
ECS 253 / MAE 253, Lecture 6
April 19, 2023

• “Percolation and Epidemiology on Networks”



Announcements

• Need help with math? Visit the
Academic Assistance and Tutoring Center for Mathematics
https://tutoring.ucdavis.edu/math

• HW1: Due Thurs, April 20 11:59pm via Gradescope.

• HW1b: Due Thurs, April 20 11:59pm via Gradescope.

• HW1a: Project pitch ... Due .... Friday, (at 11:50pm) via Canvas.

• See the resources for writing research papers at bottom of
“Lecture” schedule.

• Canvas discussion on focus and concentration:
Practice “Distraction free hour”



Processes on networks

• Spreading processes

• Search for information

Interplay of topology and function (see, e.g.,)

• Barrat, et al, Dynamical processes on Complex Networks

• Porter and Gleeson, Dynamical systems on networks: A
tutorial



Epidemiology

• Understanding how diseases/opinions spread on networks

• Human diseases

• Computer viruses (typically spread via email networks)

– Typically attached to an executable program.
– Typically corrupt files on host computer

• Computer worms (spread directly from computer to computer
via network connections)

– Worms are self-contained.
– Generally harm the network and consume bandwidth.



Starting simply

Understand flow of one virus on a static network.

• SIR (Susceptible, Infected, Removed)

• SIS (Susceptible, Infected, Susceptible)

• S = don’t have the disease but can catch it if exposed.

• I = have the disease and can pass it on.

• R = recovered with permanent immunity (or “removed”).



Traditional mathematical epidemiology

• β – probability of an S catching disease from an I.

• γ – probability of an I recovering and becoming an R.

Neglect any spatial structure, and assume fully mixed (i.e., any
individual is equally likely to come into contact with any other).

• In graph theory terms, this would be the complete graph.

• Also called “mean-field” in physics.



The resulting rate equations:
The Kermack-McKendrick model:

[Kermack and McKendrick, “A Contribution to the Mathematical
Theory of Epidemics.” Proc. Roy. Soc. Lond. A 115, 1927]

[Anderson and May, “Population Biology of Infectious Diseases:
Part I.” Nature 280, 1979]

Three coupled ordinary differential equations:

1. dSdt = −βIS,

2. dIdt = βIS − γI,

3. dRdt = γI.



Epidemiological threshold

Tc = βS0
γ

• Where S0 is initial size of susceptible population.

• For Tc < 1 disease dies out, dI/dt < 0.
(An I infects less than one S before recovering or dying).

• For Tc > 1 disease will spread until full population gets
infected, dI/dt > 0.
(An I infects more than one S).



Disease spread on a network
(No longer mean field)



Wave-like spreading in the distant past

From Barabasi, Network Science book



Network structure matters!

• GLEAMviz.org

see. e.g.,

• Colizza, V., Barrat, A., Barthelemy, M., & Vespignani, A. “The
role of the airline transportation network in the prediction and
predictability of global epidemics”. PNAS, 103(7), (2006).

• Colizza, Vittoria, Romualdo Pastor-Satorras, and Alessandro
Vespignani. “Reaction-diffusion processes and metapopulation
models in heterogeneous networks.” Nature Physics 3 (2007).



Incorporating network structure in mathematical models:

• Simpler than SIS/SIR:
Percolation on a network; an “SI” model

• SIS/SIR models



ER onset of the giant component: “Percolation”
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Bond Percolation (Contact processes)

[Grassberger, “On the critical behavior of the general epidemic
process and dynamical percolation”, Math. Biosci., 63, 1983.]

• Start out with the complete graph as the underlying structure

• Assume random distribution of initial carriers

• Probability disease is transmitted corresponds to the edge
occupancy probability, p.

• The size of the largest connected component is the size of the
largest outbreak (the number of Infecteds)

• (Recall the Erdös-Renyi random graph)



Aside:
Bond percolation versus site percolation on a lattice

Useful java applets:

• http://stp.clarku.edu/simulations/percolation/

• http://www.math.colostate.edu/∼achter/



Incorporating network structure:

Bond Percolation (Contact processes)

[Grassberger, “On the critical behavior of the general epidemic
process and dynamical percolation”, Math. Biosci., 63, 1983.]

• Assume randomly chosen initial carrier.

