ECS 253 / MAE 253, Lecture
April 12, 2023

“Power laws and network robustness”



Network models studied so far

e Erdos-Rényi random graphs, G(IV, p)
— Initialized with NV isolated nodes
— Edges arrive in discrete time process with uniform prob.
— Poisson degree distribution
— No clustering
— Emergence of a giant component

e Preferential attachment graphs
— Initialized with one (or a small set) of seed nodes
— Nodes arrive and attach with m edges choosing “parent” with
prob proportional to parent’s degree.
— Power law deg dist with v =3
— Clustering tuned by setting m
— Fully connected network by construction



Barabasi-Albert model: “Preferential attachment”

e A network growth model, starting from a small number m of seed nodes.
e Each discrete time step a new node arrives and adds m edges to the graph.

e Each new edge connects to a node of degree k with probability di/ >, dx.

The definition of the Barabasi-Albert model leaves many mathematical details
open:

e It does not specify the precise initial configuration of the first my nodes.

e It does not specify whether the m links assigned to a new node are added
one by one, or simultaneously. (We assume simultaneously and analyze
the process for large n. In the limit n — oo, the likelihood of multi-edges

approaches zero.)



PA via “rate egns” / “kinetic theory”
Evolution of the typical (mean-field) graph

— Let nx . denote the expected number of nodes of degree k at time ¢.
— Thus Pkt — nk,t/nt.

For each arriving link:

. k=1 k
o Fork >m: Nk 41 = Nkt T+ (th) Nk—1,t = 37 Tkt
o Fork =m: Nm t+1 = Nm,t — % Nim,t

Each new node contributes m links (and one new node). Assuming n — oo
there are no multi-edges:

. o m(k—1 k
e Fork >m: Nk t4+1 = Nkt + émt ) Nk—1,t — 2m_m Nt

2
o Fork =m: Nm.,t+1 — Nimt +1— 2?7:nt Nm,t



PA analyzed via rate equation approach , solving for p;
By definition, Pk.t = nk,t/nt.

Rewriting and assuming steady-state, that p; . — px, Yyields:

e Fork>m: pi= EZ_T_;; Pk—1

2

OFOI’k:m: pm:m

_ _ 2m(m-+1
Yields: | px = (k_|_2()(k—|—1))l<:




Did we prove the behavior of the degree distribution?



Details glossed over

1. Proof of convergence to steady-state (i.e. prove py: — pi)

2. Proof of concentration (Need to show fluctuations in each realization
are small, so that the average n; describes well most realizations of the

process).

— For this model, we can use the second-moment method (show that the
effect of one different choice at time ¢ dies out exponentially in time).

e see: B. Bollobas, O. Riordan, J. Spencer, and G. Tusnady, “The
degree sequence of a scale-free random process”, Random Structures and
Algorithms 18(3), 279-290, 2001.



Summary of kinetic theory / rate eqn approach

A stochastic, discrete time process for an evolving graph G(t) — G(t + 1).

Assumption 1: Study the average (“mean-field”’) random graph in limit
N — oo.

Let ny ; denote the expected (i.e. average) number of nodes of degree £ at
time ¢ into the process. (So ny ¢ is a real number, not an integer.)

Write ny 41 In terms of the ny +'s, accounting for the rates at which node
degree is expected to change.

Note pr. = nir./n: and rewrite in terms of probabilities. (Note you can
formulate the equation in terms of probabilities from beginning).

Assumption 2: Assume steady state p;; — p.
Solve for a recurrence relation for the p;’s. For PA, p, = k=3 for large k.

Need to show concentration (Assump 1) and convergence (Assump 2)



A Kinetic View of

STATISTICAL
PHYSICS

Pavel L. Krapivsky
Sidney Redner
Eli Ben-Naim

Cambridge Univ Press, 2010.



Further mathematical details

PA analyzed via rate equation approach

e Krapivsky, Redner, Leyvraz, PRL 2000

e Dorogovtsev, Mendes, Samukhin, PRL 2000

Proof of PA (including concentration and convergence)

e Bollobas, O. Riordan, J. Spencer, and G. Tusnady, “The degree sequence
of a scale-free random process”, Random Struc. Alg. 18(3), 279-290, 2001



NUMERICAL SIMULATION OF THE BA MODEL
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For more on master equations

“Rate Equations Approach for Growing Networks”, P. L. Krapivsky, and
S. Redner, invited contribution to the Proceedings of the XVIII Sitges
Conference on “Statistical Mechanics of Complex Networks”.

