ECS 253 / MAE 253, Lecture 5
April 17, 2023

“Internet measurement and Optimization
approaches to network growth”



Announcements

e There will be no quizzes.
e Homework will be submitted via Gradescope

e HW1: To be completed by all. Due Thurs April 19

e HW1a) Project pitch. Due this FRIDAY April 20.
e HW1b) Advanced. Due Thurs April 19

e Project survey results



Aside on Adjacency Matrix and random walks

Consider undirected edges

{1 if edge exists between ¢ and j

0 otherwise.
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Random walk: State Transition Matrix
(Column-normalize the adjacency matrix)

[1/4 1/3 1/2 1/4 0 )
1/4 1/3 0 1/4 0
M=1]1/4 0 1/2 0 0
1/4 1/3 0 1/4 1/2

\ 0 0 0 1/4 1/2

M will have a basis set of eigenvectors {u;} and
corresponding eigenvalues ;.



Perron-Frobenius Theorem

e Applies to irreducible, positive, stochastic matrices.

e “Irreducible” means cannot be block-diagonalized into disjoint
pieces. (i.e., network is connected — only one component).

e “Positive” means each entry M;; > 0.

e “Stochastic” means column normalized (or row normalized).



Perron-Frobenius Theorem
Leading eigenvalue

e One leading eigenvalue with A\; = 1.

e The corresponding eigenvector, v, has strictly positive entries
and the sum over all the entries, > . v;[i] = 1.

e This is the stationary distribution of the random walk dynamics.

e For non-negative matrices (1;; > 0), similar results, but can't
guarantee eigenvectors are positive (in practice, normally still
works ... we will come back to this later in the quarter.)



What about networks with directed edges? (e.g., HW1)

e Does it matter whether A,;; means an edge from node i to j,
or if it means an edge from node j to :?

e In general, it does not matter. But, sometimes it does matter!

e For the graph pictured, if M;; means an edge from node : to j,
then the 5th column will be a vector of all zero’s. And there is
no way to make it a column-normalized stochastic matrix. (But
you can make it row-normalized.)



Last time: “Robust yet fragile”

e “Error and attack tolerance of complex networks”
Random networks with power law degree distribution show:
— Fragility to degree-targeted removal
— Robustness to random node removal
(This is in the context of keeping the full network connected.)
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Albert, Jeong and Barabasi, Nature, 406 (27) 2000

nature

“The Achilles Heel of the Internet”

e “How robust is the Internet?” Yuhai Tu,
Nature (New and Views) 406 (27) 2000.

e “Scientists spot Achilles heel of the Internet”,
CNN, July 26, 2000.



Random vs engineered vs evolved (e.g. biological) systems
Is the Internet really a random power law graph?

e REDUNDANCY!!l a key principle in engineering
(and evolution?).

e The ‘robust yet fragile’ nature of the Internet
Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger, PNAS 102
(4) 2005.

e Degree distribution is not the whole story.



Power law random graph:
Robust to random failure, vulnerable to targeting attack

15

10

20 r

15 |

IIIIIIIIII

Failure

1 ]
0.02

=10

O
O

- d

&

Oo
oc°

I:I|:||:||:I

00 |

O  Attack

o00g

Failure

I:I|:||:I

0.00
f

]
0.01

0.02

Why did Albert, Jeong and Barabasi find that their
sample of the internet topology was vulnerable to
degree targeted attack?



What is the Internet?




Internet

Web of interconnected networks
®m Grows with no central authority
® Autonomous Systems optimize local communication efficiency
® The building blocks are engineered and studied in depth
®m Global entity has not been characterized
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Power Laws in the Internet?
Definition of “node” depends on level of representation

Internet connectivity structures are different at each layer

virtual

physical

APPLICATION

B Web graph

B Email graph

M P2P graph

B and many others ...