• Probability disease is transmitted corresponds roughly to the
edge occupancy probability. Remember the Erdös-Renyi
random graph, but here we are given an underlying network
and are “activating” selected edges.



Bond percolation, cont.

• Look at distribution of cluster sizes. These correspond to
extent of disease spread. Note all we get are the final I and
S values. Says nothing about the dynamics of spreading! Just
the final state.

• The percolation transition corresponds to the epidemic
threshold. The size of the giant component corresponds to
the size of the epidemic.

• How do we choose the underlying graph?

– Almost every social network studied shows heavy-tailed
distribution.

– The Internet has a highly right-skewed degree distribution.

– Power law random graphs relatively easy to analyze.



Behavior on ER random graphs:
(λ is infection rate)

Slide courtesy of Amin Saberi



Percolation/epidemic threshold on power law random
graphs, P (k) ∼ k−γ for 2 < γ ≤ 3

• “Network robustness and fragility: Percolation on random graphs”,
Callaway, Newman, Strogatz and Watts, Phys. Rev. Lett., 85 (2000).

• “Epidemic Spreading in Scale-Free Networks”, R. Pastor-Satorras and A.
Vespignani Phys. Rev. Lett. 86 (2001).

• “The Epidemic Threshold in Scale-Free Graphs”, N. Berger, C. Borgs,
J. Chayes, and A. Saberi, Symposium on Discrete Algorithms (SODA),
(2005).

Find Tc = 0, in other words absence of epidemiological threshold.

For all β > 0 and S0 > 0, the steady-state result is that some
non-zero, fraction of the population has the disease.



Results from Callaway et al

• Degree dist, pk ∼ k−γe−k/C (power law with cutoff).

• Let qk be probability that a vertex of degree k is “infected”.
For simplicity they analyze qk = q (independent of k).

• Then pkq is probability of having degree k and being infected.

• Calculate 〈s〉, the mean cluster size. Find (via generating
functions ... details omitted here) that

〈s〉 = q +
q2 〈k〉

1− (q 〈k2〉 / 〈k〉)

• 〈s〉 → ∞ when denominator 1− q
〈
k2
〉
/ 〈k〉 = 0, i.e.,

qc = 〈k〉
〈k2〉



qc versus C, the cutoff
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FIG. 1. Probability Ps that a randomly chosen vertex belongs
to a cluster of s sites for k ! 10, t ! 2.5, and q ! 0.65 from
numerical simulation on systems of 107 sites (circles) and our
exact solution (solid line). Inset: the percolation threshold qc
from Eq. (12) (solid lines) vs computer simulations with t !
1.5 (circles), 2.0 (squares), and 2.5 (triangles).

A result equivalent to this one has been derived previously
by Cohen et al. [2] by different means.

In the language of disease propagation qc is the point
at which an epidemic of the disease first occurs. In the
language of network robustness, it is the point at which the
network achieves large scale connectivity and can therefore
function as an effective distribution network. Conversely,
if we are approaching the transition from values of q above
qc it is the point at which a sufficient number of individuals
are immune to a disease to prevent it from spreading, or the
point at which a large enough number of nodes have been
deleted from a distribution network to prevent distribution
on large scales.

The inset in Fig. 1 shows the behavior of the percola-
tion threshold with the cutoff parameter k for a variety of
values of t. Note that as the values of k become large,
the percolation threshold becomes small, indicating a high
degree of robustness of the network to random deletion
of nodes. For t ! 2.5 (roughly the exponent for the In-
ternet data [8]) and k ! 100, the percolation threshold
is qc ! 0.17, indicating that one can remove more than
80% of the nodes in the network without destroying the gi-
ant component — the network will still possess large-scale
connectivity. This result agrees with recent studies of
the Internet [1,2] which indicate that network connectiv-
ity should be highly robust against the random removal of
nodes.

