MAE 298, Lecture 12 May 11, 2006

"More network measures and modeling"

Basic network metrics

- Number of vertices and edges
- Average degree
- Degree distribution
- Clustering coefficient
- Spectral gap

More basic measures

From Social Network Analysis:

- Betweenness (betweenness centrality)
- Structural Equivalence

From network theory:

• Mixing patterns

Betweenness

[Freeman, L. C. "A set of measures of centrality based on betweenness." *Sociometry* **40** 1977]

A measure of how many shortest paths between all other vertices pass through a given vertex.

Betweenness (formal definition)

For a given vertex *i*:

$$B(i) = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

- Where σ_{st} is the number of shortest geodesic paths between s and t.
- And $\sigma_{st}(i)$ are the number of those passing through vertex *i*.

Betweenness and eigenvalues (bottlenecks)

• Bottlenecks have large betweenness values.

- In social networks betweenness is a measure of a nodes "centrality" and importance (could be a proxy for influence).
- In a road network, high betweenness could indicate where alternate routes are needed.
- Also a measure of the resilience of a network (remove high betweenness nodes and destroy connectivity). More on this at end!!

A classic example from Social Network Analysis (SNA)

[http://www.fsu.edu/~spap/water/network/intro.htm]

The "Kite Network"

The Kite Network

- Degree Diane looks important (a "hub").
- Betweenness Heather looks important (a "connector"/"broker").
- Closeness Fernando and Garth can access anyone via a short path.
- Boundary spanners as Fernando, Garth, and Heather are well-positioned to be "innovators".
- Peripheral Players Ike and Jane may be an important resources for fresh information.

Other measures for SNA

- Structural Equivalence- determine which nodes play similar roles in the network
- Cluster Analysis- find cliques and other densely connected clusters
- Structural Holes- find areas of no connection between nodes that could be used for advantage or opportunity
- External/Internal Ratio- find which groups in the network are open or closed to others
- Small Worlds- find node clustering, and short path lengths, that are common in networks exhibiting highly efficient small-world behavior

Structural Equivalence

Narrow definition: Two vertices in a network are structurally equivalent if they have all the same neighbors.

Broader definition: identifying groups of nodes that are similar in their patterns of ties to all other nodes.

How to determine?

Measures of similarity and structural equivalence

- Valued relations
 - Pearson correlations covariances and cross-products
 - Euclidean, Manhattan, and squared distances
- Binary relations
 - Matches: Exact, Jaccard, Hamming

http://www.faculty.ucr.edu/~hanneman/nettext/ C13_%20Structural_Equivalence.html#measure

Some SNA resources

- International Network for Social Network Analysis (http://www.insna.org/)
- InFlow 3.1 Social Network Mapping Software (http://www.orgnet.com/inflow3.html)

Network centrality, cluster analysis, structural equivalence, prestige/influence....

- UCI net (http://www.analytictech.com/ucinet.htm)
- S. Wasserman and K. Faust, "Social Network Analysis: Methods and Applications", Cambridge University Press, Cambridge, UK, 1994

Mixing

- In almost all networks, nodes of different types (e.g., gender, race, function).
- Does probability of connection between two vertices depend on their types?
- In other words: Mixing by scalar characteristics.

Example: food web

- Types of nodes: plants, herbivores and carnivores.
- Many links between plants and herbivores.
- Many links between herbivores and carnivores.
- Almost no plant-plant or herbivore-herbivore edges.

Assortative mixing

Instead consider a case with many liketype-liketype edges. Classic example is mixing by race in a social network:

Measure of Assortativity

- Define *j* different classes/types
- Let E_{ij} be the number of edges connecting types i and j.
- Let ||E|| be the total number of edges between all classes.
- Define the mixing matrix with matrix elements: $m_{ij} = E_{ij}/E$

Getting a scalar quantity from m_{ij}

The assortativity coefficient:

$$r = (Trm - ||m^2||)/(1 - ||m^2||)$$

- r = 0 for a randomly mixed network.
- r = 1 for a perfectly assortative one.

[MEJ Newman, "Assortative mixing in networks", Phys Rev Lett. 89(20): 2002] **Degree correlation**

What is the scalar quantity of interest is the degree?

Found that social networks are assortative, while technological and biological ones are dissortative.

Why? Just an observation for now.