B Autonomous System
(AS) graph

M [P-level connectivity

B Router-level connectivity

dynamic

static



The Internet hourglass

Applications
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(picture from David Alderson)



TCP/IP

e The TCP protocol: a collection of rules for formatting, ordering,
and error-checking data sent across a network.

e In 1974, Vincent Cerf and Robert Kahn developed the
Transmission Control Protocol (TCP) which was further split
into the Internet Protocol (IP) and TCP in 1978.

e In 1982, DoD adopted TCP/IP as the standard protocol in the
Internet.

e |P address: a unique 4-byte number to identify each machine



Internet Infrastructure
The IP address

iaentities
,_/ specitic computer
[P address 198.112.168.223
Domain name SSWAAEIEIITR0) 10!

lﬁk iaentities

lop-level aomain

Common top domain names in the US: .com, .mil, .edu, .org

Outside of the US, the top-level domain identifies the country:
uk (England), fr (France), cn (China), ...



Internet
Infrastructure
The Transmission
Control Protocol

Structure of a
TCP/IP
packet

See also: http://en.wikipedia.org/wiki/Transmission_Control_Protocol

Bit offset Bits 0-7 8-15 16-23 24-31
0
32
Source address
64 Computer sending
96 the packet
128
160
Destination address
192
ooa Destination computer
oo TCPlength | apgth of the packet
288 Zeros Next header
320 Source port Destination port
352 Sequence number
384 Acknowledgement number
416 Data Reserved Flags Window
offset
448 Checksum Urgent pointer
480 Options (optional)
Checksum for integrity
480/512+ Data




Internet Infrastructure
The Transmission Control Protocol

How does the sender know it needs to retransmit:

Start
retransmission timer

Did not receive
an acknowledgment
(ACK)

Timer expires ¥

Sender

\DATA%

T

\d

A4

Receiver

HFACKS

T ——_Retransmitted

DATA

e TCP a decentralized protocol with non-linear ramp-up and

random restart.



Autonomous system

A collection of connected Internet Protocol (IP) routing prefixes
under the control of one or more network operators that
presents a common, clearly defined routing policy to the Internet

AS-Level Topology

* Nodes = (sets of) entire
networks (Autonomous
Systems or ASes)

* Links = peering
relationships between
ASes

* Really a map of
economic or business
relationships, not of
physical connectivity




Internet Measurements

The Internet is man-made, so why do we need to
measure it?

®m Because we still don’t really understand it
Sometimes things go wrong
Malicious users

B Measurement for network operations

Detecting and diagnosing problems
What-if analysis of future changes

® Measurement for scientific discovery
Creating accurate models that represent reality
|dentifying new features and phenomena



How to measure the structure of the Internet?

e [raceroute (IP address level) see: unix traceroute command
e BGP tables (AS level)

e “Whois” data (AS level)

Repositories / public resources (mostly AS level)

e University of Oregon Route Views Project
http://www.routeviews.org/

e CAIDA (Cooperative Association for Internet Data Analysis, UCSD)
http://www.caida.org/home/



Internet Topology Measurements
Probing

Direct probing

o
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Indirect probing
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http://www.caida.org/publications/animations/active monitoring/traceroute.mpq




Internet Topology Measurement:
Background
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Problems: Traceroute
— Lakhina, Byers, Crovella, Xie, INFOCOM, 20083.
— Achlioptas, Clauset, Kempe, Moore, STOC, 2005.
— Achlioptas, Clauset, Kempe, Moore, J. of ACM, 56 (4), 20009.

e Build approximately single-source, all-destinations, shortest-
path trees. (Union of traceroute samples.)

— Faloutsos® SIGCOMM, 1999. o5y - TIBSE
— Albert, Jeong, Barabasi, Nature, 2000. 7N ]
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e Sampling bias () Int-11.97
— Nodes close to root sampled more accurately
— High degree nodes sampled more accurately than low
degree. (Follow an edge at random, k times as likely to lead to node
of degree k than degree 1. See next slide.)



