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Recent work on the structure of social networks and the internet has focused attention on graphs with
distributions of vertex degree that are significantly different from the Poisson degree distributions that have
been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary
degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed
and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition
at which a giant component first forms, the mean component size, the size of the giant component if there is
one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average
vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-
wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in
some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the
behavior of the real world, while in others there is a measurable discrepancy between theory and reality,
perhaps indicating the presence of additional social structure in the network that is not captured by the random
graph.
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I. INTRODUCTION
A random graph #1$ is a collection of points, or vertices,

with lines, or edges, connecting pairs of them at random
#Fig. 1!a"$. The study of random graphs has a long history.
Starting with the influential work of Erdös and Rényi in the
1950s and 1960s #2–4$, random graph theory has developed
into one of the mainstays of modern discrete mathematics,
and has produced a prodigious number of results, many of
them highly ingenious, describing statistical properties of
graphs, such as distributions of component sizes, existence
and size of a giant component, and typical vertex-vertex dis-
tances.
In almost all of these studies the assumption has been

made that the presence or absence of an edge between two
vertices is independent of the presence or absence of any
other edge, so that each edge may be considered to be
present with independent probability p. If there are N verti-
ces in a graph, and each is connected to an average of z
edges, then it is trivial to show that p"z/(N#1), which for
large N is usually approximated by z/N . The number of
edges connected to any particular vertex is called the degree
k of that vertex, and has a probability distribution pk given
by

pk"!Nk " pk!1#p "N#k#
zke#z

k! , !1"

where the second equality becomes exact in the limit of large
N. This distribution we recognize as the Poisson distribution:
the ordinary random graph has a Poisson distribution of ver-
tex degrees, a point which turns out to be crucial, as we now
explain.
Random graphs are not merely a mathematical toy; they

have been employed extensively as models of real-world net-

works of various types, particularly in epidemiology. The
passage of a disease through a community depends strongly
on the pattern of contacts between those infected with the
disease and those susceptible to it. This pattern can be de-
picted as a network, with individuals represented by vertices
and contacts capable of transmitting the disease by edges. A
large class of epidemiological models known as susceptible/
infectious/recovered models #5–7$ makes frequent use of the
so-called fully mixed approximation, which is the assump-
tion that contacts are random and uncorrelated, i.e., they
form a random graph.
Random graphs however turn out to have severe short-

comings as models of such real-world phenomena. Although
it is difficult to determine experimentally the structure of the
network of contacts by which a disease is spread #8$, studies
have been performed of other social networks such as net-
works of friendships within a variety of communities #9–11$,
networks of telephone calls #12,13$, airline timetables #14$,
and the power grid #15$, as well as networks in physical or

FIG. 1. !a" A schematic representation of a random graph, the
circles representing vertices and the lines representing edges. !b" A
directed random graph, i.e., one in which each edge runs in only
one direction.
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biological systems, including neural networks #15$, the struc-
ture and conformation space of polymers #16,17$, metabolic
pathways #18,19$, and food webs #20,21$. It is found #13,14$
that the distribution of vertex degrees in many of these net-
works is measurably different from a Poisson distribution—
often wildly different—and this strongly suggests, as has
been emphasized elsewhere #22$, that there are features of
such networks that we would miss if we were to approximate
them by an ordinary !Poisson" random graph.
Another very widely studied network is the internet,

whose structure has attracted an exceptional amount of scru-
tiny, academic and otherwise, following its meteoric rise to
public visibility starting in 1993. Pages on the world-wide
web may be thought of as the vertices of a graph and the
hyperlinks between them as edges. Empirical studies #23–
26$ have shown that this graph has a distribution of vertex
degree which is heavily right skewed and possesses a fat
!power law" tail with an exponent between #2 and #3.
!The underlying physical structure of the internet also has a
degree distribution of this type #27$." This distribution is very
far from Poisson, and therefore we would expect that a
simple random graph would give a very poor approximation
of the structural properties of the web. However, the web
differs from a random graph in another way also: it is di-
rected. Links on the web lead from one page to another in
only one direction #see Fig. 1!b"$. As discussed by Broder
et al. #26$, this has a significant practical effect on the typical
accessibility of one page from another, and this effect also
will not be captured by a simple !undirected" random graph
model.
A further class of networks that has attracted scrutiny is

the class of collaboration networks. Examples of such net-
works include the boards of directors of companies #28–31$,
co-ownership networks of companies #32$, and collabora-
tions of scientists #33–37$ and movie actors #15$. As well as
having strongly non-Poisson degree distributions #14,36$,
these networks have a bipartite structure; there are two dis-
tinct kinds of vertices on the graph with links running only
between vertices of unlike kinds #38$—see Fig. 2. In the case
of movie actors, for example, the two types of vertices are
movies and actors, and the network can be represented as a
graph with edges running between each movie and the actors
that appear in it. Researchers have also considered the pro-
jection of this graph onto the unipartite space of actors only,
also called a one-mode network #38$. In such a projection
two actors are considered connected if they have appeared in
a movie together. The construction of the one-mode network
however involves discarding some of the information con-
tained in the original bipartite network, and for this reason it
is more desirable to model collaboration networks using the
full bipartite structure.
Given the high current level of interest in the structure of

many of the graphs described here #39$, and given their sub-
stantial differences from the ordinary random graphs that
have been studied in the past, it would clearly be useful if we
could generalize the mathematics of random graphs to non-
Poisson degree distributions, and to directed and bipartite
graphs. In this paper we do just that, demonstrating in detail
how the statistical properties of each of these graph types can

be calculated exactly in the limit of large graph size. We also
give examples of the application of our theory to the model-
ing of a number of real-world networks, including the world-
wide web and collaboration graphs.

II. RANDOM GRAPHS WITH ARBITRARY
DEGREE DISTRIBUTIONS

In this section we develop a formalism for calculating a
variety of quantities, both local and global, on large unipar-
tite undirected graphs with arbitrary probability distribution
of the degrees of their vertices. In all respects other than their
degree distribution, these graphs are assumed to be entirely
random. This means that the degrees of all vertices are inde-
pendent identically distributed random integers drawn from a
specified distribution. For a given choice of these degrees,
also called the ‘‘degree sequence,’’ a graph is chosen uni-
formly at random from the set of all graphs with that degree
sequence. All properties calculated in this paper are averaged
over the ensemble of graphs generated in this way. In the
limit of large graph size an equivalent procedure is to study
only one particular degree sequence, averaging uniformly
over all graphs with that sequence, where the sequence is
chosen to approximate as closely as possible the desired
probability distribution. The latter procedure can be thought
of as a ‘‘microcanonical ensemble’’ for random graphs,
where the former is a ‘‘canonical ensemble.’’
Some results are already known for random graphs with

arbitrary degree distributions: in two beautiful recent papers
#40,41$, Molloy and Reed have derived formulas for the po-
sition of the phase transition at which a giant component first
appears, and the size of the giant component. !These results
are calculated within the microcanonical ensemble, but apply

FIG. 2. A schematic representation !top" of a bipartite graph,
such as the graph of movies and the actors who have appeared in
them. In this small graph we have four movies, labeled 1 to 4, and
11 actors, labeled A to K, with edges joining each movie to the
actors in its cast. In the lower part of the picture we show the
one-mode projection of the graph for the 11 actors.
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equally to the canonical one in the large system size limit."
The formalism we present in this paper yields an alternative
derivation of these results and also provides a framework for
obtaining other quantities of interest, some of which we cal-
culate. In Secs. III and IV we extend our formalism to the
case of directed graphs !such as the world-wide web" and
bipartite graphs !such as collaboration graphs".

