
ECS 253 / MAE 253, Lecture 9
May 1, 2023

“Web search and decentralized search on
small-world networks”



Search for information

Assume some resource of interest is stored at the vertices of a
network:

• Web pages

• Files in a file-sharing network

Would like to determine rapidly where in the network a
particular item of interest can be found.



To warehouse data or search on demand?

• Centralized : Catalogue data in one central place.

– Makes most sense when high cost to search network
in real time.

– Requires resources for learning the data and storing it.

• Decentralized : Data is spread out in a distributed data base.

– Can be a very slow process to search.

– But dependent on network topology may be able to devise
“quick” algorithms.



Web search

• Centralized warehousing of information (need results as
quickly as possible)

• Key: Use information contained in the edges as well as
the vertices! (Assumes edges contain information about
relevance).

• Process: Query arrives, select subset of pages which match,
order that subset by ranking based on link structure.



Typical web domain

M. E. J. Newman



Ranking pages in a connected component

• Each site starts with unit “rank” (i.e., weight).

• Each site transfers a fraction of this rank equally to each
neighbor, in a discrete time process.

• So the rank of vertex i, ri:

ri ∝
∑
j

Aij (rj/dj) ,

where A is the adjacency matrix, and dj degree of node j.
This is rj times the random walk dynamics on the network!



Ranking pages, cont.

• The vector of ranks: ~r = [r1, r2, ....ri, ...rN ]
T

• The dynamics: ~r =M~r , where Mij ∝ Aij (rj/dj).

• Looking for a steady-state solution to the equation: ~r =M~r ,
means finding eigenvector ~r1 with corresponding eigenvalue
λ1 = 1.

Thus ~r1 =M~r1 = λ1~r1 = ~r1



Aside on Random Walks:
Sample graph structure



Random walk: State Transition Matrix
(Column-normalize the adjacency matrix)

M =


1/4 1/3 1/2 1/4 0

1/4 1/3 0 1/4 0

1/4 0 1/2 0 0

1/4 1/3 0 1/4 1/2

0 0 0 1/4 1/2



M will have a basis set of eigenvectors {~ui} and corresponding
eigenvalues λi.



Perron-Frobenius Theorem

• Applies to irreducible, positive, stochastic matrices.

• “Irreducible” means cannot be block-diagonalized into disjoint
pieces. (i.e., network is connected — only one component).

• “Positive” means each entry Mij > 0.

• “Stochastic” means column normalized (or row normalized).



Perron-Frobenius Theorem
Leading eigenvalue

• One leading eigenvalue with λ1 = 1.

• The corresponding eigenvector, v1, has strictly positive entries
and the sum over all the entries,

∑
i v1[i] = 1.

• This is the stationary distribution of the random walk dynamics.

• For non-negative matrices (Mij ≥ 0), similar results, but:

• Can’t guarantee eigenvectors are positive (in practice, normally
still works ... see R-code if interested : “transMatrix.R”, “samp-matrices.R”
and the “Session log”).
• The eigenvector entries are relatively normalized, but not
absolutely normalized. (Need the extra renormalization step.)



Perron-Frobenius Theorem: Remaining eigenvalues
(“Spectral partitioning” of graphs)

• All other eigenvalues are less than λ1.
(i.e., all λi < 1 for i > 1).

• These represent decaying modes that will eventually converge
to the steady-state solution described by v1.

• How long do they take to decay?
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Decay / mixing times

• For each eigenmode, with eigenvector ~vi and eigenvalue λi,
M~vi = (λi)~vi thus M t~vi = (λi)

t
~vi.

• The “relaxation time” for that mode τi: time for the original

amplitude to decay to 1/e. Mτi~vi =
1
e~vi =⇒ τi = −1/ ln(λi) .

• Recall λi < 1 for all i ≥ 2.

• So the biggest relaxation time is: τmax = τ2 = −1/ ln(λ2).

• The difference λ1 − λ2 is called the spectral gap.

(λ2 < 1. Bigger λ2 means smaller | ln(λ2)|, so larger τ2.
In other words, smaller spectral gap means worse mixing
properties.)



Back to: Ranking pages in a single component

• Each site starts with unit “rank” (i.e., weight).

• Transfers fraction of this rank equally to each connected site.