Aside: Edge following probability, ¢;.

k edges reach node of degree k:

e Let ¢, denote the probability of following an edge to a node of
degree k.

e ¢ IS proportional to k py.

. k
e Precisely, g = » kak




Traceroute sampling bias

e Lakhina, et al INFOCOM, 2003: Show empirically that Erd0s-
Rényi random graphs (Poisson dist) appear to have power law
degree distribution.

e Petermann and De Los Rios [2004] and Clauset and Moore
[2005]: Even if a power law, the exponent ~ is underestimated.

e Achlioptas et all 2005 and 2009: Rigorous proof of bias and
consequences.
— Poisson degree dist
— d-regular random graphs (all nodes have degree d).

e Recommendation: Traceroute sampling over the union of a
very large number of sources more accurate.



AS level topology measurement: Challenges
AS level connections inferred from BGP routing tables .

e AS level does not reflect physical connectivity (geographically
distant routers can appear as one AS).

e Hidden subgraphs

= www.savwvis.net

= managed IP and
hosting company

= founded 1995

= offering “private IP
with ATM at core”

This “node” is an
entire network!
(not just a router)

http://www.caida.org/tools/measurement/skitter/
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(Picture from Willinger presentation)



The Internet?

Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos, “On power-
law relationships of the Internet topology”, ACM SIGCOMM Computer
Communication Review Volume 29 , Issue 4 Oct. 1999.

Only one order of magnitude (even exponential can look power law in a
short regime).

v~ 2.1 10000 e —
"971108.out" - 1
exp(7.68585) * x ** ( -2.15632) — |
(over 7600 cites) 1000 F
Only 6000 nodes 100 |

Consequences for ol
topology generators

1 | .......10 | 100
(a) Int-11-97



Can there be real Power Laws in data?

e in the WWW .... sure.
e in a social network ... possible.
e in earthquake magnitude ... yes, but to some cutoff.

e in the Internet?

Why power laws cannot continue: Finite size effects, resource
limitations, physical geometric (Internet) vs virtual geometry-free
(WWW)....



The “Who-is-Who” network in Budapest

(Analysis by Balazs Szendr6i and Gabor Csanyi)

Bayesian curve fitting — p(k) = ck ek



Another common distribution: power-law
with an exponential cutoff

p(X) ~ X-a e-X/K

starts out as a power law

ends up as an exponential

X

but could also be a lognormal or double exponential...



“Power law” — power law with exponential tail

Ubiquitous empirical measurements:

System with: p(z) ~ 2~ " exp(—z/C) B C
Full protein-interaction map of Drosophila 1.20 0.038
High-confidence protein-interaction map of Drosophila | 1.26 0.27
Gene-flow/hydridization network of plants
as function of spatial distance 0.75 10° m
Earthquake magnitude 1.35-1.7 | ~ 10 Nm
Avalanche size of ferromagnetic materials 12-14 | L™*
ArXiv co-author network 1.3 53
MEDLINE co-author network 2.1 ~ 5800
PNAS paper citation network 0.49 4.21

(Saturation and PA often put in apriori to explain)




Known Mechanisms for Power Laws

e Phase transitions (singularities)
e Random multiplicative processes (fragmentation)
e Combination of exponentials (e.g. word frequencies)

e Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabasi and Albert 1999)

Attractiveness is proportional to size:

ds
dtO(S

e Add in saturation [Amaral 2000, Borner 2004], get PA with
exponential decay .