A. Generating functions

Our approach is based on generating functions #42$, the
most fundamental of which, for our purposes, is the generat-
ing function G0(x) for the probability distribution of vertex
degrees k. Suppose that we have a unipartite undirected
graph—an acquaintance network, for example—of N verti-
ces, with N large. We define

G0!x "" %
k"0

&

pkxk, !2"

where pk is the probability that a randomly chosen vertex on
the graph has degree k. The distribution pk is assumed cor-
rectly normalized, so that

G0!1 ""1. !3"

The same will be true of all generating functions considered
here, with a few important exceptions, which we will note at
the appropriate point. Because the probability distribution is
normalized and positive definite, G0(x) is also absolutely
convergent for all $x$'1, and hence has no singularities in
this region. All the calculations of this paper will be confined
to the region $x$'1.
The function G0(x), and indeed any probability generat-

ing function, has a number of properties that will prove use-
ful in subsequent developments.
Derivatives. The probability pk is given by the kth deriva-

tive of G0 according to

pk"
1
k!

dkG0

dxk %
x"0

. !4"

Thus the one function G0(x) encapsulates all the information
contained in the discrete probability distribution pk . We say
that the function G0(x) ‘‘generates’’ the probability distribu-
tion pk .
Moments. The average over the probability distribution

generated by a generating function—for instance, the aver-
age degree z of a vertex in the case of G0(x)—is given by

z"(k)"%
k
kpk"G0!!1 ". !5"

Thus if we can calculate a generating function we can also
calculate the mean of the probability distribution which it
generates. Higher moments of the distribution can be calcu-
lated from higher derivatives also. In general, we have

(kn)"%
k
knpk"& ! x d

dx " nG0!x "'
x"1

. !6"

Powers. If the distribution of a property k of an object is
generated by a given generating function, then the distribu-
tion of the total of k summed over m independent realizations
of the object is generated by the mth power of that generat-
ing function. For example, if we choose m vertices at random
from a large graph, then the distribution of the sum of the
degrees of those vertices is generated by #G0(x)$m. To see
why this is so, consider the simple case of just two vertices.
The square #G0(x)$2 of the generating function for a single
vertex can be expanded as

#G0!x "$2"&%
k
pkxk' 2

"%
jk

p jpkx j!k

"p0p0x0!!p0p1!p1p0"x1

!!p0p2!p1p1!p2p0"x2

!!p0p3!p1p2!p2p1!p3p0"x3!••• . !7"

It is clear that the coefficient of the power of xn in this
expression is precisely the sum of all products p jpk such that
j!k"n , and hence correctly gives the probability that the
sum of the degrees of the two vertices will be n. It is straight-
forward to convince oneself that this property extends also to
all higher powers of the generating function.
All of these properties will be used in the derivations

given in this paper.
Another quantity that will be important to us is the distri-

bution of the degree of the vertices that we arrive at by
following a randomly chosen edge. Such an edge arrives at a
vertex with probability proportional to the degree of that
vertex, and the vertex therefore has a probability distribution
of degree proportional to kpk . The correctly normalized dis-
tribution is generated by

%
k
kpkxk

%
k
kpk

"x
G0!!x "

G0!!1 "
. !8"

If we start at a randomly chosen vertex and follow each of
the edges at that vertex to reach the k nearest neighbors, then
the vertices arrived at each have the distribution of remaining
outgoing edges generated by this function, less one power of
x, to allow for the edge that we arrived along. Thus the
distribution of outgoing edges is generated by the function

G1!x ""
G0!!x "

G0!!1 "
"
1
z G0!!x ", !9"

where z is the average vertex degree, as before. The prob-
ability that any of these outgoing edges connects to the origi-
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nal vertex that we started at, or to any of its other immediate
neighbors, goes as N#1 and hence can be neglected in the
limit of large N. Thus, making use of the ‘‘powers’’ property
of the generating function described above, the generating
function for the probability distribution of the number of
second neighbors of the original vertex can be written as

%
k
pk#G1!x "$k"G0„G1!x "…. !10"

Similarly, the distribution of third-nearest neighbors is gen-
erated by G0(G1„G1(x)…), and so on. The average number
z2 of second neighbors is

z2"& ddx G0„G1!x "…'
x"1

"G0!!1 "G1!!1 ""G0"!1 ", !11"

where we have made use of the fact that G1(1)"1. !One
might be tempted to conjecture that since the average num-
ber of first neighbors is G0!(1), Eq. !5", and the average
number of second neighbors is G0"(1), Eq. !11", then the
average number of mth neighbors should be given by the
mth derivative of G0 evaluated at x"1. As we show in Sec.
II F, however, this conjecture is wrong."

B. Examples

To make things more concrete, we immediately introduce
some examples of specific graphs to illustrate how these cal-
culations are carried out.
(a) Poisson-distributed graphs. The simplest example of a

graph of this type is one for which the distribution of degree
is binomial, or Poisson in the large N limit. This distribution
yields the standard random graph studied by many mathema-
ticians and discussed in Sec. I. In this graph the probability
p"z/N of the existence of an edge between any two vertices
is the same for all vertices, and G0(x) is given by

G0!x "" %
k"0

N !Nk " pk!1#p "N#kxk"!1#p!px "N"ez(x#1),

!12"

where the last equality applies in the limit N→& . It is then
trivial to show that the average degree of a vertex is indeed
G0!(1)"z and that the probability distribution of degree is
given by pk"zke#z/k!, which is the ordinary Poisson distri-
bution. Notice also that for this special case we have
G1(x)"G0(x), so that the distribution of outgoing edges at a
vertex is the same, regardless of whether we arrived there by
choosing a vertex at random, or by following a randomly
chosen edge. This property, which is peculiar to the Poisson-
distributed random graph, is the reason why the theory of
random graphs of this type is especially simple.
(b) Exponentially distributed graphs. Perhaps the next

simplest type of graph is one with an exponential distribution
of vertex degrees

pk"!1#e#1/*"e#k/*, !13"

where * is a constant. The generating function for this dis-
tribution is

G0!x ""!1#e#1/*"%
k"0

&

e#k/*xk"
1#e#1/*

1#xe#1/* , !14"

and

G1!x ""& 1#e#1/*

1#xe#1/*' 2. !15"

An example of a graph with an exponential degree distribu-
tion is given in Sec. V A.
(c) Power-law distributed graphs. The recent interest in

the properties of the world-wide web and of social networks
leads us to investigate the properties of graphs with a power-
law distribution of vertex degrees. Such graphs have been
discussed previously by Barabási and co-workers #22,23$
and by Aiello et al. #13$. In this paper, we will look at graphs
with degree distribution given by

pk"Ck#+e#k/* for k,1, !16"

where C , + , and * are constants. The reason for including
the exponential cutoff is twofold: first many real-world
graphs appear to show this cutoff #14,36$; second it makes
the distribution normalizable for all + , and not just +,2.
The constant C is fixed by the requirement of normaliza-

tion, which gives C"#Li+(e#1/*)$#1 and hence

pk"
k#+e#k/*

Li+!e#1/*"
for k,1, !17"

where Lin(x) is the nth polylogarithm of x. #For those unfa-
miliar with this function, its salient features for our purposes
are that it is zero at x"0 and, real, finite, and monotonically
increasing in the range 0'x$1, for all n. It also decreases
with increasing n, and has a pole at x"1 for n'1 only,
although it has a valid analytic continuation below n"1
which takes the value -(n) at x"1.$
Substituting Eq. !17" into Eq. !2", we find that the gener-

ating function for graphs with this degree distribution is

G0!x ""
Li+!xe#1/*"

Li+!e#1/*"
. !18"

In the limit *→&—the case considered in Refs. #13$ and
#23$—this simplifies to

G0!x ""
Li+!x "

-!+"
, !19"

where -(+) is the Riemann - function.
The function G1(x) is given by

G1!x ""
Li+#1!xe#1/*"

x Li+#1!e#1/*"
. !20"
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Thus, for example, the average number of neighbors of a
randomly chosen vertex is

z"G0!!1 ""
Li+#1!e#1/*"

Li+!e#1/*"
, !21"

and the average number of second neighbors is

z2"G0"!1 ""
Li+#2!e#1/*"#Li+#1!e#1/*"

Li+!e#1/*"
. !22"

(d) Graphs with arbitrary specified degree distribution. In
some cases we wish to model specific real-world graphs that
have known degree distributions—known because we can
measure them directly. A number of the graphs described in
the Introduction fall into this category. For these graphs, we
know the exact numbers nk of vertices having degree k, and
hence we can write down the exact generating function for
that probability distribution in the form of a finite polynomial

G0!x ""

%
k
nkxk

%
k
nk

, !23"

where the sum in the denominator ensures that the generating
function is properly normalized. As an example, suppose that
in a community of 1000 people, each person knows between
zero and five of the others, the exact numbers of people
in each category being, from zero to five:
.86,150,363,238,109,54/. This distribution will then be gen-
erated by the polynomial

G0!x ""
86!150x!363x2!238x3!109x4!54x5

1000 .

