
MAE 298, Lecture 2
April 4, 2006
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“Random graphs”



Networks

1. Nodes (also called vertices).

2. Edges (also called connections).

• Edges can be directed or undirected.

• Networks can be geometric or be geometry-free. (i.e., the
vertices have a geometric location).



Random graphs

What does a “typical” graph with n vertices
and m edges look like?

• P. Erdös and A. Rényi, “On random graphs”, Publ. Math.
Debrecen. 6, 1959.

• P. Erdös and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 5, 1960.

• E. N. Gilbert, “Random graphs”, Annals of Mathematical
Statistics 30, 1959.

Papers which started the field of graph theory.



Erdös-Rényi random graphs

• Consider a labelled graph. Each vertex has a label ranging
from [1, 2, 3, · · ·n], for a set of n vertices. (This will make
counting and analysis easier.)

• Let E denote the total number of edges possible:

E =
(
N
2

)
= N !

2!(N−2)! = N(N−1)
2

(If directed edges, we would not divide by 2).



Two formulations

• 1) G(n, p): The ensemble of graphs constructed by putting in
edges with probability p, independent of one another. (An edge
is present with probability p and absent with probability [1−p].)

Let G(n, p) denote a random realization of G(n, p).

• 2) G(n, m): The ensemble of all graphs with n nodes and
exactly m edges.

Let G(n, m) denote a random realization of G(n, m).

• The two are almost interchangeable if m = pE. (Recall, E is
total number of edges possible).

• We will focus on G(n, p).



G(n, p)

• We can build a realization of G(n, p) by the following graph
process:

• Start with n isolated vertices.

• At each discrete time step, add one edge chosen at random
from edges not yet present on the graph.

• At “time” t (i.e., at the addition of t edges), we have built a
realization of G(n, p) where p = t/E.

• This is a Markov process (build graph at time t + 1 from graph
at time t).



Illustration of G(n, p) generation process



Component

A component is a subset of vertices in the graph each of which
is reachable from the other by some path through the network.



Behavior for small p

• Consider a realization G(n, p) for 0 < p < 1 and n → ∞.

(A number of interesting properties of random graphs can be
proven in this limit).

• Consider the size of the largest component of G(n, p) as a
function of p, Cmax(p).

• For small p, few edges on the graph. Almost all vertices
disconnected. The components are small, with size O(log n),
independent of p.

• Keep increasing p (or equivalently t in our model).
At p = 1/n (i.e. t = E/n), something surprising happens:



Emergence of the Giant Component

• For p = 1/n (or equivalently t = pE = E/n), suddenly
the largest component contains a finite fraction F of the total
number of vertices, Cmax = Fn, instead of a logarithmic
fraction. All other components remain of size O(log n).



A Phase Transition!

An abrupt sudden change in one or more physical properties,
resulting from a small change in a external control parameter.

Examples from physical systems:

• Magnetization

• Superconductivity

• Liquid/Gas

• Bose-Einstein condensation



Phase transition in connectivity

• Below p = 1/n, only small disconnected components.

• Above p = 1/n, one large component, which quickly gains
more mass. All other components remain sub-linear.

• Note the average node degree, z:

z = (2×#edges)/#vertices

= pE/n = pn(n− 1)/n = (n− 1)p ≈ np.

(Factor of 2 since each edge contributes degree to two vertices
– each end of the edge contributes).

• At the phase transition, z = np = 1. The phase transition
occurs when the average vertex degree is one!



Giant component observed in real-world networks

• Formation reminiscent of many real-world networks.
“Gain critical mass”.

• The giant component/Strongly Connected Component used
extensively to categorize networks.



The giant component/Strongly Connected Component of
the WWW

From “The web is a bow tie” Nature 405, 113 (11 May 2000)



“On-line” algorithms for suppressing the emergence of the
Giant Component



Back to Erdös-Rényi random graphs



Degree distribution of a graph

• The degree of a node is how many edges connect that node to
others.

• If edges are directed, a node has a distinct in-degree and out-
degree. (Edges in G(n, p) are undirected, so don’t have to
make that distinction here).

The degree distribution of the graph is the distribution over all
the degrees of all the nodes.



Degree distribution of G(n, p)

• Now consider G(n, p) for a fixed value of p and the large n limit.

• The mean degree z = (n− 1)p is constant.

• The absence or presence of an edge is independent for all
edges.

– Probability for node i to connect to all other n nodes is pn.

– Probability for node i to be isolated is (1− p)n.

– Probability for a vertex to have degree k follows a binomial
distribution:

pk =
(
n
k

)
pk(1− p)n−k.



Binomial converges to Poisson as n →∞

• Recall that z = (n− 1)p = np (for large n).

•

lim
n→∞

pk = lim
n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

n!
(n− k)!k!

(z/n)k(1− z/n)n−k

= zke−z/k!

For more details see for instance: http://en.wikipedia.org/wiki/Poisson distribution



Poisson Distribution



Diameter

The diameter of a graph is the maximum distance between any
two connected vertices in the graph.

• Below the phase transition, only tiny components exist. In
some sense, the diameter is infinite.

• Above the phase transition, all vertices in the giant component
connected to one another by some path.

• The mean number of neighbors a distance l away is zl. To
determine the diameter we want zl ≈ n. Thus the typical
distance through the network, l ≈ log n/ log z.

• This is a small-world network: diameter d ∼ O(log N).



Clustering coefficient

A measure of transitivity: If node A is known to be connected to
B and to C, does this make it more likely that B and C are

connected?

(i.e., The friends of my friends are my friends)

• In E-R random graphs, all edges created independently, so no
clustering coefficient!



Properties of Erdös-Rényi random graphs:

1. Phase transition in connectivity at average node degree, z = 1
(i.e., p = 1/n).

2. Poisson degree distribution, pk = zke−z/k!.

3. Diameter, d ∼ log N , a small-world network.

4. Clustering coefficient; none.



How well does G(n, p) model common real-world networks?

1. Phase transtion: Yes! We see the emergence of a giant
component in social and in technological systems.

2. Poisson degree distribution: NO! Most real networks have
much broader distributions. (See handout).

3. Small-world diameter: YES! Social systems, subway systems,
the Internet, the WWW, biological networks, etc.

4. Clustering coefficient: NO!



Well then, why are random graphs important?

• Much of our basic intuition comes from the study of random
graphs.

• Phase transition and the existence of the giant component.
Even if not a giant component, many systems have a dominate
component much larger than all others.



Generalized random graph

Much effort has gone into thinking about how to make a random
graph have a degree distribution different from Poisson.

The configuration model (1970’s)

• Specify a degree distribution pk, such that pk is the fraction of
vertices in the network having degree k.

• We chose an explicit degree sequence by sampling in some
unbiased way from pk. And generate the set of n values for ki,
the degree of vertex i.

• Think of attaching ki “spokes” or “stubs” to each vertex i.

• Choose pairs of “stubs” (from two distinct vertices) at random,
and join them. Iterate until done.



Summary: Terms introduced today

• Component

• Phase transition

• Degree distribution

• Graph diameter



Further reading on random graphs

• M. E. J. Newman review, pages 20-25. (Heuristic arguments)

• R. Durrett book, Chaps 1 and 2. (Technical proofs)

• B. Bollobás, Random Graphs, 2nd Edition, Cambridge U
Press, 2001 (the seminal text on the mathematics of random
graphs).