• So at each iteration the rank of vertex i, ri:

ri =
∑
j

Aij(rj/dj) =
∑
j

Mijrj

More compactly : ~r =M~r

• Using a random walk formulation, the occupancy probabilities
in steady-state (i.e., the vector corresponding the λ = 1):

~r =M~r , where M is state transition matrix.



The Web as a whole

(This is an old picture, circa 2000)



Size of the indexed Web
2012-2013, see http://www.worldwidewebsize.com/

The size of the World Wide Web (The Internet)

The Indexed Web contains at least 1.78 billion pages (Thursday, 24 April, 2014).

The Dutch Indexed Web contains at least 261.12 million pages (Thursday, 24 April, 2014).

288

TweetTweet

424

The Indexed Web | The Dutch Indexed Web

Last Month  Last Three Months  Last Year  

GB = Sorted on Google and Bing

BG = Sorted on Bing and Google

The size of the World Wide Web:
Estimated size of Google's index

Last Month  Last Three Months  Last Year  

893

LikeLike

ShareShare

Last Two Years

Last Two Years

• Neglects the “Dark Web” (e.g. subscriptions required)

• How much valid content is really out there?

• What is the size today?



What about disconnected components?

We understand how to deal with each components. How do we
deal with getting a consistent rank across the whole web?



The “Random Surfer” model

[Brin and Page, “The anatomy of a large-scale hypertextual Web
search engine”, Computer Networks, 30 (1998)]

[L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank
Citation Ranking: Bringing Order to the web”, technical report,

Stanford University, Stanford, CA, 1998. ]

• With probability ε follow an out-link of current page.

• With probability [1 − ε] jump at random to some other web
page. (Usually assume jump is random, so land at any site
with prob 1/N ).



The “Random Surfer” model

The weight of a page j is the sum over all the in-links pointing to

it, including those gained by the random jump:

rj =
∑
i→j
{riε(i) + [1− ε(i)]Jij} .

(Note, this also makes the matrix positive, recall Perron-Frobenius).

Rules of thumb (empirical):

ε(i) = ε

Jij = 1/N

ε = 0.8.



Real-world complications: Page Rank

• Newer pages have less rank, even though they may be
extremely relevant.

• Calculate eigenvalues of 109 by 109 matrix!!!
(Many advances here due to Page Rank introduction)

• spam, spam, spam

• “Search engine optimizers” (reverse engineer search engines)

• Link farms (both invisible and visible)

• Selling highly ranked domain names

• delisting web sites



Real-world complications in general

• Stop words typically removed: and, of, the to, be, or.
So how to handle query “to be or not to be”?

• Dealing with complications of multiple languages and cultures.

– Chinese: no use of pronouns (he/she) instead repeat proper
names (which is often a sign of low-quality page/spam in
English).

– Japanese: want breadth as well as depth (search 5 pages).
US want a quick, definitive answer.



Alternate approaches – topology based

[Kleinberg and Lawrence, “The structure of the Web”, Science,
294 (2001)]

[Kleinberg, “Authoritative sources in a hyperlinked environment”,
J. ACM, 46 (1999)]

• Slightly more sophisticated. Kleinberg proposes to use in-links
and out-Links.

• Google assumes a page is important if other important pages
point to it.

• Kleinberg identifies two kinds of importance: “hubs” and
“authorities”



Hubs and authorities

• A page pointed to by highly ranked pages in an authority

• A page that points to highly ranked pages is a hub . (May not
contain the information, but will tell you where to find it).

In use:

• Teoma search engine (http://search.ask.com/)

• Citeseer literature search engine.



Alternate approaches

• Usage/click based.

• Negative edge weights: (Penalize spam linking to you.)

• Clustering results by subject, e.g., http://clusty.com, which
became yippy.com, but is now defunct.

• . . .



Distributed search

Some resource of interest is stored at the vertices of a network:
i.e., Files in a file-sharing network

Search on arbitrary networks: O(N) (search every node)

• Depth-first

• Breadth-first

Search on power-law random graphs

• Breadth-first passing always to highest-degree node possible.
[Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks”, Phys. Rev. E, 64 2001], find
between O(N2/3) and O(N1/2).

Complex Systems 535/Physics 508: Homework 2

1. One can calculate the diameter of certain types of networks exactly:

(i) What is the diameter of a clique?