!24"

C. Component sizes

We are now in a position to calculate some properties of
interest for our graphs. First let us consider the distribution
of the sizes of connected components in the graph. Let
H1(x) be the generating function for the distribution of the
sizes of components that are reached by choosing a random
edge and following it to one of its ends. We explicitly ex-
clude from H1(x) the giant component, if there is one; the
giant component is dealt with separately below. Thus, except
when we are precisely at the phase transition where the giant
component appears, typical component sizes are finite, and
the chances of a component containing a closed loop of
edges goes as N#1, which is negligible in the limit of large
N. This means that the distribution of components generated
by H1(x) can be represented graphically as in Fig. 3; each
component is treelike in structure, consisting of the single
site we reach by following our initial edge, plus any number
!including zero" of other treelike clusters, with the same size
distribution, joined to it by single edges. If we denote by qk
the probability that the initial site has k edges coming out of

it other than the edge we came in along, then, making use of
the ‘‘powers’’ property of Sec. II A, H1(x) must satisfy a
self-consistency condition of the form

H1!x ""xq0!xq1H1!x "!xq2#H1!x "$2!••• . !25"

However, qk is nothing other than the coefficient of xk in the
generating function G1(x), Eq. !9", and hence Eq. !25" can
also be written

H1!x ""xG1„H1!x "…. !26"

If we start at a randomly chosen vertex, then we have one
such component at the end of each edge leaving that vertex,
and hence the generating function for the size of the whole
component is

H0!x ""xG0„H1!x "…. !27"

In principle, therefore, given the functions G0(x) and
G1(x), we can solve Eq. !26" for H1(x) and substitute into
Eq. !27" to get H0(x). Then we can find the probability that
a randomly chosen vertex belongs to a component of size s
by taking the sth derivative of H0. In practice, unfortunately,
this is usually impossible; Equation !26" is a complicated and
frequently transcendental equation, which rarely has a
known solution. On the other hand, we note that the coeffi-
cient of xs in the Taylor expansion of H1(x) !and therefore
also the sth derivative" are given exactly by only s!1 itera-
tions of Eq. !27", starting with H1"1, so that the distribution
generated by H0(x) can be calculated exactly to finite order
in finite time. With current symbolic manipulation programs,
it is quite possible to evaluate the first one hundred or so
derivatives in this way. Failing this, an approximate solution
can be found by numerical iteration and the distribution of
cluster sizes calculated from Eq. !4" by numerical differen-
tiation. Since direct evaluation of numerical derivatives is
prone to machine-precision problems, we recommend evalu-
ating the derivatives by numerical integration of the Cauchy
formula, giving the probability distribution Ps of cluster
sizes thus:

Ps"
1
s!
dsH0

dzs %
z"0

"
1
20i ( H0!z "

zs!1 dz . !28"

FIG. 3. Schematic representation of the sum rule for the con-
nected component of vertices reached by following a randomly cho-
sen edge. The probability of each such component !left-hand side"
can be represented as the sum of the probabilities !right-hand side"
of having only a single vertex, having a single vertex connected to
one other component, or two other components, and so forth. The
entire sum can be expressed in closed form as Eq. !26".
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The best numerical precision is obtained by using the largest
possible contour, subject to the condition that it encloses no
poles of the generating function. The largest contour for
which this condition is satisfied in general is the unit circle
$z$"1 !see Sec. II A", and we recommend using this contour
for Eq. !28". It is possible to find the first thousand deriva-
tives of a function without difficulty using this method #43$.

D. The mean component size, the phase transition, and the
giant component

Although it is not usually possible to find a closed-form
expression for the complete distribution of cluster sizes on a
graph, we can find closed-form expressions for the average
properties of clusters from Eqs. !26" and !27". For example,
the average size of the component to which a randomly cho-
sen vertex belongs, for the case where there is no giant com-
ponent in the graph, is given in the normal fashion by

(s)"H0!!1 ""1!G0!!1 "H1!!1 ". !29"

From Eq. !26" we have

H1!!1 ""1!G1!!1 "H1!!1 ", !30"

and hence

(s)"1!
G0!!1 "

1#G1!!1 "
"1!

z1
2

z1#z2
, !31"

where z1"z is the average number of neighbors of a vertex
and z2 is the average number of second neighbors. We see
that this expression diverges when

G1!!1 ""1. !32"

This point marks the phase transition at which a giant com-
ponent first appears. Substituting Eqs. !2" and !9" into Eq.
!32", we can also write the condition for the phase transition
as

%
k
k!k#2 "pk"0. !33"

Indeed, since this sum increases monotonically as edges are
added to the graph, it follows that the giant component exists
if and only if this sum is positive. This result has been de-
rived by different means by Molloy and Reed #40$. An
equivalent and intuitively reasonable statement, which can
also be derived from Eq. !31", is that the giant component
exists if and only if z2%z1.
Our generating function formalism still works when there

is a giant component in the graph, but, by definition, H0(x)
then generates the probability distribution of the sizes of
components excluding the giant component. This means that
H0(1) is no longer unity, as it is for the other generating
functions considered so far, but instead takes the value
1#S , where S is the fraction of the graph occupied by the
giant component. We can use this to calculate the size of the
giant component from Eqs. !26" and !27" thus:

S"1#G0!u ", !34"

where u1H1(1) is the smallest non-negative real solution of

u"G1!u ". !35"

This result has been derived in a different but equivalent
form by Molloy and Reed #41$, using different methods.
The correct general expression for the average component

size, excluding the !formally infinite" giant component, if
there is one, is

(s)"
H0!!1 "

H0!1 "
"

1
H0!1 " &G0„H1!1 "…!G0!„H1!1 "…G1„H1!1 "…

1#G1!„H1!1 "… '
"1!

zu2

#1#S$#1#G1!!u "$
, !36"

which is equivalent to Eq. !31" when there is no giant com-
ponent (S"0, u"1).
For example, in the ordinary random graph with Poisson

degree distribution, we have G0(x)"G1(x)"ez(x#1) #Eq.
!12"$, and hence we find simply that 1#S"u is a solution of
u"G0(u), or equivalently that

S"1#e#zS. !37"

The average component size is given by

(s)"
1

1#z!zS . !38"

These are both well-known results #1$.
For graphs with purely power-law distributions #Eq. !17"

with *→&$, S is given by Eq. !34" with u the smallest non-
negative real solution of

u"
Li+#1!u "

u-!+#1 "
. !39"

For all +'2 this gives u"0, and hence S"1, implying that
a randomly chosen vertex belongs to the giant component
with probability tending to 1 as *→& . For graphs with +
%2, the probability of belonging to the giant component is
strictly less than 1, even for infinite * . In other words, the
giant component essentially fills the entire graph for +'2,
but not for +%2. These results have been derived by differ-
ent means by Aiello et al. #13$.