An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

e Goal: Optimize information conveyed for unit transmission cost
(what probability distribution over words gives most info?)

e Consider an alphabet of d characters, with n distinct words
e Order all possible words by length (A,B,C,....AA,BB,CC....)
e “Cost” of j-th word, C; ~ log, j

e Ave information per word: H = — > p;logp;

e Ave cost per word: C'= > p,C;

e Minimize: & (%) — pj~j @



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

e A series of six letters between 1959-61 in Information and
Control.

e Optimization on hold for many years, but recently resurfaced:
e Calson and Doyle, HOT, 1999
e Fabrikant, Koutsoupias, and Papadimitriou, 2002

e Solé, 2002



Simon and Mandlebrot’s exchange

-

In An Informal Theory of the Statistical 1953

Structure of Languages [26] Benoit
Mandelbrot proposes optimization as the
origin of power laws.

Mandelbrot publishes 8 Simon's model is analytically circular...
comment on Simon's paper [27]
writing 192

Benoit

In a 19 page response entitled
. Final Note. Mzndelbrot
states [29]:

Benoit

In the creatively titled Post
Scriptum to Final Note

Mandlebrot [31) writes

Benoit

n On a Class of Skew Distribution Functions
Herbert Simon [6] proposes randomness
as the origin of power laws and dismisses
Mandelbrot's claim that power law are
rooted in optimization

1955

Dr. Mandelbrot's principal and mathemati-
cal objections to the model are shown to be

The essence of Simon’s lengthy
reply a year later is well .
unfounded

0w

summarized in its abstract [28).

Herbert

..Most of Simon's (1960) reply was irrelevant.

@e

Simon's subsequent Reply to
‘Final Note' by Mandelbrot

does not concede [30]

This present ‘Reply’ refutes the almost
entirely new arguments introduced by Dr.
Mandelbrot in his “Final Note"... &

My criticism has not changed since I first
had the privilege of commenting upon a
draft of Simon. & @

Dr. Mandelbrot has proposed a new set of
objections to my 1955 models of Yule

distributions. Like earlier objections, these
are invalid. 1961

Simon’s final reply ends but
does not resolve the debate [32]

From Barabasi Network Science



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)
An optimization model of internet growth

e Nodes arriving sequentially at random in a unit square.

e Upon arrival, node ¢ connects to an already existing node j that
minimizes “cost”: Ctdij -+ hj

e d;; is Euclidean distance between 7 and j.
h; is the hop distance from j to the root node.

e i.e., connect to the closest node that has good network
performance R ”




FKP cont

e ad;; introduces a scale. The first node to arrive an uninhabited
area collects all the subsequent arrivals.

e Eventually get hubs-and-leaf structure, but the hubs grow in
degree super-linearly.




Tempered Preferential Attachment

[D’Souza, Borgs, Chayes, Berger, Kleinberg, PNAS 2007 ]
[Berger, Borgs, Chayes, D’Souza, Kleinberg, /ICALP 2004.]
[Berger, Borgs, Chayes, D’Souza, Kleinberg, CPC, 2005.]

e Optimization
Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.) Gives rise to:

— PA
— Saturation

~ Viability

(Not all children have equal fertility, not all spin-offs equally fit, etc).




Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:

| |

|

|| | |
| | |
o 111 T

23 1 4

Each incoming node, ¢, attaches to an existing node j
(where j < t), which minimizes the function:

Fij = min [oy;dy; + hyl

Where oy = apy; = anyg/dy;.

The “cost” becomes: | F'y; = min; [Omtj T hj]




th - minj [omtj —+ hj]

e (;; = (py; local density, e.g. real estate in Manhattan.

e Reduces to n;; — number of points in the interval between ¢
and j

e “Transit domains” — captures realistic aspects of Internet costs
(i.,e. AS/ISP-transit requires BGP and peering).

e Like FKP, tradeoff intial connection cost versus usage cost.

e Notecasesa = 0Oand a > 1.



The process on the line (for 1/3 < a < 1/2)
“Border Toll Optimization Problem” (BTOP)

th — minj [omtj -+ hj]

F(30) =a
| F(10)=0 t=3 | F(32)=1

D

t=1
0 1 0o 23 1 FGB) =1
F(40) = 3q
F(20) = 0 _
t=2 O (> | =4 o Ve o i F(42) 1+2a
F(1) =1 F(43)= 1+ a
0o 2 1 o 23 1 4
F(41) = 1

(A local model — connect either to closest node, or its parent.)