Another issue that has attracted considerable recent at-
tention is the question of robustness of a network to non-
random deletion targeted specifically at nodes with high
degree. Albert et al. [1] and Broder et al. [3] both looked
at the connectivity of a network with power-law distributed
vertex degrees as the vertices with highest degree were
progressively removed. In the language of our percolation
models, this is equivalent to setting

qk ! u!kmax 2 k" , (13)

where u is the Heaviside step function [21]. This re-
moves (unoccupies) all vertices with degree greater than
kmax. To investigate the effect of this removal, we cal-
culate the size of the giant component in the network, if
there is one. Above the percolation transition the genera-
ting function H0!x" gives the distribution of the sizes of
clusters of vertices which are not in the giant component
[17], which means that H0!1" is equal to the fraction of
the graph which is not occupied by the giant component.
The fraction S which is occupied by the giant component
is therefore given by

S ! 1 2 H0!1" ! F0!1" 2 F0!u" , (14)

where u is a solution of the self-consistency condition

u ! 1 2 F1!1" 1 F1!u" . (15)

In cases where this last equation is not exactly solvable we
can evaluate u by numerical iteration starting from a suit-
able initial value. In Fig. 2 we show the results for S from
this calculation for graphs with pure power-law degree dis-
tributions as a function of kmax for a variety of values of t.
(The removal of vertices with high degree regularizes the
calculation in a similar way to the inclusion of the cutoff
k in our earlier calculation, so no other cutoff is needed in
this case.) On the same plot we also show simulation re-
sults for this problem, and once more agreement of theory
and simulation is good.

Opinions appear to differ over whether networks such
as this are robust or fragile to this selective removal of
vertices. Albert et al. [1] point out that only a small frac-
tion of the highest-degree vertices need be removed to
destroy the giant component in the network and hence
remove all long-range connectivity. Conversely, Broder
et al. [3] point out that one can remove all vertices with
degree greater than kmax and still have a giant component
even for surprisingly small values of kmax. As we show
in Fig. 2, both viewpoints are correct: they are merely
different representations of the same data. In the upper
frame of the figure, we plot giant component size as a
function of the fraction of vertices removed from the net-
work, and it is clear that the giant component disappears
when only a small percentage are removed — just 1% for
the case t ! 2.7—so that the network appears fragile. In
the lower frame we show the same data as a function of
kmax, the highest remaining vertex degree, and we see that
when viewed in this way the network is, in a sense, robust,
since kmax must be very small to destroy the giant compo-
nent completely — just 10 in the case of t ! 2.7.

To conclude, we have used generating function methods
to solve exactly for the behavior of a variety of percolation
models on random graphs with any distribution of vertex
degrees, including uniform site, bond and site/bond

5470

Critical infection probability for epidemic outbreak qc→ 0 as the
graph becomes a true power law.

(Epidemic if q > qc = 〈k〉
〈k2〉. Also means expected number of second neighbors〈

k2
〉

exceeds expected number of first 〈k〉 for “locally tree-like” networks.)



From Percolation to SIS dynamics on a network

SIS ≡ Susceptible-Infected-Susceptible

• Epidemic Spreading in Scale-Free Networks, R. Pastor-
Satorras and A. Vespignani Phys. Rev. Lett. 86 (2001).

• Rigorous proof:
The Epidemic Threshold in Scale-Free Graphs, N. Berger,
C. Borgs, J. Chayes, and A. Saberi, Symposium on Discrete
Algorithms (SODA), (2005).
(Always enough hubs that disease on a hub’s neighbor and reinfects hub.
(Recall this is SIS))



Following Pastor-Satorras and A. Vespignani

• ρk(t) is density of infected nodes of degree k at time t.
(Hence [1− ρk(t)] is probability a node of degree k is NOT
infected.)

• λ = β/γ, the effective spreading rate. Set γ = 1.
(Recall β is infection rate, γ is recovery.)

• The time evolution (a “master equation”/ “rate equation”):

dρk(t)

dt
= −ρk(t) + λk [1− ρk(t)] Θ(ρ(t))

• First term: nodes recover with unit rate (γ = 1)

• Second term: Infection rate λ, times number of neighbors k,
times prob node of degree k is healthy, times prob of being
connected to an infected node Θ(ρ(t)).



