
ECS 253 / MAE 253, Lecture 5
April 17, 2023

“Internet measurement and Optimization
approaches to network growth”



Announcements

• There will be no quizzes.

• Homework will be submitted via Gradescope

• HW1: To be completed by all. Due Thurs April 19

• HW1a) Project pitch. Due this FRIDAY April 20.

• HW1b) Advanced. Due Thurs April 19

• Project survey results



Aside on Adjacency Matrix and random walks

Consider undirected edges

Mij =

{
1 if edge exists between i and j

0 otherwise.


1 1 1 1 0

1 1 0 1 0

1 0 1 0 0

1 1 0 1 1

0 0 0 1 1

 =M



Random walk: State Transition Matrix
(Column-normalize the adjacency matrix)

M =


1/4 1/3 1/2 1/4 0

1/4 1/3 0 1/4 0

1/4 0 1/2 0 0

1/4 1/3 0 1/4 1/2

0 0 0 1/4 1/2



M will have a basis set of eigenvectors {~ui} and
corresponding eigenvalues λi.



Perron-Frobenius Theorem

• Applies to irreducible, positive, stochastic matrices.

• “Irreducible” means cannot be block-diagonalized into disjoint
pieces. (i.e., network is connected — only one component).

• “Positive” means each entry Mij > 0.

• “Stochastic” means column normalized (or row normalized).



Perron-Frobenius Theorem
Leading eigenvalue

• One leading eigenvalue with λ1 = 1.

• The corresponding eigenvector, v1, has strictly positive entries
and the sum over all the entries,

∑
i v1[i] = 1.

• This is the stationary distribution of the random walk dynamics.

• For non-negative matrices (Mij ≥ 0), similar results, but can’t
guarantee eigenvectors are positive (in practice, normally still
works ... we will come back to this later in the quarter.)



What about networks with directed edges? (e.g., HW1)

• Does it matter whether Mij means an edge from node i to j,
or if it means an edge from node j to i?

• In general, it does not matter. But, sometimes it does matter!

• For the graph pictured, if Mij means an edge from node i to j,
then the 5th column will be a vector of all zero’s. And there is
no way to make it a column-normalized stochastic matrix. (But
you can make it row-normalized.)



Last time: “Robust yet fragile”

• “Error and attack tolerance of complex networks”
Random networks with power law degree distribution show:
– Fragility to degree-targeted removal
– Robustness to random node removal
(This is in the context of keeping the full network connected.)
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Albert, Jeong and Barabasi, Nature, 406 (27) 2000

“The Achilles Heel of the Internet”

• “How robust is the Internet?” Yuhai Tu,
Nature (New and Views) 406 (27) 2000.

• “Scientists spot Achilles heel of the Internet”,
CNN, July 26, 2000.



Random vs engineered vs evolved (e.g. biological) systems
Is the Internet really a random power law graph?

• REDUNDANCY!!! a key principle in engineering
(and evolution?).

• The ‘robust yet fragile’ nature of the Internet
Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger, PNAS 102
(4) 2005.

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Degree distribution is not the whole story.



Power law random graph:
Robust to random failure, vulnerable to targeting attack

letters to nature

NATURE | VOL 406 | 27 JULY 2000 | www.nature.com 379

called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

Why did Albert, Jeong and Barabasi find that their
sample of the internet topology was vulnerable to

degree targeted attack?



What is the Internet?



  Web of interconnected networks 
  Grows with no central authority 
  Autonomous Systems optimize local communication efficiency 
  The building blocks are engineered and studied in depth 
  Global entity has not been characterized 

  Most real world complex-networks                           
have non-trivial properties. 

  Global properties can not be inferred from local ones 
  Engineered with large technical diversity 
  Range from local campuses to transcontinental backbone 

providers 

Internet 

2 



Power Laws in the Internet?
Definition of “node” depends on level of representation













 



 

 

 


 
 
 
 





TCP / IP

• The TCP protocol: a collection of rules for formatting, ordering,
and error-checking data sent across a network.

• In 1974, Vincent Cerf and Robert Kahn developed the
Transmission Control Protocol (TCP) which was further split
into the Internet Protocol (IP) and TCP in 1978.

• In 1982, DoD adopted TCP/IP as the standard protocol in the
Internet.

