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ECS 253 / MAE 253, Lecture 9

“Web search and decentralized search on

small-world networks”



Search for information

Assume some resource of interest is stored at the vertices of a
network:

e Web pages
e Files in a file-sharing network

Would like to determine rapidly where in the network a
particular item of interest can be found.



To warehouse data or search on demand?

e Centralized : Catalogue data in one central place.

— Makes most sense when high cost to search network
In real time.

— Requires resources for learning the data and storing it.

e Decentralized : Data is spread out in a distributed data base.

— Can be a very slow process to search.

— But dependent on network topology may be able to devise
“quick” algorithms.



Web search

e Centralized warehousing of information (need results as
quickly as possible)

e Key: Use information contained in the edges as well as

the vertices! (Assumes edges contain information about
relevance).

e Process: Query arrives, select subset of pages which match,
order that subset by ranking based on link structure.



Typical web domain
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Ranking pages in a connected component

e Each site starts with unit “rank” (i.e., weight).

e Each site transfers a fraction of this rank equally to each
neighbor, in a discrete time process.

e So the rank of vertex ¢, r;:
rioc > Ay (r/dy),
J

where A is the adjacency matrix, and d; degree of node j.
This is r; times the random walk dynamics on the network!



Ranking pages, cont.

e The vector of ranks: 7 = [r1, 72, .7, ..7n] "

e The dynamics: | 7 = M7 |, where M;; « A;; (r;/d;).

e Looking for a steady-state solution to the equation:

7= M7

means finding eigenvector r1 with corresponding eigenvalue

A= 1.

Thus 1 = Mri = \r1 =13




Aside on Random Walks:
Sample graph structure




Random walk: State Transition Matrix
(Column-normalize the adjacency matrix)

[1/4 1/3 1/2 1/4 0 )
1/4 1/3 0 1/4 0
M=]1/4 0 1/2 0 0
1/4 1/3 0 1/4 1/2

\ 0 0 0 1/4 1/2

M will have a basis set of eigenvectors {;} and corresponding
eigenvalues \,.



Perron-Frobenius Theorem

e Applies to irreducible, positive, stochastic matrices.

e “Irreducible” means cannot be block-diagonalized into disjoint
pieces. (i.e., network is connected — only one component).

e “Positive” means each entry M;; > 0.

e “Stochastic” means column normalized (or row normalized).



Perron-Frobenius Theorem
Leading eigenvalue

e One leading eigenvalue with A\; = 1.

e The corresponding eigenvector, v, has strictly positive entries
and the sum over all the entries, > . v;[i] = 1.

e This is the stationary distribution of the random walk dynamics.

e For non-negative matrices (M;; > 0), similar results, but:

e Can’t guarantee eigenvectors are positive (in practice, normally
still works ... see R-code if interested : “transMatrix.R”, “samp-matrices.R”
and the “Session log”).

e The eigenvector entries are relatively normalized, but not
absolutely normalized. (Need the extra renormalization step.)



Perron-Frobenius Theorem: Remaining eigenvalues
(“Spectral partitioning” of graphs)

e All other eigenvalues are less than ;.
(l.e., all A\; < 1forz > 1).

e These represent decaying modes that will eventually converge
to the steady-state solution described by v;.

e How long do they take to decay?

Timescale, 1, = 5314 t, Timescale, 1, = 1092 t, Timescale, 13 = 157 t,
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Decay / mixing times

e For each eigenmode, with eigenvector v; and eigenvalue \;,

e The “relaxation time” for that mode 7;: time for the original

amplitude to decay to 1/e. | M7iv; = +0; = 7, = —1/1In()\;) |.

e

e Recall \; < 1 forallz > 2.
e S0 the biggest relaxation time is: 7. = 72 = —1/1In(\g).

e The difference A\; — X\, is called the spectral gap.

(A2 < 1. Bigger Ao means smaller |In();)|, so larger 7.
In other words, smaller spectral gap means worse mixing
properties.)



