence).

• In a road network, high betweenness could indicate where
alternate routes are needed.

• Also a measure of the resilience of a network (next page).



Targeted attack by different metrics

Holme P, Kim BJ, Yoon CN, Han SK (2002) “Attack
vulnerability of complex networks”. Phys. Rev. E 65:056109

• Degree centrality

• Betweeness centrality

Typically (but not always) high degree are high betweeness.

High betweeness the more effective strategy to break up a
network’s connectivity.



But back to Albert, Jeong and Barabasi

letters to nature
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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So why did Albert, Jeong and Barabasi find that
their sample of the internet topology was vulnerable
to degree targeted attack?



How to measure the structure of the Internet?

The focus of the next lecture (Lecture 5)



Summary

• “Error and attack tolerance of complex networks”
Random networks with power law degree distribution show:
– Fragility to degree-targeted removal
– Robustness to random node removal
(This is in the context of keeping the full network connected.)

• Important nodes beyond degree
– Betweeness centrality (shortest paths)

(Are their local ways to detect this?)
– Boundary spanners / peripheral players / weak-ties



Structure beyond degree distribution

• Power law degree distribution actually a weak constraint on network
structure:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Additional properties include:
Motifs Components Communities