Dynamical Processes on Complex Networks, Barratt, Barthelemy,
Vespignani

Applications to cluster aggregation (e.g. Erdos-Renyi)

“Kinetic theory of random graphs: From paths to cycles”, E. Ben-Naim and
P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).

“Local cluster aggregation models of explosive percolation”, R. M. D’Souza
and M. Mitzenmacher, Physical Review Letters, 104, 195702, 2010.



Issues with preferential attachment networks

e Whether there are really true power-laws in networks? (Usually requires
huge systems, and no constraints on resources).

e Only get v = 3!

e Note only the old nodes are capable of attaining high degree.



Generalizations of Pref. Attach.

e Vary steps of P.A. with steps of random attachment.
Dorogovisev SN, Mendes JFF, Samukhin AN (2000) Phys Rev Lett 85.
Achieves 2 < v < 3.

e Consider non-linear P.A., where prob of attaching to node of degree k ~
(dr,)".
“Organization of growing random networks”, P. L. Krapivsky and S. Redner,
Phys. Rev. E 63, 066123 (2001).

— Sublinear (b < 1); deg dist decays faster than power law.

— Superlinear (b > 1): one node emerges as the center of a “star’-like
topology.



Alternatives to PA that yield p;, ~ k77

e Copying models
- WWW:

e “The web as a graph: measurements, models, and methods”, J. M. Kleinberg, R. Kumar,
P. Raghavan, S. Rajagopalan, A. S. Tomkins, Proceedings of the 5th annual international
conference on Computing and combinatorics, 1999.

e “Stochastic models for the Web graph”, R. Kumar, P. Raghavan, S. Rajagopalan, D.
Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In Proc. 41st
IEEE Symp. on Foundations of Computer Science, pages 57-65, 2000.

— Biology (Duplication-Mutation-Complementation)
e “Modeling of Protein Interaction Networks”, Alexei Vazquez, Alessandro Flammini, Amos
Maritan, Alessandro Vespignani, Complexus Vol. 1, No. 1, 2003

e Optimization models (trade-off between tree-metic and space-metric)

— Fabrikant-Koutsoupias-Koutsoupias (2002).
— D’Souza-Borgs-Chayes-Berger-Kleinberg (2007).



Other approaches

e “Winners don't take all: Characterizing the competition for links on the web”,
D M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, C. Lee Giles, PNAS
99 (2002).

e First mover advantage

e Second mover advantage



Edge arrival PA can be more useful

e Edge-arrival PA graph
e K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, (2001).

e W. Aiello, F. Chung, and L. Lu. “A random graph model for power law
graphs.” Experimental Mathematics 10.1 (2001)

e F. Chung and L. Lu, Annals of Combinatorics 6, 125 (2002). *

— Initialized with N isolated nodes, labeled i € {1,2,..., N}, where each
node i has a weight w; = (i +ig — 1)~ *.

— Two vertices (¢,j) selected with probability w;/ >, wy and w;/ >, ws
respectively and connected by an edge.

—Yields pr = Ak=" withy =p=—-1/(y —1).
— (Master egn analysis: Lee, Goh, Kahng and Kim, Nucl. Phys. B 696, 351 (2004).)

* “Chung-Lu” model used extensively to generate graphs.



Difference between ER and PA is not due to edge versus
node arrival

e Erdos-Renyi-like process with node arrival

Callaway, Hopcroft, Kleinberg, Newman, Strogatz.
Phys Rev E 64 (2001).

— At each discrete time step a new node arrives, and with
probability 6 a new randomly selected edge arrives.

— Emergence of giant component only if 6 > 1/8.
— Infinite order phase transition. (Kosterlitz Thouless transition.)
— (That “giant” is finite even as n — o).

— Positive degree-degree correlations (higher degree by virtue
of age).



Preferential Attachment and “Scale-free networks”
Why a power law is “scale-free”

e Power law for “x”, means “scale-free” in x:

p(bx) = (bx)™" = b~ "p(x)

(k) — =7 | regardless of k.

In contrast consider: p(k) = Aexp(—k).