(ii) What is the diameter of a square portion of square lattice, with L edges (or equiva-
lently L + 1 vertices) along each side, like this:

L

L

What is the diameter of the corresponding hypercubic lattice in d dimensions with
L edges along each side? Hence what is the diameter of such a lattice as a function
of the number n of vertices?

(iii) A Cayley tree is a symmetric regular tree in which each vertex is connected to the
same number k of others. Here, for example, is a Cayley tree for k = 3:

Show that the number of vertices reachable in d steps from the central vertex is k(k−
1)d−1 for d ≥ 1. Hence find an expression for the diameter of the network in terms
of k and the number of vertices n.

(iv) Which of the networks in parts (i), (ii), and (iii) displays the small-world effect, de-
fined as having a diameter that increases as log n or slower?

2. A particular network is believed to have a degree distribution that follows a power law
for degree greater than or equal to 10. A random sample of vertices is taken and their
degrees measured. The degrees of the first twenty vertices with degrees 10 or greater are:

16 17 10 26 13
14 28 45 10 12
12 10 136 16 25
36 12 14 22 10

1



Decentralized search on small-world networks

Consider a network with small diameter.

Will this help with decentralized search? (i.e. Find a local
algorithm with performance less than O(N)?)



What is a small-world

[Watts and Strogatz, “Collective dynamics of ‘small-world’
networks”, Nature, 393 (1998)]

• Start with regular 1D lattice, with each node connected to it’s k
nearest neighbors.

• Randomly re-wire each link independently with probability p.



Ave shortest path L(p) and
clustering coefficient C(p)
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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L(p) / L(0)
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

• Small-worlds have small diameter and large clustering
coefficient.

• They are remarkably easy to generate (just a tiny p required).
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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Two results emerge. First, the critical infectiousness rhalf, at which
the disease infects half the population, decreases rapidly for small p
(Fig. 3a). Second, for a disease that is sufficiently infectious to infect
the entire population regardless of its structure, the time T(p)
required for global infection resembles the L(p) curve (Fig. 3b).
Thus, infectious diseases are predicted to spread much more easily
and quickly in a small world; the alarming and less obvious point is
how few short cuts are needed to make the world small.

Our model differs in some significant ways from other network
models of disease spreading20–24. All the models indicate that net-
work structure influences the speed and extent of disease transmis-
sion, but our model illuminates the dynamics as an explicit function
of structure (Fig. 3), rather than for a few particular topologies, such
as random graphs, stars and chains20–23. In the work closest to ours,
Kretschmar and Morris24 have shown that increases in the number
of concurrent partnerships can significantly accelerate the propaga-
tion of a sexually-transmitted disease that spreads along the edges of
a graph. All their graphs are disconnected because they fix the
average number of partners per person at k ¼ 1. An increase in the
number of concurrent partnerships causes faster spreading by
increasing the number of vertices in the graph’s largest connected
component. In contrast, all our graphs are connected; hence the
predicted changes in the spreading dynamics are due to more subtle
structural features than changes in connectedness. Moreover,

changes in the number of concurrent partners are obvious to an
individual, whereas transitions leading to a smaller world are not.

We have also examined the effect of small-world connectivity on
three other dynamical systems. In each case, the elements were
coupled according to the family of graphs described in Fig. 1. (1) For
cellular automata charged with the computational task of density
classification25, we find that a simple ‘majority-rule’ running on a
small-world graph can outperform all known human and genetic
algorithm-generated rules running on a ring lattice. (2) For the
iterated, multi-player ‘Prisoner’s dilemma’11 played on a graph, we
find that as the fraction of short cuts increases, cooperation is less
likely to emerge in a population of players using a generalized ‘tit-
for-tat’26 strategy. The likelihood of cooperative strategies evolving
out of an initial cooperative/non-cooperative mix also decreases
with increasing p. (3) Small-world networks of coupled phase
oscillators synchronize almost as readily as in the mean-field
model2, despite having orders of magnitude fewer edges. This
result may be relevant to the observed synchronization of widely
separated neurons in the visual cortex27 if, as seems plausible, the
brain has a small-world architecture.

