
MAE 298, Lecture 12
May 11, 2006

“More network measures and modeling”



Basic network metrics

• Number of vertices and edges

• Average degree

• Degree distribution

• Clustering coefficient

• Spectral gap



More basic measures

From Social Network Analysis:

• Betweenness (betweenness centrality)

• Structural Equivalence

From network theory:

• Mixing patterns



Betweenness

[Freeman, L. C. “A set of measures of centrality based on
betweenness.” Sociometry 40 1977]

A measure of how many shortest paths between all other
vertices pass through a given vertex.



Betweenness (formal definition)

For a given vertex i:

B(i) =
∑

s6=t 6=i
σst(i)
σst

• Where σst is the number of shortest geodesic paths between
s and t.

• And σst(i) are the number of those passing through vertex i.



Betweenness and eigenvalues
(bottlenecks)
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R  =   7.513
τ[min] =  109  to
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R  =   4.61
τ[med] =  604  to
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R  =   5.315
τ[max] =  5314  to

• Bottlenecks have large betweenness values.

• In social networks betweenness is a measure of a nodes
“centrality” and importance (could be a proxy for influence).

• In a road network, high betweenness could indicate where
alternate routes are needed.

• Also a measure of the resilience of a network (remove high
betweenness nodes and destroy connectivity). More on this at end!!



A classic example from Social Network Analysis (SNA)

[http://www.fsu.edu/∼spap/water/network/intro.htm]

The “Kite Network”



The Kite Network

• Degree – Diane looks important (a “hub”).

• Betweenness – Heather looks important (a “connector”/“broker”).

• Closeness – Fernando and Garth can access anyone via a
short path.

• Boundary spanners – as Fernando, Garth, and Heather are
well-positioned to be “innovators”.

• Peripheral Players – Ike and Jane may be an important
resources for fresh information.



Other measures for SNA

• Structural Equivalence- determine which nodes play similar
roles in the network

• Cluster Analysis- find cliques and other densely connected
clusters

• Structural Holes- find areas of no connection between nodes
that could be used for advantage or opportunity

• External/Internal Ratio- find which groups in the network are
open or closed to others

• Small Worlds- find node clustering, and short path lengths, that
are common in networks exhibiting highly efficient small-world
behavior



Structural Equivalence

Narrow definition: Two vertices in a network are structurally
equivalent if they have all the same neighbors.

Broader definition: identifying groups of nodes that are similar in
their patterns of ties to all other nodes.

How to determine?



Measures of similarity and structural equivalence

• Valued relations
– Pearson correlations covariances and cross-products
– Euclidean, Manhattan, and squared distances

• Binary relations
– Matches: Exact, Jaccard, Hamming

http://www.faculty.ucr.edu/∼hanneman/nettext/
C13 %20Structural Equivalence.html#measure



Some SNA resources

• International Network for Social Network Analysis
(http://www.insna.org/)

• InFlow 3.1 - Social Network Mapping Software
(http://www.orgnet.com/inflow3.html)
– Network centrality, cluster analysis, structural equivalence,
prestige/influence....

• UCI net (http://www.analytictech.com/ucinet.htm)

• S. Wasserman and K. Faust, “Social Network Analysis:
Methods and Applications”, Cambridge University Press,
Cambridge, UK, 1994



Mixing

• In almost all networks, nodes of different types (e.g., gender,
race, function).

• Does probability of connection between two vertices depend
on their types?

• In other words: Mixing by scalar characteristics.



Example: food web

• Types of nodes: plants, herbivores and carnivores.

• Many links between plants and herbivores.

• Many links between herbivores and carnivores.

• Almost no plant-plant or herbivore-herbivore edges.



Assortative mixing

Instead consider a case with many liketype-liketype edges.
Classic example is mixing by race in a social network:



Measure of Assortativity

• Define j different classes/types

• Let Eij be the number of edges connecting types i and j.

• Let ||E|| be the total number of edges between all classes.

• Define the mixing matrix with matrix elements:
mij = Eij/E



Getting a scalar quantity from mij

The assortativity coefficient:

r = (Trm− ||m2||)/(1− ||m2||)

• r = 0 for a randomly mixed network.

• r = 1 for a perfectly assortative one.

[ MEJ Newman, “Assortative mixing in networks”, Phys Rev
Lett. 89(20): 2002]



Degree correlation

What is the scalar quantity of interest is the degree?

Found that social networks are assortative, while technological
and biological ones are dissortative.

Why? Just an observation for now.
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Table 3.1 Basic statistics for a number of published networks. The properties measured are as follows: total number of vertices n; total number of edges m;
mean degree z; mean vertex–vertex distance !; type of graph, directed or undirected; exponent α of degree distribution if the distribution follows a
power law (or “–” if not; in/out-degree exponents are given for directed graphs); clustering coefficient C(1) from (3.3); clustering coefficient C(2)

from (3.6); degree correlation coefficient r, section 3.6. The last column gives the citation for the network in the bibliography. Blank entries indicate
unavailable data.

Network Type n m z ! α C(1) C(2) r Ref(s).

