ECS 253 / MAE 253, Lecture 6
April 19, 2023

¢ “Percolation and Epidemiology on Networks”



Announcements

e Need help with math? Visit the
Academic Assistance and Tutoring Center for Mathematics
https://tutoring.ucdavis.edu/math

e HW1: Due Thurs, April 20 11:59pm via Gradescope.

e HW1b: Due Thurs, April 20 11:59pm via Gradescope.
e HW1a: Project pitch ... Due .... Friday, (at 11:50pm) via Canvas.

e See the resources for writing research papers at bottom of
“Lecture” schedule.

e Canvas discussion on focus and concentration:
Practice “Distraction free hour”



Processes on networks

e Spreading processes

e Search for information

Interplay of topology and function (see, e.g.,)

e Barrat, et al, Dynamical processes on Complex Networks

e Porter and Gleeson, Dynamical systems on networks: A
tutorial



Epidemiology

e Understanding how diseases/opinions spread on networks

e Human diseases

e Computer viruses (typically spread via email networks)

— Typically attached to an executable program.
— Typically corrupt files on host computer

e Computer worms (spread directly from computer to computer
via network connections)

— Worms are self-contained.
— Generally harm the network and consume bandwidth.



Starting simply

Understand flow of one virus on a static network.

e SIR (Susceptible, Infected, Removed)

e SIS (Susceptible, Infected, Susceptible)

e S = don’t have the disease but can catch it if exposed.
e | = have the disease and can pass it on.

e R = recovered with permanent immunity (or “removed”).



Traditional mathematical epidemiology

o (3 — probability of an S catching disease from an |.

e 7Y — probability of an | recovering and becoming an R.

Neglect any spatial structure, and assume fully mixed (i.e., any
individual is equally likely to come into contact with any other).

e In graph theory terms, this would be the complete graph.

e Also called “mean-field” in physics.




The resulting rate equations:
The Kermack-McKendrick model:

'Kermack and McKendrick, “A Contribution to the Mathematical
Theory of Epidemics.” Proc. Roy. Soc. Lond. A 115, 1927]
/Anderson and May, “Population Biology of Infectious Diseases:
Part |.” Nature 280, 1979]

Three coupled ordinary differential equations:
1.9 = _BIS,
2. dI = (1S — I,



Epidemiological threshold

TC:@

e Where S is initial size of susceptible population.

e ForT. < 1 disease dies out, dI /dt < 0.
(An I infects less than one S before recovering or dying).

e For T. > 1 disease will spread until full population gets
infected, dI/dt > 0.
(An I infects more than one S).



Disease spread on a network
(No longer mean field)

/////

/i



Wave-like spreading in the distant past

Spread of Bubonic Plague
in Europe
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Figure 10.9 The Great Plague

From Barabasi, Network Science book



Network structure matters!

e GLEAMviz.org

see. e.g.,

e Colizza, V., Barrat, A., Barthelemy, M., & Vespignani, A. “The
role of the airline transportation network in the prediction and
predictability of global epidemics”. PNAS, 103(7), (2006).

e Colizza, Vittoria, Romualdo Pastor-Satorras, and Alessandro
Vespignani. “Reaction-diffusion processes and metapopulation
models in heterogeneous networks.” Nature Physics 3 (2007).



Incorporating network structure in mathematical models:

e Simpler than SIS/SIR:
Percolation on a network; an “SI” model

e SIS/SIR models



ER onset of the giant component: “Percolation™
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Bond Percolation (Contact processes)

|Grassberger, “On the critical behavior of the general epidemic
process and dynamical percolation”, Math. Biosci., 63, 1983.]

e Start out with the complete graph as the underlying structure
e Assume random distribution of initial carriers

e Probability disease is transmitted corresponds to the edge
occupancy probability, p.

e The size of the largest connected component is the size of the
largest outbreak (the number of Infecteds)

e (Recall the Erdos-Renyi random graph)



Aside:
Bond percolation versus site percolation on a lattice

Useful java applets:

e http://stp.clarku.edu/simulations/percolation/

e http://www.math.colostate.edu/~achter/



Incorporating network structure:
Bond Percolation (Contact processes)

|Grassberger, “On the critical behavior of the general epidemic
process and dynamical percolation”, Math. Biosci., 63, 1983.]

e Assume randomly chosen initial carrier.

e Probability disease is transmitted corresponds roughly to the
edge occupancy probability. Remember the Erdos-Renyi
random graph, but here we are given an underlying network
and are “activating” selected edges.