E. Asymptotic form of the cluster size distribution

A variety of results are known about the asymptotic prop-
erties of the coefficients of generating functions, some of
which can usefully be applied to the distribution of cluster
sizes Ps generated by H0(x). Close to the phase transition,
we expect the tail of the distribution Ps to behave as

Ps2s#3e#s/s*, !40"

M. E. J. NEWMAN, S. H. STROGATZ, AND D. J. WATTS PHYSICAL REVIEW E 64 026118

026118-6



where the constants 3 and s* can be calculated from the
properties of H0(x) as follows.
The cutoff parameter s* is simply related to the radius of

convergence $x*$ of the generating function #42,44$, accord-
ing to

s*"
1

ln$x*$ . !41"

The radius of convergence $x*$ is equal to the magnitude of
the position x* of the singularity in H0(x) nearest to the
origin. From Eq. !27" we see that such a singularity may
arise either through a singularity in G0(x) or through one in
H1(x). However, since the first singularity in G0(x) is
known to be outside the unit circle !Sec. II A", and the first
singularity in H1(x) tends to x"1 as we go to the phase
transition !see below", it follows that, sufficiently close to the
phase transition, the singularity in H0(x) closest to the origin
is also a singularity in H1(x). With this result x* is easily
calculated.
Although we do not in general have a closed-form expres-

sion for H1(x), it is easy to derive one for its functional
inverse. Putting w"H1(x) and x"H1

#1(w) in Eq. !26" and
rearranging, we find

x"H1
#1!w ""

w
G1!w "

. !42"

The singularity of interest corresponds to the point w* at
which the derivative of H1

#1(w) is zero, which is a solution
of

G1!w*"#w*G1!!w*""0. !43"

Then x* !and hence s*) is given by Eq. !42". Note that there
is no guarantee that Eq. !43" has a finite solution, and that if
it does not, then Ps will not in general follow the form of Eq.
!40".
When we are precisely at the phase transition of our sys-

tem, we have G1(1)"G1!(1)"1, and hence the solution of
Eq. !43" gives w*"x*"1—a result that we used above—
and s*→& . We can use the fact that x*"1 at the transition
to calculate the value of the exponent 3 as follows. Expand-
ing H1

#1(w) about w*"1 by putting w"1!4 in Eq. !42",
we find that

H1
#1!1!4""1#

1
2 G1"!1 "42!O!43", !44"

where we have made use of G1(1)"G1!(1)"1 at the phase
transition. So long as G1"(1)50, which in general it is not,
this implies that H1(x) and hence also H0(x) are of the form

H0!x "2!1#x "6 as x→1, !45"

with 6" 1
2 . This exponent is related to the exponent 3 as

follows. Equation !40" implies that H0(x) can be written in
the form

H0!x "" %
s"0

a#1

Psxs!C%
s"a

&

s#3e#s/s*xs!4!a ", !46"

where C is a constant and the last !error" term 4(a) is as-
sumed much smaller than the second term. The first term in
this expression is a finite polynomial and therefore has no
singularities on the finite plane; the singularity resides in the
second term. Using this equation, the exponent 6 can be
written

6" lim
x→1

& 1!!x#1 "
H0"!x "

H0!!x "
'

" lim
a→&

lim
x→1& 1x!

x#1
x

%
s"a

&

s2#3xs#1

%
s"a

&

s1#3xs#1'
" lim

a→&
lim
x→1

&1x!
1#x
x ln x

7!3#3 ,#a ln x "

7!2#3 ,#a ln x "' , !47"

where we have replaced the sums with integrals as a be-
comes large, and 7(8 ,9) is the incomplete 7-function. Tak-
ing the limits in the order specified and rearranging for 3 , we
then get

3"6!1" 3
2 , !48"

regardless of degree distribution, except in the special case
where G1"(1) vanishes #see Eq. !44"$. The result 3" 3

2 was
known previously for the ordinary Poisson random graph #1$,
but not for other degree distributions.

F. Numbers of neighbors and average path length

We turn now to the calculation of the number of neigh-
bors who are m steps away from a randomly chosen vertex.
As shown in Sec. II A, the probability distributions for first-
and second-nearest neighbors are generated by the functions
G0(x) and G0„G1(x)…. By extension, the distribution of mth
neighbors is generated by G0(G1„ . . . G1(x) . . . …), with
m#1 iterations of the function G1 acting on itself. If we
define G (m)(x) to be this generating function for mth neigh-
bors, then we have

G (m)!x "")G0!x " for m"1,
G (m#1)„G1!x "… for m,2.

!49"

Then the average number zm of mth-nearest neighbors is

zm"
dG (m)

dx %
x"1

"G1!!1 "G (m#1)!!1 ""G1!!1 "zm#1 .

!50"

Along with the initial condition z1"z"G0!(1), this then tells
us that

RANDOM GRAPHS WITH ARBITRARY DEGREE . . . PHYSICAL REVIEW E 64 026118

026118-7



zm"#G1!!1 "$m#1G0!!1 ""& z2z1'
m#1

z1 . !51"

From this result we can make an estimate of the typical
length l of the shortest path between two randomly chosen
vertices on the graph. This typical path length is reached
approximately when the total number of neighbors of a ver-
tex out to that distance is equal to the number of vertices on
the graph, i.e., when

1! %
m"1

l

zm"N . !52"

Using Eq. !51" this gives us

l "
ln#!N#1 "!z2#z1"!z1

2$#ln z1
2

ln!z2 /z1"
. !53"

In the common case where N&z1 and z2&z1, this reduces to

l "
ln!N/z1"
ln!z2 /z1"

!1. !54"

This result is only approximate for two reasons. First, the
conditions used to derive it are only an approximation; the
exact answer depends on the detailed structure of the graph.
Second, it assumes that all vertices are reachable from a
randomly chosen starting vertex. In general however this will
not be true. For graphs with no giant component it is cer-
tainly not true and Eq. !54" is meaningless. Even when there
is a giant component, however, it is usually not the case that
it fills the entire graph. A better approximation to l may
therefore be given by replacing N in Eq. !54" by NS , where
S is the fraction of the graph occupied by the giant compo-
nent, as in Sec. II D.
Such shortcomings notwithstanding, there are a number of

remarkable features of Eq. !54".
!1" It shows that the average vertex-vertex distance for all

random graphs, regardless of degree distribution, should
scale logarithmically with size N, according to l "A
!B lnN, where A and B are constants. This result is of
course well known for a number of special cases.

!2" It shows that the average distance, which is a global
property, can be calculated from a knowledge only of the
average numbers of first- and second-nearest neighbors,
which are local properties. It would be possible therefore to
measure these numbers empirically by purely local measure-
ments on a graph such as an acquaintance network and from
them to determine the expected average distance between
vertices. For some networks at least, this gives a surprisingly
good estimate of the true average distance #37$.

!3" It shows that only the average numbers of first- and
second-nearest neighbors are important to the calculation of
average distances, and thus that two random graphs with
completely different distributions of vertex degrees, but the
same values of z1 and z2, will have the same average dis-
tances.
For the case of the purely theoretical example graphs we

discussed earlier, we cannot make an empirical measurement

of z1 and z2, but we can still employ Eq. !54" to calculate l .
In the case of the ordinary !Poisson" random graph, for in-
stance, we find from Eq. !12" that z1"z , z2"z2, and so l
"lnN/ln z, which is the standard result for graphs of this
type #1$. For the graph with degree distributed according to
the truncated power law, Eq. !17", z1 and z2 are given by
Eqs. !21" and !22", and the average vertex-vertex distance is

l "
lnN!ln#Li+!e#1/*"/Li+#1!e#1/*"$

ln#Li+#2!e#1/*"/Li+#1!e#1/*"#1$
!1. !55"

In the limit *→& , this becomes

l "
lnN!ln#-!+"/-!+#1 "$

ln#-!+#2 "/-!+#1 "#1$
!1. !56"

Note that this expression does not have a finite positive real
value for any +$3, indicating that one must specify a finite
cutoff * for the degree distribution to get a well-defined
average vertex-vertex distance on such graphs.