So
ci

al

film actors undirected 449 913 25 516 482 113.43 3.48 2.3 0.20 0.78 0.208 [20, 415]
company directors undirected 7 673 55 392 14.44 4.60 – 0.59 0.88 0.276 [105, 322]
math coauthorship undirected 253 339 496 489 3.92 7.57 – 0.15 0.34 0.120 [107, 181]
physics coauthorship undirected 52 909 245 300 9.27 6.19 – 0.45 0.56 0.363 [310, 312]
biology coauthorship undirected 1 520 251 11 803 064 15.53 4.92 – 0.088 0.60 0.127 [310, 312]
telephone call graph undirected 47 000 000 80 000 000 3.16 2.1 [8, 9]
email messages directed 59 912 86 300 1.44 4.95 1.5/2.0 0.16 [136]
email address books directed 16 881 57 029 3.38 5.22 – 0.17 0.13 0.092 [320]
student relationships undirected 573 477 1.66 16.01 – 0.005 0.001 −0.029 [45]
sexual contacts undirected 2 810 3.2 [264, 265]

In
fo

rm
at

io
n WWW nd.edu directed 269 504 1 497 135 5.55 11.27 2.1/2.4 0.11 0.29 −0.067 [14, 34]

WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18 2.1/2.7 [74]
citation network directed 783 339 6 716 198 8.57 3.0/– [350]
Roget’s Thesaurus directed 1 022 5 103 4.99 4.87 – 0.13 0.15 0.157 [243]
word co-occurrence undirected 460 902 17 000 000 70.13 2.7 0.44 [119, 157]

T
ec

hn
ol

og
ic

al

Internet undirected 10 697 31 992 5.98 3.31 2.5 0.035 0.39 −0.189 [86, 148]
power grid undirected 4 941 6 594 2.67 18.99 – 0.10 0.080 −0.003 [415]
train routes undirected 587 19 603 66.79 2.16 – 0.69 −0.033 [365]
software packages directed 1 439 1 723 1.20 2.42 1.6/1.4 0.070 0.082 −0.016 [317]
software classes directed 1 377 2 213 1.61 1.51 – 0.033 0.012 −0.119 [394]
electronic circuits undirected 24 097 53 248 4.34 11.05 3.0 0.010 0.030 −0.154 [155]
peer-to-peer network undirected 880 1 296 1.47 4.28 2.1 0.012 0.011 −0.366 [6, 353]

B
io

lo
gi

ca
l metabolic network undirected 765 3 686 9.64 2.56 2.2 0.090 0.67 −0.240 [213]

protein interactions undirected 2 115 2 240 2.12 6.80 2.4 0.072 0.071 −0.156 [211]
marine food web directed 135 598 4.43 2.05 – 0.16 0.23 −0.263 [203]
freshwater food web directed 92 997 10.84 1.90 – 0.40 0.48 −0.326 [271]
neural network directed 307 2 359 7.68 3.97 – 0.18 0.28 −0.226 [415, 420]



Detecting Community structure given a network

• “Finding and evaluating community structure in networks”, MEJ
Newman, M Girvan - Physical Review E, 2004.

• “Detecting community structure in networks”, MEJ Newman -
The European Physical Journal B-Condensed Matter, 2004.

• “Community structure in social and biological networks” M
Girvan, MEJ Newman - Proceedings of the National Academy
of Sciences, 2002.

Alternately, given a node, can you identify which community it
belongs to?

• G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee,
“Self-organization and identification of Web communities”,
IEEE Computer, 35 (2002).



More basic measures, summary

From Social Network Analysis:

• Betweenness (betweenness centrality)

• Structural Equivalence

From network theory:

• Mixing patterns



“Layered complex networks”

[ M. Kurant and P. Thiran, “Layered Complex Networks”, Phys
Rev Lett. 89, 2006.]

• Offer a simple formalism to think about two coexisting network
topologies.

• The physical topology.

• And the virtual (application) topology.



Example 1:
WWW and IP layer views of the Internet

• Each WWW link virtually connects two IP addresses.

• Those two IP nodes are typically far apart in the underlying
IP topology, so the virtual connection is realized as a multihop
path along IP routers.

• (Of course the IP network is then mapped onto the physical
layer of optical cables and routers.)



Example 2:
Transportation networks

Up until now separate studies of:

1. Physical topology (of roads)

2. Real-life traffic patterns

Want a comprehensive view analyzing them both together.



The formalism

Consider two different networks:

• Gφ = (V φ, Eφ); the physical graph.

• Gλ = (V λ, Eλ); the logical/application-layer graph.

Assume both sets of nodes identical, V φ = V λ.



The load on a node

• Load on node i, l(i), is the sum of the weights of all logical
edges whose paths traverse i.

• E.g., in a transportation network l(i) is the total amount of
traffic that flows through node i.



Application

Study three transportation systems:

1. Mass transit system of Warsaw Poland.

2. Rail network of Switzerland.

3. Rail network of major trains in the EU.



Load

They can estimate the real load from the timetables (some
assumptions; decompose into units (one train, one bus, etc),

independent of number of people).

Two load estimators:

1. The node degree of the physical network.

2. Betweenness of the physical network.

(Note, these estimators are the ones currently in use in almost
all cases: 1) Resilience of networks to edge removal, 2)

Modeling cascading failures, etc.....)



Findings

[ M. Kurant and P. Thiran, “Layered Complex Networks”, Phys
Rev Lett. 89, 2006.]

• All three estimators 1) real load, 2) degree, 3) betweenness
differ from one-another.

• Using the two-layer view can see the logical graphs may have
radically different properties than the physical graphs.

• May lead to reexamination of network robustness (previous
studies on Internet, power grid, etc, based on physical layer).