So p(bk) = Aexp(—bk).

exp|—k(b—1)| |dependent on k




Power law degree distribution # “scale-free network™

e Power law for “x”, means “scale-free” in x.

e BUT only for that aspect, “x”. May have a lot of different
structures at different scales.

e More precise: “network with scale-free degree distribution’

Power Law Random Graph (PLRG) is a more precise term

Yet “Scale free network” now used pervasively: e.g.,
Wikipedia: “a network whose degree distribution follows a
power law, at least asymptotically. ”



Power laws in real-world networks?

Fitting power laws to data

e Newman Review, pages 12-13.

e M. Mitzenmacher, “A Brief History of Generative Models
for Power Law and Lognormal Distributions”, Internet

Mathematics 1 (2), 226-251, 2003.

e A. Clauset, C. R. Shalizi and M.E.J. Newman, “Power-law
distributions in empirical data”, SIAM review, 20009.



The controversy continues

e Arxiv posting from Jan 2018, Anna D. Broido, Aaron Clauset
“Scale-free networks are rare”

e Quanta Magazine, Feb 15, 2018, “Scant Evidence of Power
Laws Found in Real-World Networks”

e Quanta article is carried by The Atlantic

e Barabasi response: https://www.barabasilab.com/post/love-is-
all-you-need

e Broido and Clauset article published, Nature communications
10 1017 (2019).

In part, the implications of Power Law Random Graphs have
consequences on robustness and vulnerability as we see next.



Robustness of a network

e Robustness/Resilience: A network should be able to absorb
disturbance, undergo change and essentially maintain its
functionality despite failure of individual components of the
network.

e Often studied as maintaining connectivity despite node and
edge deletion.



Albert, Jeong and Barabasi, “Error and attack tolerance of
complex networks”, Nature, 406 (27) 2000.

L ] . L ] .
* .
L& L » .
w | AT 2o 1 R . | '||‘I .
.J:_-Ef.;-&*_f P 3 # =1 W
LT Lo e .
- . A _...*_1,..-_:5 ' P gy i .
[ Bs | - - A ey -.*«._1' i -'. | . ‘-, ’ -'- |
. . . et ,:w-’ll -__:..... "y - - ':5 . lr ;.i\df P .
“ | T | .\,._'- & -. = ™ . I hit "-:-;'"‘::\'\-ﬁt:«.'- .:h‘
LR g et e _H‘ _w‘f"‘-a i
. R e gl .
- by . o] = Wi - o = j‘ b g
7= 1 ] | L
.y ""'.. -" o .
e et e . i : . %
o w ® Pege sger
. é
Exponential Scale-free

N=130, E=215, Red five highest degree nodes; Green their neighbors.
e EXxp has 27% of green nodes, SF has 60%.

e PLRG: Connectivity extremely robust to random failure.

e PLRG: Connectivity extremely fragile to targeted attack
(removal of highest degree nodes).



Exponential vs scale-free: Robustness
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e (Remember, bigger diameter is worse.)

e SF are extremely robust to random failure (blue squares). Remove fraction
of nodes at random, and no change in diameter.

e SF are very fragile to targeted attack (removal of highest degree nodes).



Histogram of a typical PA run
Degree distribution (Here N=500)
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e Choosing node at random overwhelmingly leads to low degree node



Degree-targeted removal on real sample topologies
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e Used the topological map of the Internet, containing 6,209 nodes and
12,200 links < k >= 3.4), collected (in 1999 or 2000) by the National
Laboratory for Applied Network Research
http://moat.nlanr.net/Routing/rawdata/

e World-Wide Web data measured on a sample containing 325,729 nodes
and 1,498,353 links, such that < £ >= 4.59.



Albert, Jeong and Barabasi, Nature, 406 (27) 2000

nature

“The Achilles Heel of the Internet”

e “How robust is the Internet?” Yuhai Tu,
Nature (New and Views) 406 (27) 2000.

e “Scientists spot Achilles heel of the Internet”,
CNN, July 26, 2000.



Percolation theory to show the similar results follow in an
analytic mathematical formulation

e R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin,
“Resilience of the Internet to Random Breakdowns”,
Phys. Rev. Lett. 85, 4626 (2000).

e Callaway, Duncan S.; M. E. J. Newman, S. H. Strogatz and
D. J. Watts, “Network Robustness and Fragility: Percolation on
Random Graphs”.