G. Simulation results

As a check on the results of this section, we have per-
formed extensive computer simulations of random graphs
with various distributions of vertex degree. Such graphs are
relatively straightforward to generate. First, we generate a set
of N random numbers .ki/ to represent the degrees of the N
vertices in the graph. These may be thought of as the ‘‘stubs’’
of edges, emerging from their respective vertices. Then we
choose pairs of these stubs at random and place edges on the
graph joining them up. It is simple to see that this will gen-
erate all graphs with the given set of vertex degrees with
equal probability. The only small catch is that the sum % ik i
of the degrees must be even, since each edge added to the
graph must have two ends. This is not difficult to contrive
however. If the set .ki/ is such that the sum is odd, we
simply throw it away and generate a new set.
As a practical matter, integers representing vertex degrees

with any desired probability distribution can be generated
using the transformation method if applicable, or failing that,
a rejection or hybrid method #45$. For example, degrees
obeying the power-law-plus-cutoff form of Eq. !17" can be
generated using a two-step hybrid transformation/rejection
method as follows. First, we generate random integers k
,1 with distribution proportional to e#k/* using the trans-
formation #46$

k" !#* ln!1#r "" , !57"

where r is a random real number uniformly distributed in the
range 0'r$1. Second, we accept this number with prob-
ability k#+, where by ‘‘accept’’ we mean that if the number is
not accepted we discard it and generate another one accord-
ing to Eq. !57", repeating the process until one is accepted.
In Fig. 4 we show results for the size of the giant compo-

nent in simulations of undirected unipartite graphs with ver-
tex degrees distributed according to Eq. !17" for a variety of
different values of + and * . On the same plot we also show
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the expected value of the same quantity derived by numerical
solution of Eqs. !34" and !35". As the figure shows, the
agreement between simulation and theory is excellent.

III. DIRECTED GRAPHS

We turn now to directed graphs with arbitrary degree dis-
tributions. An example of a directed graph is the world-wide
web, since every hyperlink between two pages on the web
goes in only one direction. The web has a degree distribution
that follows a power law, as discussed in Sec. I.
Directed graphs introduce a subtlety that is not present in

undirected ones, and which becomes important when we ap-
ply our generating function formalism. In a directed graph it
is not possible to talk about a ‘‘component’’—i.e., a group of
connected vertices—because even if vertex A can be reached
by following !directed" edges from vertex B, that does not
necessarily mean that vertex B can be reached from vertex A.
There are two correct generalizations of the idea of the com-
ponent to a directed graph: the set of vertices that are reach-
able from a given vertex, and the set from which a given
vertex can be reached. We will refer to these as ‘‘out-
components’’ and ‘‘in-components,’’ respectively. An in-
component can also be thought of as those vertices reachable
by following edges backwards !but not forwards" from a
specified vertex. It is possible to study directed graphs by
allowing both forward and backward traversal of edges !see
Ref. #26$, for example". In this case, however, the graph
effectively becomes undirected and should be treated with
the formalism of Sec. II.
With these considerations in mind, we now develop the

generating function formalism appropriate to random di-
rected graphs with arbitrary degree distributions.

A. Generating functions

In a directed graph, each vertex has separate in-degree
and out-degree for links running into and out of that vertex.
Let

us define p jk to be the probability that a randomly chosen
vertex has in-degree j and out-degree k. It is important to
realize that in general this joint distribution of j and k is not
equal to the product p jpk of the separate distributions of in-
and out-degree. In the world-wide web, for example, it seems
likely !although this question has not been investigated to
our knowledge" that sites with a large number of outgoing
links also have a large number of incoming ones, i.e., that j
and k are correlated, so that p jk5p jpk . We appeal to those
working on studies of the structure of the web to measure the
joint distribution of in-degrees and out-degrees of sites; em-
pirical data on this distribution would make theoretical work
much easier.
We now define a generating function for the joint prob-

ability distribution of in-degrees and out-degrees, which is
necessarily a function of two independent variables, x and y,
thus:

G!x ,y ""%
jk

p jkx jyk. !58"

Since every edge on a directed graph must leave some vertex
and enter another, the net average number of edges entering
a vertex is zero, and hence p jk must satisfy the constraint

%
jk

! j#k "p jk"0. !59"

This implies that G(x ,y) must satisfy

:G
:x %x ,y"1

"
:G
:y%x ,y"1

"z , !60"

where z is the average degree !both in and out" of vertices in
the graph.
Using the function G(x ,y), we can, as before, define gen-

erating functions G0 and G1 for the number of out-going
edges leaving a randomly chosen vertex, and the number
leaving the vertex reached by following a randomly chosen
edge. We can also define generating functions F0 and F1 for
the number arriving at such a vertex. These functions are
given by

F0!x ""G!x ,1", F1!x ""
1
z

:G
:y %y"1

, !61"

G0!y ""G!1,y ", G1!y ""
1
z

:G
:x %x"1

. !62"

Once we have these functions, many results follow as before.
The average numbers of first and second neighbors reachable
from a randomly chosen vertex are given by Eq. !60" and

z2"G0!!1 "G1!!1 ""
:2G

:x :y %x ,y"1
. !63"

These are also the numbers of first and second neighbors
from which a random vertex can be reached, since Eqs. !60"

FIG. 4. The size of the giant component in random graphs with
vertex degrees distributed according to Eq. !17", as a function of the
cutoff parameter * for five different values of the exponent + . The
points are results from numerical simulations on graphs of N
"1 000 000 vertices, and the solid lines are the theoretical value for
infinite graphs, Eqs. !34" and !35". The error bars on the simulation
results are smaller than the data points.

RANDOM GRAPHS WITH ARBITRARY DEGREE . . . PHYSICAL REVIEW E 64 026118

026118-9



and !63" are manifestly symmetric in x and y. We can also
make an estimate of the average path length on the graph
from

l "
ln!N/z1"
ln!z2 /z1"

!1, !64"

as before. However, this equation should be used with cau-
tion. As discussed in Sec. II F, the derivation of this formula
assumes that we are in a regime in which the bulk of the
graph is reachable from most vertices. On a directed graph
however, this may be far from true, as appears to be the case
with the world-wide web #26$.
The probability distribution of the numbers of vertices

reachable from a randomly chosen vertex in a directed
graph—i.e., of the sizes of the out-components—is generated
by the function H0(y)"yG0„H1(y)…, where H1(y) is a so-
lution of H1(y)"yG1„H1(y)…, just as before. !A similar and
obvious pair of equations governs the sizes of the in-
components." The results for the asymptotic behavior of the
component size distribution from Sec. II E generalize
straightforwardly to directed graphs. The average out-
component size for the case where there is no giant compo-
nent is given by Eq. !31", and thus the point at which a giant
component first appears is given once more by G1!(1)"1.
Substituting Eq. !58" into this expression gives the explicit
condition

%
jk

!2 jk# j#k "p jk"0 !65"

for the first appearance of the giant component. This expres-
sion is the equivalent for the directed graph of Eq. !33". It is
also possible, and equally valid, to define the position at
which the giant component appears by F1!(1)"1, which pro-
vides an alternative derivation for Eq. !65".
Just as with the individual in-component and out-

components for vertices, the size of the giant component on
a directed graph can also be defined in different ways. The
giant component can be represented using the ‘‘bow-tie’’ dia-
gram of Broder et al. #26$, which we depict !in a simplified
form" in Fig. 5. The diagram has three parts. The strongly
connected portion of the giant component, represented by the
central circle, is that portion in which every vertex can be
reached from every other. The two sides of the bow tie rep-
resent !1" those vertices from which the strongly connected
component can be reached but which it is not possible to

reach from the strongly connected component and !2" those
vertices that can be reached from the strongly connected
component but from which it is not possible to reach the
strongly connected component. The solution of Eqs. !34" and
!35" with G0(x) and G1(x) defined according to Eq. !62"
gives the number of vertices, as a fraction of N, in the giant
strongly connected component plus those vertices from
which the giant strongly connected component can be
reached. Using F0(x) and F1(x) #Eq. !61"$ in place of G0(x)
and G1(x) gives a different solution, which represents the
fraction of the graph in the giant strongly connected compo-
nent plus those vertices that can be reached from it.