Bond percolation, cont.

e Look at distribution of cluster sizes. These correspond to
extent of disease spread. Note all we get are the final I and
S values. Says nothing about the dynamics of spreading! Just
the final state.

e The percolation transition corresponds to the epidemic
threshold. The size of the giant component corresponds to
the size of the epidemic.

e How do we choose the underlying graph?

— Almost every social network studied shows heavy-tailed
distribution.

— The Internet has a highly right-skewed degree distribution.
— Power law random graphs relatively easy to analyze.



Behavior on ER random graphs:
() is infection rate)

Epidemic Threshold
m Infinite graphs
A< A\q A1 S A< A A2 <A
extinction weak survival strong survival
A

m Finite graphs - A2

logarithmic polynomial exponential
survival time survival time (super poly)

survival time

A1 A2

Slide courtesy of Amin Saberi



Percolation/epidemic threshold on power law random
graphs, P(k) ~ k7 for2 <~ <3

e “Network robustness and fragility: Percolation on random graphs’,
Callaway, Newman, Strogatz and Watts, Phys. Rev. Lett., 85 (2000).

e “Epidemic Spreading in Scale-Free Networks”, R. Pastor-Satorras and A.
Vespignani Phys. Rev. Lett. 86 (2001).

e “The Epidemic Threshold in Scale-Free Graphs”, N. Berger, C. Borgs,
J. Chayes, and A. Saberi, Symposium on Discrete Algorithms (SODA),
(2005).

Find T, = 0, in other words absence of epidemiological threshold.

For all 5 > 0 and Sy > 0, the steady-state result is that some
non-zero, fraction of the population has the disease.




Results from Callaway et al

e Degree dist, pi. ~ k—ve k/C (power law with cutoff).

e Let ¢, be probability that a vertex of degree k& is “infected”.
For simplicity they analyze ¢, = ¢ (independent of k).

e Then p.q is probability of having degree k£ and being infected.

e Calculate (s), the mean cluster size. Find (via generating
functions ... details omitted here) that

q* (k)
1 —(q(k?) /(k))

(s) =q+

e (s) — oo when denominator 1 — ¢ (k%) / (k) =0, i.e.,

_ (k)
e )




q. versus C, the cutoff

0.4

o
)

threshold ¢,

Critical infection probability for epidemic outbreak ¢. — 0 as the
graph becomes a true power law.

(Epidemic if ¢ > q. = <<:2>>. Also means expected number of second neighbors

(k?) exceeds expected number of first (k) for “locally tree-like” networks.)



From Percolation to SIS dynamics on a network
SIS = Susceptible-Infected-Susceptible

e Epidemic Spreading in Scale-Free Networks, R. Pastor-
Satorras and A. Vespignani Phys. Rev. Lett. 86 (2001).

e Rigorous proof:
The Epidemic Threshold in Scale-Free Graphs, N. Berger,
C. Borgs, J. Chayes, and A. Saberi, Symposium on Discrete
Algorithms (SODA), (2005).

(Always enough hubs that disease on a hub’s neighbor and reinfects hub.
(Recall this is SIS))




Following Pastor-Satorras and A. Vespignani

e pi(t) is density of infected nodes of degree k at time .
(Hence [1 — pr(t)] is probability a node of degree k is NOT
iInfected.)

e \ = 3/~, the effective spreading rate. Set v = 1.
(Recall 3 is infection rate, ~ is recovery.)

e The time evolution (a “master equation’”/ “rate equation”):

dpx(t)
dt

= —pr(t) + Xk [1 — pr(1)] O(p(1))

e First term: nodes recover with unit rate (v = 1)

e Second term: Infection rate A, times number of neighbors £,
times prob node of degree k is healthy, times prob of being
connected to an infected node O(p(t)).