Phys. Rev. Lett. 85, 5468 (2000).

e (k) finite, but (k*) — oo for PLRG with 2 < v < 3, the
cornerstone for the arguments.



Results from Callaway et al
Robustness to random removal

e Degree dist, pr, ~ k= Ye */C  (power law with cutoff w C' — ).

e Let ¢ be probability that a vertex is “active”/“infected”.
For simplicity assume independent of .

e Then piq is probability of having degree k£ and being infected.

e Calculate (s), the mean cluster size of infected nodes. Find
(via generating functions ... details later in the course) that

q* (k)
1 —(q(k?) /(K))

(s) = q+

e (s) — co when denominator 1 — g (k*) / (k) =0, i.e.,

_ (k)
o= )

Infinite cluster even if probability — 0, when p;, ~ k™7 for 2 < v < 3).



Does the ensemble of random graphs really
model engineered or biological systems?

(Is the Internet a random scale-free graph?)



Random vs engineered vs evolved (e.g. biological) systems

e REDUNDANCY!!! a key principle in engineering
(and evolution?).

e The ‘robust yet fragile’ nature of the Internet
Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger, PNAS 102
(4) 2005.
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e Degree distribution is not the whole story.



Wikipedia entry on “scale-free networks™

e Good discussion of the history and controversy

— Faloutsos SIGCOMM 1999 paper on power law in Internet
based on trace route sampling.
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— Although many real-world networks are thought to be scale-
free, the evidence often remains inconclusive, primarily due
to the developing awareness of more rigorous data analysis
techniques.



Effectively breaking up different networks

What other types of nodes play key roles?



Other types of important nodes
A classic example from Social Network Analysis (SNA)

|http://www.fsu.edu/~spap/water/network/intro.htm|

The “Kite Network”
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Who is important and why?




The Kite Network

e Degree — Diane looks important (a “hub”).
e Betweenness — Heather looks important (a “connector’/“broker”).

e Closeness — Fernando and Garth can access anyone via a
short path.

e Boundary spanners — as Fernando, Garth, and Heather are
well-positioned to be “innovators”.

e Peripheral Players — lke and Jane may be an important
resources for fresh information.



A contemporary social network

(Taken from http://www.thenetworkthinkers.com/)

Partial Network of Political Ties for Candidates
in the 2010 New York Governor’s Race
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Betweenness Centrality

[Freeman, L. C. “A set of measures of centrality based on
betweenness.” Sociometry 40 1977|

A measure of how many shortest paths between all other
vertices pass through a given vertex.



Betweenness (formal definition)

For a given vertex «:

B(i) = 3, 4 2

e Where 0 ; Is the number of shortest geodesic paths between
s and t.

e And Ust( ) are the number of those passing through vertex i.

(Calculating shortest paths efficiently ...
http://en.wikipedia.org/wiki/Dijkstra’s_algorithm )



Betweenness and eigenvalues
(bottlenecks)

R = 7.513
Tmin] = 109 1,

R = 5.315
Tmax] = 9314 1,

20
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Bottlenecks have large betweenness values.

In social networks betweenness iIs a measure of a nodes
“centrality” and importance (could be a proxy for influence).

In a road network, high betweenness could indicate where
alternate routes are needed.

Also a measure of the resilience of a network (next page).



Targeted attack by different metrics

Holme P, Kim BJ, Yoon CN, Han SK (2002) “Attack
vulnerability of complex networks”. Phys. Rev. E 65:056109

e Degree centrality

e Betweeness centrality

Typically (but not always) high degree are high betweeness.

High betweeness the more effective strategy to break up a
network’s connectivity.



But back to Albert, Jeong and Barabasi
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So why did Albert, Jeong and Barabasi find that
their sample of the internet topology was vulnerable
to degree targeted attack?



How to measure the structure of the Internet?

The focus of the next lecture (Lecture 5)



Summary

e “Error and attack tolerance of complex networks”
Random networks with power law degree distribution show:

~ragility to degree-targeted removal
Robustness to random node removal

(This is in the context of keeping the full network connected.)

e Important nodes beyond degree
— Betweeness centrality (shortest paths)
(Are their local ways to detect this?)
— Boundary spanners / peripheral players / weak-ties
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Structure beyond degree distribution

e Power law degree dlstrlbutlon actually a weak constraint on network
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e Additional properties include:
Motifs Components Communities
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