B. Simulation results

We have performed simulations of directed graphs as a
check on the results above. Generation of random directed
graphs with known joint degree distribution p jk is somewhat
more complicated than the generation of undirected graphs
discussed in Sec. II G. The method we use is as follows.
First, it is important to ensure that the averages of the distri-
butions of in-degree and out-degree of the graph are the
same, or equivalently that p jk satisfies Eq. !59". If this is not
the case, at least to good approximation, then generation of
the graph will be impossible. Next, we generate a set of N
in/out-degree pairs ( j i ,ki), one for each vertex i, according
to the joint distribution p jk , and calculate the sums % i j i and
% ik i . These sums are required to be equal if there are to be
no dangling edges in the graph, but in most cases we find
that they are not. To rectify this we use a simple procedure.
We choose a vertex i at random, discard the numbers ( j i ,ki)
for that vertex and generate new ones from the distribution
p jk . We repeat this procedure until the two sums are found
to be equal. Finally, we choose random in/out pairs of edges
and join them together to make a directed graph. The result-
ing graph has the desired number of vertices and the desired
joint distribution of in- and out-degree.
We have simulated directed graphs in which the distribu-

tion p jk is given by a simple product of independent distri-
butions of in-degree and out-degree. !As pointed out in Sec.
III A, this is not generally the case for real-world directed
graphs, where in-degree and out-degree may be correlated."
In Fig. 6 we show results from simulations of graphs with
identically distributed !but independent" in-degree and out-
degrees drawn from the exponential distribution, Eq. !13".
For this distribution, solution of the critical-point equation
G1!(1)"1 shows that the giant component first appears at
*c"# ln 2$#1"1.4427. The three curves in the figure show
the distribution of numbers of vertices accessible from each
vertex in the graph for *"0.5, 0.8, and *c . The critical
distribution follows a power-law form !see Sec. II C", while
the others show an exponential cutoff. We also show the
exact distribution derived from the coefficients in the expan-
sion of H1(x) about zero. Once again, theory and simulation
are in good agreement. A fit to the distribution for the case
*"*c gives a value of 3"1.50'0.02, in good agreement
with Eq. !48".

FIG. 5. The ‘‘bow-tie’’ diagram proposed by Broder et al. as a
representation of the giant component of the world-wide web !al-
though it can be used to visualize any directed graph".
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IV. BIPARTITE GRAPHS

The collaboration graphs of scientists, company directors,
and movie actors discussed in Sec. I are all examples of
bipartite graphs. In this section we study the theory of bipar-
tite graphs with arbitrary degree distributions. To be con-
crete, we will speak in the language of ‘‘actors’’ and ‘‘mov-
ies,’’ but clearly all the developments here are applicable to
academic collaborations, boards of directors, or any other
bipartite graph structure.

A. Generating functions and basic results

Consider then a bipartite graph of M movies and N actors,
in which each actor has appeared in an average of 9 movies
and each movie has a cast of average size 8 actors. Note that
only three of these parameters are independent, since the
fourth is given by the equality

9

M "
8

N . !66"

Let p j be the probability distribution of the degree of actors
!i.e., of the number of movies in which they have appeared"
and qk be the distribution of degree !i.e., cast size" of mov-
ies. We define two generating functions that generate these
probability distributions thus:

f 0!x ""%
j
p jx j, g0!x ""%

k
qkxk. !67"

!It may be helpful to think of f as standing for ‘‘film,’’ in
order to keep these two straight." As before, we necessarily
have

f 0!1 ""g0!1 ""1, f 0!!1 ""9 , g0!!1 ""8 . !68"

If we now choose a random edge on our bipartite graph
and follow it both ways to reach the movie and actor that it

connects, then the distribution of the number of other edges
leaving those two vertices is generated by the equivalent of
Eq. !9":

f 1!x ""
1
9
f 0!!x ", g1!x ""

1
8
g0!!x ". !69"

Now we can write the generating function for the distribution
of the number of co-stars !i.e., actors in shared movies" of a
randomly chosen actor as

G0!x "" f 0„g1!x "…. !70"

If we choose a random edge, then the distribution of number
of co-stars of the actor to which it leads is generated by

G1!x "" f 1„g1!x "…. !71"

These two functions play the same role in the one-mode
network of actors as the functions of the same name did for
the unipartite random graphs of Sec. II. Once we have cal-
culated them, all the results from Sec. II follow exactly as
before.
The numbers of first and second neighbors of a randomly

chosen actor are

z1"G0!!1 "" f 0!!1 "g1!!1 ", !72"

z2"G0!!1 "G1!!1 "" f 0!!1 " f 1!!1 "#g1!!1 "$2. !73"

Explicit expressions for these quantities can be obtained by
substituting from Eqs. !67" and !69". The average vertex-
vertex distance on the one-mode graph is given as before by
Eq. !54". Thus, it is possible to estimate average distances on
such graphs by measuring only the numbers of first and sec-
ond neighbors.
The distribution of the sizes of the connected components

in the one-mode network is generated by Eq. !27", where
H1(x) is a solution of Eq. !26". The asymptotic results of
Sec. II E generalize simply to the bipartite case, and the av-
erage size of a connected component in the absence of a
giant component is

(s)"1!
G0!!1 "

1#G1!!1 "
, !74"

as before. This diverges when G1!(1)"1, marking the first
appearance of the giant component. Equivalently, the giant
component first appears when

f 0"!1 "g0"!1 "" f 0!!1 "g0!!1 ". !75"

Substituting from Eq. !67", we then derive the explicit con-
dition for the first appearance of the giant component:

%
jk

jk! jk# j#k "p jqk"0. !76"

The size S of the giant component, as a fraction of the total
number N of actors, is given as before by the solution of Eqs.
!34" and !35".

FIG. 6. The distribution Ps of the numbers of vertices accessible
from each vertex of a directed graph with identically exponentially
distributed in-degree and out-degree. The points are simulation re-
sults for systems of N"1 000 000 vertices and the solid lines are
the analytic solution.
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Of course, all of these results work equally well if ‘‘ac-
tors’’ and ‘‘movies’’ are interchanged. One can calculate the
average distance between movies in terms of common actors
shared, the size and distribution of connected components of
movies, and so forth, using the formulas given above, with
only the exchange of f 0 and f 1 for g0 and g1. The formula
!75" is, not surprisingly, invariant under this interchange, so
that the position of the onset of the giant component is the
same regardless of whether one is looking at actors or mov-
ies.

B. Clustering

Watts and Strogatz #15$ have introduced the concept of
clustering in social networks, also sometimes called network
transitivity. Clustering refers to the increased propensity of
pairs of people to be acquainted with one another if they
have another acquaintance in common. Watts and Strogatz
defined a clustering coefficient that measures the degree of
clustering on a graph. For our purposes, the definition of this
coefficient is

C"
3(!number of triangles on the graph"

!number of connected triples of vertices" "
3N!

N3
.

!77"

Here ‘‘triangles’’ are trios of vertices each of which is con-
nected to both of the others, and ‘‘connected triples’’ are trios
in which at least one is connected to both the others. The
factor of 3 in the numerator accounts for the fact that each
triangle contributes to three connected triples of vertices, one
for each of its three vertices. With this factor of 3, the value
of C lies strictly in the range from zero to one. In the directed
and undirected unipartite random graphs of Secs. II and III,
C is trivially zero in the limit N→& . In the one-mode pro-
jections of bipartite graphs, however, both the actors and the
movies can be expected to have nonzero clustering. We here
treat the case for actors. The case for movies is easily derived
by swapping f ’s and g’s.
An actor who has z1z1 co-stars in total contributes

1
2 z(z#1) connected triples to N3, so that

N3" 1
2N%

z
z!z#1 "rz , !78"

where rz is the probability of having z co-stars. As shown
above #Eq. !70"$, the distribution rz is generated by G0(x)
and so

N3" 1
2NG0"!1 ". !79"

A movie that stars k actors contributes 1
6 k(k#1)(k#2)

triangles to the total triangle count in the one-mode graph.
Thus the total number of triangles on the graph is the sum of
1
6 k(k#1)(k#2) over all movies, which is given by

N!" 1
6M%

k
k!k#1 "!k#2 "qk" 1

6Mg0;!1 ". !80"

Substituting into Eq. !77", we then get

C"
M
N
g0;!1 "

G0"!1 "
. !81"

Making use of Eqs. !66", !67", and !70", this can also be
written as

1
C #1"

!92#91"!82#81"
2

9181!281#382!83"
, !82"

where 9n"%kknpk is the nth moment of the distribution of
numbers of movies in which actors have appeared, and 8n is
the same for cast size !number of actors in a movie".