We hope that our work will stimulate further studies of small-
world networks. Their distinctive combination of high clustering
with short characteristic path length cannot be captured by
traditional approximations such as those based on regular lattices
or random graphs. Although small-world architecture has not
received much attention, we suggest that it will probably turn out
to be widespread in biological, social and man-made systems, often
with important dynamical consequences. !
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Figure 3 Simulation results for a simple model of disease spreading. The

community structure is given by one realization of the family of randomly rewired

graphs used in Fig. 1. a, Critical infectiousness rhalf, at which the disease infects

half the population, decreases with p. b, The time T(p) required for a maximally

infectious disease (r ¼ 1) to spread throughout the entire population has essen-

tially the same functional form as the characteristic path length L(p). Even if only a

few per cent of the edges in the original lattice are randomly rewired, the time to

global infection is nearly as short as for a random graph.
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• Start with one infected individual.

• r is transmission rate of disease (infect neighbors at rate r).

• rhalf is the the value of r required for half the population to get
the disease.



Their concluding words

“We hope that our work will stimulate further studies of small-
world networks. Their distinctive combination of high clustering

with short characteristic path length cannot be captured by
traditional approximations such as those based on regular

lattices or random graphs. Although small-world architecture
has not received much attention, we suggest that it will probably

turn out to be widespread in biological, social and man-made
systems,often with important dynamical consequences.”



Watts-Strogatz small-world model

• Together with Barabasi-Albert launched the flurry of activity on
networks.

• Watts and Strogatz showed that networks from both the natural
and manmade world, such as the neural network of C. elegans
and power grids, exhibit the small-world property.

• Originally they wanted to understand the synchronization of
cricket chirps.

• Introduced the mathematical formalism, which interpolates
between lattices and networks .



A new paradigm

”I think I’ve been contacted by someone from just about every
field outside of English literature. I’ve had letters from

mathematicians, physicists, biochemists, neurophysiologists,
epidemiologists, economists, sociologists; from people in

marketing, information systems, civil engineering, and from a
business enterprise that uses the concept of the small world for

networking purposes on the Internet.” – Duncan Watts



Navigation

Clearly if central coordination, can use short paths to deliver info
quickly.

But, can someone living in a small world actually make use of
this info and do efficient decentralized routing?

• Instead of designing search algorithms, given a local greedy
algorithm, are there any topologies that enable O(logN)

delivery times?



Precise topologies required

[J. M. Kleinberg, “Navigation in a small world”, Nature, 406
(2000)]

• Start with a regular 2D square lattice (consider vertices and
edges).

• Add random long links, with bias proportional to distance
between two nodes:

p(eij) ∝ 1/dαij

• Call α the “clustering exponent”





• Find mean delivery time t ∼ Nβ, unless α = 2.

• Only for α = 2 will decentralized routing work, and packet can
go from source to destination in O(logN) steps.

• For d-dimensional lattice need α = d.



But we know greedy decentralized routing works for human
networks (c.f. Milgram’s experiments “six-degrees of separation”
[ S. Milgram, “The small world problem”, Psych. Today, 2, 1967.]

So how do we get beyond a lattice model?



Navigating social networks

[Watts, P. S. Dodds, and M. E. J. Newman, “Identity and search
in social networks”, Science, 296 (2002)]

[Kleinberg, “Small world phenomena and the dynamics of
information”, in Proceedings of NIPS 2001].

• Premise: people navigate social networks by looking for
common features between there acquaintances and the
targets (occupation, city inhabited, age, ....)

• Brings in DATA!



Hierarchical “social distance” tree

• Individuals are grouped into categories along many attributes.

• One tree for each attribute.

• Trees are not the network, but complementary mental
constructs believed to be at work.

• Assume likelyhood of acquaintance falls of exponentially with
“social distance”.



Building P2P architectures

• “Chord A Scalable Peer-to- peer Lookup Service for Internet
Applications

I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan,
ACM SIGCOMM, 2001.
(Cited 15,215 times)

• Gnutella

“Peer-to-Peer Architecture Case Study: Gnutella Network”, M
Ripeanu, Proceedings of International Conference on Peer-to-
peer Computing, 2001.



Summary

Web search

• Centralized

• Make use of link structure (topology)

Decentralized search

• Efficiency/Speed depends on underlying topology

• Gossip algorithms (D. Kempe and J. Kleinberg): spreading
shared information quickly through local exchanges (e.g.,
sums, local averages/consensus).

• Applications to sensor networks .... communications ...
satellites


