"What is a network?"

Example social networks

M. E. J. Newman

The Internet

H. Burch and B. Cheswick

A typical web domain

M. E. J. Newman

The airline network

Continental Airlines

Yeast protein signaling network

S. Masloc and K. Sneppen; M. E. J. Newman

The power grid

M. E. J. Newman

Software call graph

Chris Myers

Networks: basic properties

- Network mode of nodes connected together by edges.
- Edges can be directed or undirected (i.e., one-way or two-way connections).

Example one-way: Web pages.

Example two-way: Links connecting routers

in the Internet.

Example hybrid: Road networks with some one-way and some two-way links (city of Boston prime example!).

- Geometric versus geometry free (e.g., Internet vs WWW)
- STRUCTURE and FUNCTION (information flow/dynamics on the network)

Networks exist: Physical, Biological, Social, Engineered

- They are made of discrete entities (nodes) and discrete links (edges). Hard to envision any continuum approximation.
- They have complicated interconnections; not the typical Euclidean world or regular lattice.
- Furthermore the connections can be dynamic! (This is uncharted territory).
- Statistical properties of the connections characterize topology.
- Markov chains are the main tool for dynamics on a network.

Why do networks exist?

- More efficient control, esp through hierarchy?
- Robustness to noise and fluctuations?
- Can we learn function from structure?
- Can we apply these lessons to engineered systems?
 Would a modern power grid look like the one we have?

Lessons from existing networks?

All networks, all quantitatively different, each optimizes something different.

What are the key parameters that distinguish them?

Which kinds work best for which application?

General Considerations/Tradeoffs

- For what purpose are we building the network?
- CONNECTIVITY?
- Robustness to which failure modes?

 (e.g., random (biology) vs targeted (technological) attacks).
 (Furthermore, robustness to what? Connectivity? Functionality?)
- Smart-network/dumb-terminal vs Dumb-network/smart-terminal
- Fully decentralized or some centralized control?

Matrix representation of a network: TOPOLOGY

Connectivity matrix, M:

The *degree* of a node, is how many links it has.

- Degree distribution (fraction of nodes with degree k)
- Clustering coefficient
- Community structure
- Assortative/dissortative mixing
- Self-similarity even when pruned

Matrix representation of a network: ACTIVITY

(Spread of disease, routing of data, gossip spread/marketing)

Consider a random walk on the network. The state transition random ran

The eigenvalues and eigenvectors convey much information.

Community structure: Political Books 2004

M. E. J. Newman

Dynamics on networks

- Markov chains (i.e., state transition matrix) current approach.
- Tracks one field (the random walker), and has only one timescale (the rate of the walker).
- Partial differential equations track multiple fields with multiple scales simultaneously.
- How do we develop techniques for PDEs on a network?

Many different types of networks exhibit

Power Law Degree Distributions (i.e. "scale free")

 $p(k) \sim k^{-\gamma}$ $\ln(p(k)) = -\gamma \ln(k) + \text{const.}$

A Sample Application

Web Search

A typical web domain

M. E. J. Newman

Pieces of a WWW search engine

First thing needed is a web map!

 Nodes: Web page (unique url, semantic content, in-links, out-links).
 Edges: Connectivity between pages.

- Use a crawler (also called spider) to crawl the WWW.
- Over 10⁹ web pages!! How long will this take? Will it ever be complete?
- Selectively choose which out-links to follow during the crawl (avoid spam-holes, link-farms, etc.)
 - -What heuristics characterize quality pages?
 - -How often should recrawl occur, and in what order?

Page Rank

The stationary probabilities are essentially the Page Rank! (The celebrated algorithm which was the foundation for Google.)

Networks

- Network structures are pervasive physical, biological, social, engineered
- Networks are made of discrete nodes hard to envision continuum description
- Nodes can live in geometric, or geometry free space (Internet vs WWW)
- Need to consider: Topology of network Activity on network
- Can we learn lessons from existing networks?