• IP address: a unique 4-byte number to identify each machine



Internet Infrastructure 
The IP address 

Common top domain names in the US: .com, .mil, .edu, .org 

Outside of the US, the top-level domain identifies the country: 
uk (England), fr (France), cn (China), … 

Two computers can have the same high level name if they are not on the 
same domain 



Computer sending  
the packet 

Destination computer 
Length of the packet 

Checksum for integrity 

Internet  
Infrastructure 

The Transmission  
Control Protocol 

Structure of a 
TCP/IP 
packet 

See also: http://en.wikipedia.org/wiki/Transmission_Control_Protocol 



Internet Infrastructure 
The Transmission Control Protocol 

How does the sender know it needs to retransmit: 

Did not receive 
an acknowledgment 
(ACK) 

• TCP a decentralized protocol with non-linear ramp-up and
random restart.



Autonomous system

A collection of connected Internet Protocol (IP) routing prefixes
under the control of one or more network operators that

presents a common, clearly defined routing policy to the Internet





 *



 *



 













Internet Measurements 

  The Internet is man-made, so why do we need to 
measure it? 

  Because we still don’t really understand it 
  Sometimes things go wrong 
 Malicious users 

  Measurement for network operations 
 Detecting and diagnosing problems 
 What-if analysis of future changes 

  Measurement for scientific discovery 
 Creating accurate models that represent reality 
  Identifying new features and phenomena 

16 



How to measure the structure of the Internet?

• Traceroute (IP address level) see: unix traceroute command

• BGP tables (AS level)

• “Whois” data (AS level)

Repositories / public resources (mostly AS level)

• University of Oregon Route Views Project
http://www.routeviews.org/

• CAIDA (Cooperative Association for Internet Data Analysis, UCSD)
http://www.caida.org/home/



  Direct probing 

  Indirect probing 

A D B C 

Internet Topology Measurements 
Probing 

IPB  TTL=64 

IPB 

IPD TTL=64 

IPD 

Vantage Point 

A D B C 

Vantage Point 

IPB 

IPD TTL=2 IPD TTL=1 

IPC 

8 

http://www.caida.org/publications/animations/active_monitoring/traceroute.mpg  



Internet Topology Measurement: 
Background 
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Problems: Traceroute
– Lakhina, Byers, Crovella, Xie, INFOCOM, 2003.

– Achlioptas, Clauset, Kempe, Moore, STOC, 2005.
– Achlioptas, Clauset, Kempe, Moore, J. of ACM, 56 (4), 2009.

• Build approximately single-source, all-destinations, shortest-
path trees. (Union of traceroute samples.)
– Faloutsos3 SIGCOMM, 1999.
– Albert, Jeong, Barabasi, Nature, 2000.

1

10

100

1000

10000

1 10 100

 

"971108.out"
exp(7.68585)  * x ** (  -2.15632 )

1

10

100

1000

10000

1 10 100

 

"980410.out"
exp(7.89793)  * x ** (  -2.16356 )

1

10

100

1000

10000

1 10 100

 

"981205.out"
exp(8.11393)  * x ** (  -2.20288 )

1

10

100

1000

10000

1 10 100

 

"routes.out"
exp(8.52124)  * x ** (  -2.48626 )

• Sampling bias
– Nodes close to root sampled more accurately
– High degree nodes sampled more accurately than low
degree. (Follow an edge at random, k times as likely to lead to node
of degree k than degree 1. See next slide.)



Aside: Edge following probability, qk

k edges reach node of degree k:

• Let qk denote the probability of following an edge to a node of
degree k.

• qk is proportional to k pk.

• Precisely, qk =
k pk∑
k k pk



Traceroute sampling bias

• Lakhina, et al INFOCOM, 2003: Show empirically that Erdős-
Rényi random graphs (Poisson dist) appear to have power law
degree distribution.

• Petermann and De Los Rios [2004] and Clauset and Moore
[2005]: Even if a power law, the exponent γ is underestimated.

• Achlioptas et all 2005 and 2009: Rigorous proof of bias and
consequences.
– Poisson degree dist
– d-regular random graphs (all nodes have degree d).

• Recommendation: Traceroute sampling over the union of a
very large number of sources more accurate.



AS level topology measurement: Challenges
AS level connections inferred from BGP routing tables .

• AS level does not reflect physical connectivity (geographically
distant routers can appear as one AS).

• Hidden subgraphs:





! 
! 


! 
! 


 



(Picture from Willinger presentation)



The Internet?

• Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos, “On power-
law relationships of the Internet topology”, ACM SIGCOMM Computer
Communication Review Volume 29 , Issue 4 Oct. 1999.

• Only one order of magnitude (even exponential can look power law in a
short regime).

• γ ≈ 2.1

• (over 7600 cites)

• Only 6000 nodes

• Consequences for
topology generators
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Can there be real Power Laws in data?

• in the WWW .... sure.

• in a social network ... possible.

• in earthquake magnitude ... yes, but to some cutoff.

• in the Internet?

Why power laws cannot continue: Finite size effects, resource
limitations, physical geometric (Internet) vs virtual geometry-free
(WWW)....



The “Who-is-Who” network in Budapest

(Analysis by Balázs Szendröi and Gábor Csányi)

Bayesian curve fitting→ p(k) = ck−γe−αk



Another common distribution: power-law 
with an exponential cutoff 

  p(x) ~ x-a e-x/κ"

starts out as a power law 

ends up as an exponential 

but could also be a lognormal or double exponential… 



“Power law”→ power law with exponential tail

Ubiquitous empirical measurements:

System with: p(x) ∼ x−B exp(−x/C) B C

Full protein-interaction map of Drosophila 1.20 0.038

High-confidence protein-interaction map of Drosophila 1.26 0.27

Gene-flow/hydridization network of plants
as function of spatial distance 0.75 105 m

Earthquake magnitude 1.35 - 1.7 ∼ 1021 Nm

Avalanche size of ferromagnetic materials 1.2 - 1.4 L1.4

ArXiv co-author network 1.3 53

MEDLINE co-author network 2.1 ∼ 5800

PNAS paper citation network 0.49 4.21

(Saturation and PA often put in apriori to explain)



Known Mechanisms for Power Laws

• Phase transitions (singularities)

• Random multiplicative processes (fragmentation)

• Combination of exponentials (e.g. word frequencies)

• Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabási and Albert 1999)

Attractiveness is proportional to size:

ds
dt ∝ s

• Add in saturation [Amaral 2000, Börner 2004], get PA with
exponential decay .



An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

• Goal: Optimize information conveyed for unit transmission cost
(what probability distribution over words gives most info?)

• Consider an alphabet of d characters, with n distinct words

• Order all possible words by length (A,B,C,....AA,BB,CC....)

• “Cost” of j-th word, Cj ∼ logd j

• Ave information per word: H = −
∑
pj log pj

• Ave cost per word: C =
∑
pjCj

• Minimize: d
dpj

(
C
H

)
=⇒ pj ∼ j−α



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

• A series of six letters between 1959-61 in Information and
Control.

• Optimization on hold for many years, but recently resurfaced:

• Calson and Doyle, HOT, 1999

• Fabrikant, Koutsoupias, and Papadimitriou, 2002

• Solé, 2002



Simon and Mandlebrot’s exchange

From Barabasi Network Science



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)
An optimization model of internet growth

• Nodes arriving sequentially at random in a unit square.

• Upon arrival, node i connects to an already existing node j that
minimizes “cost”: αdij + hj

• dij is Euclidean distance between i and j.
hj is the hop distance from j to the root node.

• i.e., connect to the closest node that has good network
performance
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FKP cont

• αdij introduces a scale. The first node to arrive an uninhabited
area collects all the subsequent arrivals.

• Eventually get hubs-and-leaf structure, but the hubs grow in
degree super-linearly.
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Tempered Preferential Attachment

[D’Souza, Borgs, Chayes, Berger, Kleinberg, PNAS 2007.]

[Berger, Borgs, Chayes, D’Souza, Kleinberg, ICALP 2004.]

[Berger, Borgs, Chayes, D’Souza, Kleinberg, CPC, 2005.]

• Optimization
Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.) Gives rise to:

→ PA

→ Saturation

→ Viability
(Not all children have equal fertility, not all spin-offs equally fit, etc).



Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:

0
2 3 1 4

Each incoming node, t, attaches to an existing node j
(where j < t), which minimizes the function:

Ftj = minj [αtjdtj + hj]

Where αtj = αρtj = αntj/dtj.

The “cost” becomes: Ftj = minj [αntj + hj]



Ftj = minj [αntj + hj]

• αtj = αρtj local density, e.g. real estate in Manhattan.