C. Example

To give an example, consider a random bipartite graph
with Poisson-distributed numbers of both movies per actor
and actors per movie. In this case, following the derivation
of Eq. !12", we find that

f 0!x ""e9(x#1), g0!x ""e8(x#1), !83"

and f 1(x)" f 0(x) and g1(x)"g0(x). Thus

G0!x ""G1!x ""exp#9!e8(x#1)#1$ . !84"

This implies that z1"98 and z2"(98)2, so that

l "
lnN
ln98

"
lnN
ln z , !85"

just as in an ordinary Poisson-distributed random graph.
From Eq. !74", the average size (s) of a connected compo-
nent of actors, below the phase transition, is

(s)"
1

1#98
, !86"

which diverges, yielding a giant component, at 98"z"1,
also as in the ordinary random graph. From Eqs. !34" and
!35", the size S of the giant component as a fraction of N is a
solution of

S"1#e9(e#8S#1). !87"

And from Eq. !81", the clustering coefficient for the one-
mode network of actors is

C"
M83

N82!92!9"
"

1
9!1 , !88"

where we have made use of Eq. !66".
Another quantity of interest is the distribution of numbers

of co-stars, i.e., of the numbers of people with whom each
actor has appeared in a movie. As discussed above, this dis-
tribution is generated by the function G0(x) defined in Eq.
!70". For the case of the Poisson degree distribution, we can
perform the derivatives, Eq. !4", and setting x"0 we find
that the probability rz of having appeared with a total of
exactly z co-stars is
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rz"
8z

z! e
9(e#8#1)%

k"1

z ) zk* #9e#8$k, !89"

where the coefficients . k
z/ are the Stirling numbers of the

second kind #47$

) zk* "%
r"1

k
!#1 "k#r

r!!k#r "! r
z. !90"

D. Simulation results

Random bipartite graphs can be generated using an algo-
rithm similar to the one described in Sec. III B for directed
graphs. After making sure that the required degree distribu-
tions for both actor and movie vertices have means consis-
tent with the required total numbers of actors and movies
according to Eq. !66", we generate vertex degrees for each
actor and movie at random and calculate their sum. If these
sums are unequal, we discard the degree of one actor and one
movie, chosen at random, and replace them with new de-
grees drawn from the relevant distributions. We repeat this
process until the total actor and movie degrees are equal.
Then we join vertices up in pairs.
In Fig. 7 we show the results of such a simulation for a

bipartite random graph with Poisson degree distribution. !In
fact, for the particular case of the Poisson distribution, the
graph can be generated simply by joining up actors and mov-
ies at random, without regard for individual vertex degrees."
The figure shows the distribution of the number of co-stars
of each actor, along with the analytic solution, Eqs. !89" and
!90". Once more, numerical and analytic results are in good
agreement.

V. APPLICATIONS TO REAL-WORLD NETWORKS

In this section we construct random graph models of two
types of real-world networks, namely, collaboration graphs
and the world-wide web, using the results of Secs. III and IV

to incorporate realistic degree distributions into the models.
As we will show, the results are in reasonably good agree-
ment with empirical data, although there are some interesting
discrepancies also, perhaps indicating the presence of social
phenomena that are not incorporated in the random graph.

A. Collaboration networks

In this section we construct random bipartite graph mod-
els of the known collaboration networks of company direc-
tors #29–31$, movie actors #15$, and scientists #36$. As we
will see, the random graph works well as a model of these
networks, giving good order-of-magnitude estimates of all
quantities investigated, and in some cases giving results of
startling accuracy.
Our first example is the collaboration network of the

members of the boards of directors of the Fortune 1000 com-
panies !the 1000 US companies with the highest revenues".
The data come from the 1999 Fortune 1000 #29–31$ and in
fact include only 914 of the 1000, since data on the boards of
the remaining 86 were not available. The data form a bipar-
tite graph in which one type of vertex represents the boards
of directors, and the other type the members of those boards,
with edges connecting boards to their members. In Fig. 8 we
show the frequency distribution of the numbers of boards on
which each member sits, and the numbers of members of
each board. As we see, the former distribution is close to
exponential, with the majority of directors sitting on only
one board, while the latter is strongly peaked around ten,
indicating that most boards have about ten members.
Using these distributions, we can define generating func-

tions f 0(x) and g0(x) as in Eq. !23", and hence find the
generating functions G0(x) and G1(x) for the distributions
of numbers of co-workers of the directors. We have used
these generating functions and Eqs. !72" and !81" to calculate
the expected clustering coefficient C and the average number
of co-workers z in the one-mode projection of board direc-
tors on a random bipartite graph with the same vertex degree
distributions as the original dataset. In Table I we show the
results of these calculations, along with the same quantities

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with 9"1.5 and 8"15. The points are
simulation results for M"10 000 and N"100 000. The line is the
exact solution, Eqs. !89" and !90". The error bars on the numerical
results are smaller than the points.

FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

RANDOM GRAPHS WITH ARBITRARY DEGREE . . . PHYSICAL REVIEW E 64 026118

026118-13



for the real Fortune 1000. As the table shows the two are in
remarkable—almost perfect—agreement.
It is not just the average value of z that we can calculate

from our generating functions, but the entire distribution:
since the generating functions are finite polynomials in this
case, we can simply perform the derivatives to get the prob-
ability distribution rz . In Fig. 9, we show the results of this
calculation for the Fortune 1000 graph. The points in the
figure show the actual distribution of z for the real-world
data, while the solid line shows the theoretical results. Again
the agreement is excellent. The dashed line in the figure
shows the distribution for an ordinary Poisson random graph
with the same mean. Clearly this is a significantly inferior fit.
In fact, within the business world, attention has focused

not on the collaboration patterns of company directors, but
on the ‘‘interlocks’’ between boards, i.e., on the one-mode
network in which vertices represent boards of directors and
two boards are connected if they have one or more directors
in common #28,29$. This is also simple to study with our
model. In Fig. 10 we show the distribution of the numbers of
interlocks that each board has, along with the theoretical pre-
diction from our model. As we see, the agreement between
empirical data and theory is significantly worse in this case
than for the distribution of co-directors. In particular, it ap-
pears that our theory significantly underestimates the number
of boards that are interlocked with very small or very large

numbers of other boards, while overestimating those with
intermediate numbers of interlocks. One possible explanation
of this is that ‘‘bigshots work with other bigshots.’’ That is,
the people who sit on many boards tend to sit on those
boards with other people who sit on many boards. And con-
versely the people who sit on only one board !which is the
majority of all directors", tend to do so with others who sit on
only one board. This would tend to stretch the distribution of
numbers of interlocks, just as seen in figure, producing a
disproportionately high number of boards with very many or
very few interlocks to others. To test this hypothesis, we
have calculated, as a function of the number of boards on
which a director sits, the average number of boards on which
each of their co-directors sit. The results are shown in the
inset of Fig. 10. If these two quantities were uncorrelated, the
plot would be flat. Instead, however, it slopes clearly up-
wards, indicating indeed that on the average the big shots
work with other big shots. !This idea is not new. It has been
discussed previously by a number of others—see Refs. #48$
and #49$, for example."
The example of the boards of directors is a particularly

instructive one. What it illustrates is that the cases in which
our random graph models agree well with real-world phe-
nomena are not necessarily the most interesting. Certainly it
is satisfying, as in Fig. 9, to have the theory agree well with
the data. But probably Fig. 10 is more instructive: we have
learned something about the structure of the network of the
boards of directors by observing the way in which the pattern
of board interlocks differs from the predictions of the purely
random network. Thus it is perhaps best to regard our ran-
dom graph as a null model—a baseline from which our ex-
pectations about network structure should be measured. It is
deviation from the random graph behavior, not agreement
with it, that allows us to draw conclusions about real-world
networks.