Back to: Ranking pages in a single component

e Each site starts with unit “rank” (i.e., weight).

e [ransfers fraction of this rank equally to each connected site.

e SO at each iteration the rank of vertex i, r;:
T = E Aij(ri/d;y) = E :Mijrj
J J

More compactly: r= Mr

e Using a random walk formulation, the occupancy probabilities
In steady-state (i.e., the vector corresponding the A\ = 1):

r=Mr . where M Is state transition matrix.




The Web as a whole

Central core
56 million pages

Tendrils and tubes
44 million pages

17 million pages

(This is an old picture, circa 2000)



Size of the indexed Web
2012-2013, see http://www.worldwidewebsize.com/
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GB = Sorted on Google and Bing
BG = Sorted on Bing and Google

e Neglects the “Dark Web” (e.g. subscriptions required)
e How much valid content is really out there?

e What is the size today?
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What about disconnected components?

We understand how to deal with each components. How do we

deal with getting a consistent rank across the whole web?



The “Random Surfer” model

[Brin and Page, “The anatomy of a large-scale hypertextual Web
search engine”, Computer Networks, 30 (1998)]

L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank
Citation Ranking: Bringing Order to the web”, technical report,
Stanford University, Stanford, CA, 1998. |

e With probability € follow an out-link of current page.

e With probability [1 — 6] jump at random to some other web
page. (Usually assume jump is random, so land at any site
with prob 1/N).



The “Random Surfer” model

The weight of a page j is the sum over all the in-links pointing to

it, including those gained by the random jump:

rj= ) {rie() + [1 — ()] Jij}

1— 9
(Note, this also makes the matrix positive, recall Perron-Frobenius).

Rules of thumb (empirical):

€(i) =€
Jij =1/N
e = 0.8.



Real-world complications: Page Rank

e Newer pages have less rank, even though they may be
extremely relevant.

e Calculate eigenvalues of 10 by 10° matrix!!!
(Many advances here due to Page Rank introduction)

e Spam, spam, spam
e “Search engine optimizers” (reverse engineer search engines)
e Link farms (both invisible and visible)
e Selling highly ranked domain names

e delisting web sites



Real-world complications in general

e Stop words typically removed: and, of, the to, be, or.
So how to handle query “to be or not to be”?

e Dealing with complications of multiple languages and cultures.

— Chinese: no use of pronouns (he/she) instead repeat proper

names (which is often a sign of low-quality page/spam in
English).

— Japanese: want breadth as well as depth (search 5 pages).
US want a quick, definitive answer.



Alternate approaches — topology based

[Kleinberg and Lawrence, “The structure of the Web”, Science,
294 (2001)]

Kleinberg, “Authoritative sources in a hyperlinked environment”,
J. ACM, 46 (1999)|

e Slightly more sophisticated. Kleinberg proposes to use in-links
and out-Links.

e Google assumes a page is important if other important pages
point to it.

e Kleinberg identifies two kinds of importance: “hubs” and
“authorities”



Hubs and authorities

e A page pointed to by highly ranked pages in an authority

e A page that points to highly ranked pages is a hub . (May not
contain the information, but will tell you where to find it).

In use:

e Teoma search engine (http://search.ask.com/)

e Citeseer literature search engine.



Alternate approaches

e Usage/click based.
e Negative edge weights: (Penalize spam linking to you.)

e Clustering results by subject, e.g., http://clusty.com, which
became yippy.com, but is now defunct.



Distributed search

Some resource of interest is stored at the vertices of a network:
l.e., Files in a file-sharing network

Search on arbitrary networks: O(NN) (search every node)

e Depth-first
e Breadth-first

Search on power-law random graphs

e Breadth-first passing always to highest-degree node possible.
[Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks”, Phys. Rev. E, 64 2001], find
between O(N?/3) and O(N1/?).



Decentralized search on small-world networks

Consider a network with small diameter.

Will this help with decentralized search? (i.e. Find a local
algorithm with performance less than O(N)?)



What is a small-world

[Watts and Strogatz, “Collective dynamics of ‘small-world’
networks”, Nature, 393 (1998)]

e Start with regular 1D lattice, with each node connected to it’s &
nearest neighbors.

e Randomly re-wire each link independently with probability p.