Table 3.1 Basic statistics for a number of published networks. The properties measured are as follows: total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance l; type of graph, directed or undirected; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from (3.3); clustering coefficient $C^{(2)}$ from (3.6); degree correlation coefficient r, section 3.6. The last column gives the citation for the network in the bibliography. Blank entries indicate unavailable data.

	Network	Type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
Social	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	[20, 415]
	company directors	undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	[105, 322]
	math coauthorship	undirected	253339	496489	3.92	7.57	—	0.15	0.34	0.120	[107, 181]
	physics coauthorship	undirected	52909	245300	9.27	6.19	—	0.45	0.56	0.363	[310, 312]
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	[310, 312]
	telephone call graph	undirected	47000000	80 000 000	3.16		2.1				[8, 9]
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		[136]
	email address books	directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092	[320]
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	[45]
	sexual contacts	undirected	2810				3.2				[264, 265]
Information	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	[14, 34]
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				[74]
	citation network	directed	783339	6716198	8.57		3.0/-				[350]
	Roget's Thesaurus	directed	1022	5103	4.99	4.87	-	0.13	0.15	0.157	[243]
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		[119, 157]
Technological	Internet	undirected	10697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	[86, 148]
	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	[415]
	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	[365]
	software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	[317]
	software classes	directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119	[394]
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	[155]
	peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	[6, 353]
Biological	metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	[213]
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	[211]
	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	[203]
	freshwater food web	directed	92	997	10.84	1.90	-	0.40	0.48	-0.326	[271]
	neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	[415, 420]

Detecting Community structure given a network

- "Finding and evaluating community structure in networks", MEJ Newman, M Girvan Physical Review E, 2004.
- "Detecting community structure in networks", MEJ Newman -The European Physical Journal B-Condensed Matter, 2004.
- "Community structure in social and biological networks" M Girvan, MEJ Newman - Proceedings of the National Academy of Sciences, 2002.

Alternately, given a node, can you identify which community it belongs to?

 G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee, "Self-organization and identification of Web communities", IEEE Computer, 35 (2002). More basic measures, summary

From Social Network Analysis:

- Betweenness (betweenness centrality)
- Structural Equivalence

From network theory:

• Mixing patterns

"Layered complex networks"

[M. Kurant and P. Thiran, "Layered Complex Networks", Phys Rev Lett. 89, 2006.]

- Offer a simple formalism to think about two coexisting network topologies.
- The physical topology.
- And the virtual (application) topology.

Example 1: WWW and IP layer views of the Internet

- Each WWW link virtually connects two IP addresses.
- Those two IP nodes are typically far apart in the underlying IP topology, so the virtual connection is realized as a multihop path along IP routers.
- (Of course the IP network is then mapped onto the physical layer of optical cables and routers.)

Example 2: Transportation networks

Up until now separate studies of:

- 1. Physical topology (of roads)
- 2. Real-life traffic patterns

Want a comprehensive view analyzing them both together.

The formalism

Consider two different networks:

- $G^{\phi} = (V^{\phi}, E^{\phi})$; the physical graph.
- $G^{\lambda} = (V^{\lambda}, E^{\lambda})$; the logical/application-layer graph.

Assume both sets of nodes identical, $V^{\phi} = V^{\lambda}$.

The load on a node

- Load on node *i*, *l*(*i*), is the sum of the weights of all logical edges whose paths traverse *i*.
- E.g., in a transportation network l(i) is the total amount of traffic that flows through node *i*.

Application

Study three transportation systems:

- 1. Mass transit system of Warsaw Poland.
- 2. Rail network of Switzerland.
- 3. Rail network of major trains in the EU.

Load

They can estimate the real load from the timetables (some assumptions; decompose into units (one train, one bus, etc), independent of number of people).

Two load estimators:

- 1. The node degree of the physical network.
- 2. Betweenness of the physical network.

(Note, these estimators are the ones currently in use in almost all cases: 1) Resilience of networks to edge removal, 2)Modeling cascading failures, etc....)

Findings

[M. Kurant and P. Thiran, "Layered Complex Networks", Phys Rev Lett. 89, 2006.]

- All three estimators 1) real load, 2) degree, 3) betweenness differ from one-another.
- Using the two-layer view can see the logical graphs may have radically different properties than the physical graphs.
- May lead to reexamination of network robustness (previous studies on Internet, power grid, etc, based on physical layer).