Mapping onto a tree
(equal in distribution to the line)

0 1
A
0 2 1
0 2 3 1

t=1

t=2

t=4

A\

1

2 1
2 3 1




From line to tree

Integrating out the dependence on interval length from the
conditional probability:

Pr|xiyq € Iy |m(t)]

/ Pr iz € I (1), 5()] dP(3(0)

[ sewdpEe) =

l.e., The probability to land in the k-th interval is uniform over all

Intervals.



Preferential attachment with a cutoff

Let d;(t) equal the degree of fertile node j at time .

The number of intervals contributing to j’s fertility is
max(d;(t), A).

Probability node (¢ + 1) attaches to node j is:

Pr(t+1—j)=max(d;(t),A)/(t+1).




The process on degree sequence

Let No(t) = number of infertile vertices.

Let Ni(t) = number of fertile vertices of degree k
(for1 <k < A).

Let N4(t) = number of fertile vertices of degree k > A
(i.e. Na(t) = > .- 4 Ni(t) “the tail”)



In terms of py(t) :

pit+1)(E+1) —pi()(t) = Apa(t) —pi(t)
pre(t+1)(t+1) — pr(t)(t) (k — Dpr_1(t) — kpi(t), 1<k< A
pa(t+1)(t+1)—p (A—=T1)pa_1(t).

AN
~~
N )
~—
~~
N )
~—
|

Proposition 1 (Convergence of expectations to stationary
distribution):  pg(t) — px.

p1 = Apa—p1
pr = (k—1)pr_1— kpx, l<k< A
paA = (A - 1)pA—1-



Proposition (2): (Concentration) (i.e., How big are the
fluctuations about nx(¢)?) Requires second-moment method.

Recursion relation

pr = (k— V)pr_1(t) — kpi(t), 1 <k<A.

Implies

Pk = Hfzz (211) p1, 1<k<A.




Powerlawfor1 < k< A

k

Z;_]; B H(ZI) :k(k2+1)

1=2

~ ck7?



Exponential decay for £ > A

Recursion relation: p. = A (pr_1 — px) ,

Implies

4\ kA
Pk = <_A+1) pa, k> A.

1 k—A 1 A+17]
— 1 —— — (1= ——
( A+1> pa ( A+1>

~ exp|—(k—A)/(A+1)]pa.

k> A.

(k—=A)/(A+1)

pA



April 2007

April 10,2007 | vol. 104 | no. 15 | pp. 6091-6492

Proceedings of the National Academy of Sciences of the United States of America WWW.PNas.org

Preferential attachment from
optimization
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Linear optimization and transportation networks
(Applying the “FKP” ideas)
We will study these in-depth later

e M. T. Gastner, M.E.J. Newman, “The spatial structure of
networks”, cond-mat/0407680, 2004.

e M. T. Gastner, M.E.J. Newman, “Shape and efficiency in spatial
distribution networks”, Journal of Statistical Mechanics, 2006.

e M. T. Gastner, M.E.J. Newman, “Optimal design of spatial
distribution networks”, Physical Review E, 74, 016117, 2006.



Optimal networks of optimally located facilities

The optimal network design problem then consists of two parts.
First, we distribute p facilities on the map by solving the p-median

problem.
Then we find the network minimizing the total cost C.




Different routing strategies
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Summary

e Internet measurement :
— Traceroute sampling (router level)
— Peering agreements/ routing tables (AS level)

e Optimization approaches to network growth :

— FKP (leads to hubs and leaves;
bi-modal not power law degree distribution in N — oo limit)

— TPA (Pref Attachment with saturation, fertility / viability)
— Gastner/Newman: FKP approach to transport networks.