Edge following probability

e Prob of following an edge to a node of degree k is k py

e S0 probability of neighbor being infected (p,(t) density of infected):

0p1) = LD = S ke it

k edges reach node of degree k:




o Steady state of master egn, %= = () implies:

Ak ©
- 14+X6

Pk

¢ Inserting into expression for O:

1 Ak ©
— N
© <k>§k: P13y e

(Note ©® = 0 always satisfies, but is quite dull! ... p, = 0)



Searching for more solutions to last equation,
ininterval 0 <0 <1

e Taking derivative w.r.t. © of both sides of last equation:

d |1 A\k©O |
k =1 t A= A,
_ k 1 1e=0

e solving this:

1 _(+?)
<k>§kjkpk Aok =t

Critical spreading rate: | A\, = <<ki2>>

If (k?) — oo but (k) finite, then \. — 0.



Last three slides, actually pieced from three papers

e Epidemic Spreading in Scale-Free Networks, R. Pastor-
Satorras and A. Vespignani Phys. Rev. Lett. 86 (2001).

e Epidemic dynamics in finite size scale-free networks, R Pastor-
Satorras, A Vespignani Physical Review E (2002).

e Immunization of complex networks, R Pastor-Satorras, A
Vespignani Physical Review E (2002).



From SIS to SIR

e PSV'01 and BBCS'05 consider SIS.

e R. M. May, A. L. Lloyd “Infection dynamics on scale-free
networks” Phys. Rev. E, (2001). Show similar results hold for
SIR. (Lord Robert May, founder of theoretical ecology/population biology/evolutionary

game theory... great wiki entry)

Immunization

e Many subsequent papers on immunization by knocking out
nodes.

e But the recovery rate depends on other attributes of node
(age, medical history....) and can override network structure.
(i.e., less overall infected or less overall fatalities important?)



Implications for disease spread?

e Are human contact networks and the Internet really like power
law random graphs?

e Yes, they have the power law degree disribution.

e But usually, also more structure:
— Geographic correlation.
— Degree-degree correlations.
— High transitivity for social networks.

e Each of the three factors alone can make 7. > 0.

Developing a model that accurately captures human connectivity
still in the works.



Immunization:
Coupling percolation and network resilience

e View vaccination as removing a particular set of vertices from
the network.

e As we saw previously, removing the high-degree nodes from a
power law random graph, quickly destroys connectivity.

e How to find these “hubs” in a social network, for instance a
network for sexually transmitted diseases?



Identifying Hubs

e Want to sample edges rather than nodes.

e Choose node at random, probability of choosing node of
degree k is pg.

e Choose an edge at random, probability of it leading to a node
of degree k proportional to kp;..

e How to chose an edge at random?




Acquaintance vaccination

e Choose a person at random.

e Then choose a friend of that person to vaccinate.

Cohen, ben-Avraham, and Havlin, “Efficient Immunization of
Populations and Computers”, Phys. Rev. Lett. 91, 247901
(2003)

Show by computer simulation and analytic calculations that this
IS much more effective than random vaccination.

This type of acquaintance vaccination actually used to control
small pox and foot-and-mouth (“ring vaccination”)



How to model a real human population?
(Using census data)

| Bansal, Pourbohloul, Meyers, “The Spread of Infectious
Disease through Contact Networks”,
Talk given at MSRI, April 2005.]

Not published, but a video can be viewed at:
http://angelina.msri.org/VMath/show_speakertalks ?field _pid=900000033

See further references at the end.

Take actually census data from the city of Vancouver.



Constructing connectivity via census data

e Households
e Classrooms
e Businesses

e “Shopping”



Who to immunize?



Strategy one: Immunize the “hubs”

e Receptionists
e Bus drivers

e School teachers

This results in the least number of people becoming infected.



Strategy two: Immunize the most frail

e Elderly and children.

More people overall get infected, but less people overall die as a
result of the disease!



Further work on network epidemiology

Bansal S, Pourbohloul B, Meyers LA (2006) A Comparative Analysis of
Influenza Vaccination Programs. PLoS Med 3(10)

http://bansallab.com
http://www.biosci.utexas.edu/ib/faculty/meyers.htm
http://www.erikvolz.info/

Brockman/Vespignani work on influenza (including “where’s George”
mobility tracking, and transportation nets spreading disease),
http://rocs.northwestern.edu/

http://mobs.soic.indiana.edu/media

Effects of clustering on epidemic thresholds (Newman, Gleeson, Volz
alternate calculations and implications)