Edge following probability

• Prob of following an edge to a node of degree k is k pk

• So probability of neighbor being infected (ρk(t) density of infected):

Θ(ρ(t)) =

∑
k k pk ρk(t)∑

k k pk
=

1

〈k〉
∑
k

k pk ρk(t)

k edges reach node of degree k:



• Steady state of master eqn, dρkdt = 0 implies:

ρk =
λ k Θ

1 + λ Θ

• Inserting into expression for Θ:

Θ =
1

〈k〉
∑
k

k pk
λ k Θ

1 + λ Θ

(Note Θ = 0 always satisfies, but is quite dull! ... ρk = 0)



Searching for more solutions to last equation,
in interval 0 < Θ ≤ 1

• Taking derivative w.r.t. Θ of both sides of last equation:

d

dΘ

[
1

〈k〉
∑
k

k pk
λ k Θ

1 + λ Θ

]∣∣∣∣∣
Θ=0

= 1, at λ = λc

• solving this:

1

〈k〉
∑
k

k pk λc k =

〈
k2
〉

〈k〉
λc = 1

Critical spreading rate: λc = 〈k〉
〈k2〉

If
〈
k2
〉
→∞ but 〈k〉 finite, then λc→ 0.



Last three slides, actually pieced from three papers

• Epidemic Spreading in Scale-Free Networks, R. Pastor-
Satorras and A. Vespignani Phys. Rev. Lett. 86 (2001).

• Epidemic dynamics in finite size scale-free networks, R Pastor-
Satorras, A Vespignani Physical Review E (2002).

• Immunization of complex networks, R Pastor-Satorras, A
Vespignani Physical Review E (2002).



From SIS to SIR

• PSV’01 and BBCS’05 consider SIS.

• R. M. May, A. L. Lloyd “Infection dynamics on scale-free
networks” Phys. Rev. E, (2001). Show similar results hold for
SIR. (Lord Robert May, founder of theoretical ecology/population biology/evolutionary

game theory... great wiki entry)

Immunization

• Many subsequent papers on immunization by knocking out
nodes.

• But the recovery rate depends on other attributes of node
(age, medical history....) and can override network structure.
(i.e., less overall infected or less overall fatalities important?)



Implications for disease spread?

• Are human contact networks and the Internet really like power
law random graphs?

• Yes, they have the power law degree disribution.

• But usually, also more structure:
– Geographic correlation.
– Degree-degree correlations.
– High transitivity for social networks.

• Each of the three factors alone can make Tc > 0.

Developing a model that accurately captures human connectivity
still in the works.



Immunization:
Coupling percolation and network resilience

• View vaccination as removing a particular set of vertices from
the network.

• As we saw previously, removing the high-degree nodes from a
power law random graph, quickly destroys connectivity.

• How to find these “hubs” in a social network, for instance a
network for sexually transmitted diseases?



Identifying Hubs

• Want to sample edges rather than nodes.

• Choose node at random, probability of choosing node of
degree k is pk.

• Choose an edge at random, probability of it leading to a node
of degree k proportional to kpk.

• How to chose an edge at random?



Acquaintance vaccination

• Choose a person at random.

• Then choose a friend of that person to vaccinate.

Cohen, ben-Avraham, and Havlin, “Efficient Immunization of
Populations and Computers”, Phys. Rev. Lett. 91, 247901

(2003)

Show by computer simulation and analytic calculations that this
is much more effective than random vaccination.

This type of acquaintance vaccination actually used to control
small pox and foot-and-mouth (“ring vaccination”)



How to model a real human population?
(Using census data)

[ Bansal, Pourbohloul, Meyers, “The Spread of Infectious
Disease through Contact Networks”,

Talk given at MSRI, April 2005.]

Not published, but a video can be viewed at:
http://angelina.msri.org/VMath/show speakertalks?field pid=900000033

See further references at the end.

Take actually census data from the city of Vancouver.



Constructing connectivity via census data

• Households

• Classrooms

• Businesses

• “Shopping”



Who to immunize?



Strategy one: Immunize the “hubs”

• Receptionists

• Bus drivers

• School teachers

This results in the least number of people becoming infected.



Strategy two: Immunize the most frail

• Elderly and children.

More people overall get infected, but less people overall die as a
result of the disease!



Further work on network epidemiology

• Bansal S, Pourbohloul B, Meyers LA (2006) A Comparative Analysis of
Influenza Vaccination Programs. PLoS Med 3(10)

• http://bansallab.com

• http://www.biosci.utexas.edu/ib/faculty/meyers.htm

• http://www.erikvolz.info/

• Brockman/Vespignani work on influenza (including “where’s George”
mobility tracking, and transportation nets spreading disease),
http://rocs.northwestern.edu/
http://mobs.soic.indiana.edu/media

• Effects of clustering on epidemic thresholds (Newman, Gleeson, Volz
alternate calculations and implications)