TABLE I. Summary of results of the analysis of four collabora-
tion networks.

Clustering C Average degree z
Network Theory Actual Theory Actual

Company directors 0.590 0.588 14.53 14.44
Movie actors 0.084 0.199 125.6 113.4
Physics !arxiv.org" 0.192 0.452 16.74 9.27
Biomedicine !MEDLINE" 0.042 0.088 18.02 16.93

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

FIG. 10. The distribution of the number of other boards with
which each board of directors is ‘‘interlocked’’ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.
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We now look at three other graphs for which our theory
also works well, although again there are some noticeable
deviations from the random graph predictions, indicating the
presence of social or other phenomena at work in the net-
works.
We consider the graph of movie actors and the movies in

which they appear #15,50$ and graphs of scientists and the
papers they write in physics and biomedical research #36$. In
Table I we show results for the clustering coefficients and
average coordination numbers of the one-mode projections
of these graphs onto the actors or scientists. As the table
shows, our theory gives results for these figures that are of
the right general order of magnitude, but typically deviate
from the empirically measured figures by a factor of 2 or so.
In the insets of Fig. 9 we show the distributions of numbers
of collaborators in the movie actor and physicist graphs, and
again the match between theory and real data is good, but not
as good as with the Fortune 1000.
The figures for clustering and mean numbers of collabo-

rators are particularly revealing. The former is uniformly
about twice as high in real life as our model predicts for the
actor and scientist networks. This shows that there is a sig-
nificant tendency to clustering in these networks, in addition
to the trivial clustering one expects on account of the bipar-
tite structure. This may indicate, for example, that scientists
tend to introduce pairs of their collaborators to one another,
thereby encouraging clusters of collaboration. The figures for
average numbers of collaborators show less deviation from
theory than the clustering coefficients, but nonetheless there
is a clear tendency for the numbers of collaborators to be
smaller in the real-world data than in the models. This prob-
ably indicates that scientists and actors collaborate repeat-
edly with the same people, thereby reducing their total num-
ber of collaborators below the number that would naively be
expected if we consider only the numbers of papers that they
write or movies they appear in. It would certainly be possible
to take effects such as these into account in a more sophisti-
cated model of collaboration practices.

B. The world-wide web

In this section we consider the application of our theory of
random directed graphs to the modeling of the world-wide
web. As we pointed out in Sec. III A, it is not at present
possible to make a very accurate random-graph model of the
web, because to do so we need to know the joint distribution
p jk of in-degree and out-degrees of vertices, which has not to
our knowledge been measured. However, we can make a
simple model of the web by assuming in-degree and out-
degree to be independently distributed according to their
known distributions. Equivalently, we assume that the joint
probability distribution factors according to p jk"p jqk .
Broder et al. #26$ give results showing that the in-degree

and out-degree distributions of the web are approximately
power law in form with exponents + in"2.1 and +out"2.7,
although there is some deviation from the perfect power law
for small degree. In Fig. 11, we show histograms of their
data with bins chosen to be of uniform width on the logarith-
mic scales used. !This avoids certain systematic errors

known to afflict linearly histogrammed data plotted on log
scales." We find both distributions to be well fitted by the
form

pk"C!k!k0"#+, !91"

where the constant C is fixed by the requirement of normal-
ization, taking the value 1/-(+ ,k0), were -(x ,y) is the gen-
eralized - function #47$. The constants k0 and + are found by
least-squares fits, giving values of 0.58 and 3.94 for k0, and
2.17 and 2.69 for + , for the in-degree and out-degree distri-
butions, respectively, in reasonable agreement with the fits
performed by Broder et al. With these choices, the data and
Eq. !91" match closely !see Fig. 11".
Neither the raw data nor our fits to them satisfy the con-

straint !59", that the total number of links leaving pages
should equal the total number arriving at them. This is be-
cause the data set is not a complete picture of the web. Only
about 2(108 of the web’s 109 or so pages were included in
the study. Within this subset, our estimate of the distribution
of out-degree is presumably quite accurate, but many of the
outgoing links will not connect to other pages within the
subset studied. At the same time, no incoming links that
originate outside the subset of pages studied are included,
because the data are derived from ‘‘crawls’’ in which web
pages are found by following links from one to another. In
such a crawl one only finds links by finding the pages that
they originate from. Thus our data for the incoming links is
quite incomplete, and we would expect the total number of
incoming links in the dataset to fall short of the number of
outgoing ones. This indeed is what we see. The totals for
incoming and outgoing links are approximately 2.3(108 and
1.1(109.
The incompleteness of the data for incoming links limits

the information we can at present extract from a random
graph model of the web. There are however some calcula-
tions that only depend on the out-degree distribution.
Given Eq. !91", the generating functions for the out-

degree distribution take the form

FIG. 11. The probability distribution of in-degree !left panel"
and out-degree !right panel" on the world-wide web, rebinned from
the data of Broder et al. #26$. The solid lines are best fits of the
form !91".
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G0!x ""G1!x ""
<!x ,+ ,k0"

-!+ ,k0"
, !92"

where <(x ,y ,z) is the Lerch < function #47$. The corre-
sponding generating functions F0 and F1 we cannot calcu-
late accurately because of the incompleteness of the data.
The equality G0"G1 !and also F0"F1) is a general prop-
erty of all directed graphs for which p jk"p jqk as above. It
arises because in such graphs in-degree and out-degree are
uncorrelated, and therefore the distribution of the out-degree
of a vertex does not depend on whether you arrived at it by
choosing a vertex at random, or by following a randomly
chosen edge.
One property of the web that we can estimate from the

generating functions for out-degree alone is the fraction S in
of the graph taken up by the giant strongly connected com-
ponent plus those sites from which the giant strongly con-
nected component can be reached. This is given by

S in"1#G0!1#S in". !93"

In other words, 1#S in is a fixed point of G0(x). Using the
measured values of k0 and + , we find by numerical iteration
that S in"0.527, or about 53%. The direct measurements of
the web made by Broder et al. show that in fact about 49%
of the web falls in S in , in reasonable agreement with our
calculation. Possibly this implies that the structure of the
web is close to that of a directed random graph with a power-
law degree distribution, though it is possible also that it is
merely coincidence. Other comparisons between random
graph models and the web will have to wait until we have
more accurate data on the joint distribution p jk of in-degree
and out-degree.

VI. CONCLUSIONS

In this paper we have studied in detail the theory of ran-
dom graphs with arbitrary distributions of vertex degree, in-

cluding directed and bipartite graphs. We have shown how,
using the mathematics of generating functions, one can cal-
culate exactly many of the statistical properties of such
graphs in the limit of large numbers of vertices. Among other
things, we have given explicit formulas for the position of
the phase transition at which a giant component forms, the
size of the giant component, the average and distribution of
the sizes of the other components, the average numbers of
vertices a certain distance from a given vertex, the clustering
coefficient, and the typical vertex-vertex distance on a graph.
We have given examples of the application of our theory to
the modeling of collaboration graphs, which are inherently
bipartite, and the world-wide web, which is directed. We
have shown that the random graph theory gives good order-
of-magnitude estimates of the properties of known collabo-
ration graphs of business people, scientists, and movie ac-
tors, although there are measurable differences between
theory and data that point to the presence of interesting so-
ciological effects in these networks. For the web we are lim-
ited in what calculations we can perform because of the lack
of appropriate data to determine the generating functions.
However, the calculations we can perform agree well with
empirical results, offering some hope that the theory will
prove useful once more complete data become available.
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