• Reduces to ntj — number of points in the interval between t

and j

• “Transit domains” — captures realistic aspects of Internet costs
(i.e. AS/ISP-transit requires BGP and peering).

• Like FKP, tradeoff intial connection cost versus usage cost.

• Note cases α = 0 and α > 1.



The process on the line (for 1/3 < α < 1/2)
“Border Toll Optimization Problem” (BTOP)

Ftj = minj [αntj + hj]

0 1

t=1

0 2 1

t=2

F(10) = 0

F(21) = 1

F(20) = 0

0 132

t=3

0 2 3 1 4

t=4

F(31) = 1
F(32) = 1

αF(30) = 

F(40) = 3
F(42) = 1 + 2

F(43) = 1 + 

F(41) = 1

α
α

α

(A local model – connect either to closest node, or its parent.)



Mapping onto a tree
(equal in distribution to the line)

t=3

t=2

t=1

0

0

0

0 2 3 1 4

132

2 1

1

t=4

4

1

12

12 3

12 3



From line to tree

Integrating out the dependence on interval length from the
conditional probability:

Pr [xt+1 ∈ Ik |π(t)] =

∫
Pr [xt+1 ∈ Ik |π(t), ~s(t)] dP (~s(t))

=

∫
sk(t)dP (~s(t)) =

1

t+ 1
,

i.e., The probability to land in the k-th interval is uniform over all

intervals.



Preferential attachment with a cutoff

0 2 13 4

Let dj(t) equal the degree of fertile node j at time t.

The number of intervals contributing to j’s fertility is
max(dj(t), A).

Probability node (t+ 1) attaches to node j is:

Pr(t+ 1→ j) = max(dj(t), A)/(t+ 1).



The process on degree sequence

Let N0(t) ≡ number of infertile vertices.

Let Nk(t) ≡ number of fertile vertices of degree k
(for 1 ≤ k < A).

Let NA(t) ≡ number of fertile vertices of degree k ≥ A
(i.e. NA(t) =

∑∞
k=ANk(t) “the tail”)



In terms of pk(t) :

p1(t+ 1)(t+ 1)− p1(t)(t) = ApA(t)− p1(t)
pk(t+ 1)(t+ 1)− pk(t)(t) = (k − 1)pk−1(t)− kpk(t), 1 < k < A

pA(t+ 1)(t+ 1)− pA(t)(t) = (A− 1)pA−1(t).

Proposition 1 (Convergence of expectations to stationary
distribution): pk(t)→ pk.

p1 = ApA − p1
pk = (k − 1)pk−1 − kpk, 1 < k < A

pA = (A− 1)pA−1.



Proposition (2): (Concentration) (i.e., How big are the
fluctuations about nk(t)?) Requires second-moment method.

Recursion relation

pk = (k − 1)pk−1(t)− kpk(t), 1 < k < A.

Implies

pk =
∏k
i=2

(
i−1
i+1

)
p1, 1 < k < A.



Power law for 1 < k < A

pk
p1

=
k∏
i=2

(
i− 1

i+ 1

)
=

2

k(k + 1)

∼ c k−2



Exponential decay for k > A

Recursion relation: pk = A (pk−1 − pk) , k ≥ A.

Implies

pk =
(

A
A+1

)k−A
pA, k ≥ A.

pk =

(
1− 1

A+ 1

)k−A
pA =

[(
1− 1

A+ 1

)A+1
](k−A)/(A+1)

pA

∼ exp [−(k −A)/(A+ 1)] pA.
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Linear optimization and transportation networks
(Applying the “FKP” ideas)

We will study these in-depth later

• M. T. Gastner, M.E.J. Newman, “The spatial structure of
networks”, cond-mat/0407680, 2004.

• M. T. Gastner, M.E.J. Newman, “Shape and efficiency in spatial
distribution networks”, Journal of Statistical Mechanics, 2006.

• M. T. Gastner, M.E.J. Newman, “Optimal design of spatial
distribution networks”, Physical Review E, 74, 016117, 2006.



  

Optimal networks of optimally located facilities



  

Different routing strategies



Summary

• Internet measurement :
– Traceroute sampling (router level)
– Peering agreements/ routing tables (AS level)

• Optimization approaches to network growth :

– FKP (leads to hubs and leaves;
bi-modal not power law degree distribution in N →∞ limit)

– TPA (Pref Attachment with saturation, fertility / viability)

– Gastner/Newman: FKP approach to transport networks.