Small-world Random

Increasing randomness



Ave shortest path L(p) and
clustering coefficient C(p)
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e Small-worlds have small diameter and large clustering
coefficient.

e They are remarkably easy to generate (just a tiny p required).



Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
2.6b 2.2b 0.28 0.0b

C. elegans




Infection rates on Small-worlds
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p
e Start with one infected individual.

e 1 IS transmission rate of disease (infect neighbors at rate r).

e L.t IS the the value of r required for half the population to get
the disease.



Their concluding words

“We hope that our work will stimulate further studies of small-
world networks. Their distinctive combination of high clustering
with short characteristic path length cannot be captured by
traditional approximations such as those based on regular
lattices or random graphs. Although small-world architecture
has not received much attention, we suggest that it will probably
turn out to be widespread in biological, social and man-made
systems,often with important dynamical consequences.”



Watts-Strogatz small-world model

e Together with Barabasi-Albert launched the flurry of activity on
networks.

e Watts and Strogatz showed that networks from both the natural
and manmade world, such as the neural network of C. elegans
and power grids, exhibit the small-world property.

e Originally they wanted to understand the synchronization of
cricket chirps.

e Introduced the mathematical formalism, which interpolates
between lattices and networks .



A new paradigm

"I think I've been contacted by someone from just about every
field outside of English literature. I've had letters from
mathematicians, physicists, biochemists, neurophysiologists,
epidemiologists, economists, sociologists; from people Iin
marketing, information systems, civil engineering, and from a
business enterprise that uses the concept of the small world for
networking purposes on the Internet.” — Duncan Watts



Navigation

Clearly if central coordination, can use short paths to deliver info
quickly.

But, can someone living in a small world actually make use of
this info and do efficient decentralized routing?

e Instead of designing search algorithms, given a local greedy
algorithm, are there any topologies that enable O(log V)
delivery times?



Precise topologies required

[J. M. Kleinberg, “Navigation in a small world”, Nature, 406
(2000)]

e Start with a regular 2D square lattice (consider vertices and
edges).

e Add random long links, with bias proportional to distance
between two nodes:

p(eij) 1/d§‘j

e Call o the “clustering exponent”
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e Find mean delivery time ¢t ~ N”, unless o = 2.

e Only for o = 2 will decentralized routing work, and packet can
go from source to destination in O(log V) steps.
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e For d-dimensional lattice need o = d.



But we know greedy decentralized routing works for human
networks (c.f. Milgram’s experiments “six-degrees of separation”
[ S. Milgram, “The small world problem”, Psych. Today, 2, 1967.]

So how do we get beyond a lattice model?



Navigating social networks

[Watts, P. S. Dodds, and M. E. J. Newman, “ldentity and search
In social networks”, Science, 296 (2002)]

[Kleinberg, “Small world phenomena and the dynamics of
information”, in Proceedings of NIPS 2001].

e Premise: people navigate social networks by looking for
common features between there acquaintances and the
targets (occupation, city inhabited, age, ....)

e Brings in DATA!



Hierarchical “social distance” tree

¢ Individuals are grouped into categories along many attributes.
e One tree for each attribute.

e frees are not the network, but complementary mental
constructs believed to be at work.

e Assume likelynood of acquaintance falls of exponentially with
“social distance”.



Building P2P architectures

e “Chord A Scalable Peer-to- peer Lookup Service for Internet
Applications

|. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan,
ACM SIGCOMM, 2001.
(Cited 15,215 times)

e Gnutella

“Peer-to-Peer Architecture Case Study: Gnutella Network”, M
Ripeanu, Proceedings of International Conference on Peer-to-
peer Computing, 2001.



Summary

Web search

e Centralized

e Make use of link structure (topology)

Decentralized search

e Efficiency/Speed depends on underlying topology

e Gossip algorithms (D. Kempe and J. Kleinberg): spreading
shared information quickly through local exchanges (e.g.,
sums, local averages/consensus).

e Applications to sensor networks ... communications ...
satellites



