MAE 298, Lecture 2 April 4, 2006

"Random graphs"

Networks

1. Nodes (also called vertices).
2. Edges (also called connections).

- Edges can be directed or undirected.
- Networks can be geometric or be geometry-free. (i.e., the vertices have a geometric location).

Random graphs

What does a "typical" graph with n vertices and m edges look like?

- P. Erdös and A. Rényi, "On random graphs", Publ. Math. Debrecen. 6, 1959.
- P. Erdös and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hungar. Acad. Sci. 5, 1960.
- E. N. Gilbert, "Random graphs", Annals of Mathematical Statistics 30, 1959.

Papers which started the field of graph theory.

Erdös-Rényi random graphs

- Consider a labelled graph. Each vertex has a label ranging from $[1,2,3, \cdots n]$, for a set of n vertices. (This will make counting and analysis easier.)
- Let E denote the total number of edges possible:

$$
E=\binom{N}{2}=\frac{N!}{2!(N-2)!}=\frac{N(N-1)}{2}
$$

(If directed edges, we would not divide by 2).

Two formulations

- 1) $\mathcal{G}(n, p)$: The ensemble of graphs constructed by putting in edges with probability p, independent of one another. (An edge is present with probability p and absent with probability $[1-p]$.)
Let $G(n, p)$ denote a random realization of $\mathcal{G}(n, p)$.
- 2) $\mathcal{G}(n, m)$: The ensemble of all graphs with n nodes and exactly m edges.

Let $G(n, m)$ denote a random realization of $\mathcal{G}(n, m)$.

- The two are almost interchangeable if $m=p E$. (Recall, E is total number of edges possible).
- We will focus on $G(n, p)$.

$$
\underline{G(n, p)}
$$

- We can build a realization of $G(n, p)$ by the following graph process:
- Start with n isolated vertices.
- At each discrete time step, add one edge chosen at random from edges not yet present on the graph.
- At "time" t (i.e., at the addition of t edges), we have built a realization of $G(n, p)$ where $p=t / E$.
- This is a Markov process (build graph at time $t+1$ from graph at time t).

Illustration of $G(n, p)$ generation process

Component

A component is a subset of vertices in the graph each of which is reachable from the other by some path through the network.

Behavior for small p

- Consider a realization $G(n, p)$ for $0<p<1$ and $n \rightarrow \infty$. (A number of interesting properties of random graphs can be proven in this limit).
- Consider the size of the largest component of $G(n, p)$ as a function of $p, C_{\max }(p)$.
- For small p, few edges on the graph. Almost all vertices disconnected. The components are small, with size $O(\log n)$, independent of p.
- Keep increasing p (or equivalently t in our model). At $p=1 / n$ (i.e. $t=E / n$), something surprising happens:

Emergence of the Giant Component

- For $p=1 / n$ (or equivalently $t=p E=E / n$), suddenly the largest component contains a finite fraction F of the total number of vertices, $C_{\max }=F n$, instead of a logarithmic fraction. All other components remain of size $O(\log n)$.

A Phase Transition!

An abrupt sudden change in one or more physical properties, resulting from a small change in a external control parameter. Examples from physical systems:

- Magnetization
- Superconductivity
- Liquid/Gas
- Bose-Einstein condensation

Phase transition in connectivity

- Below $p=1 / n$, only small disconnected components.
- Above $p=1 / n$, one large component, which quickly gains more mass. All other components remain sub-linear.
- Note the average node degree, z :

$$
\begin{aligned}
z & =(2 \times \# \text { edges }) / \# \text { vertices } \\
& =p E / n=p n(n-1) / n=(n-1) p \approx n p .
\end{aligned}
$$

(Factor of 2 since each edge contributes degree to two vertices - each end of the edge contributes).

- At the phase transition, $z=n p=1$. The phase transition occurs when the average vertex degree is one!

Giant component observed in real-world networks

- Formation reminiscent of many real-world networks. "Gain critical mass".
- The giant component/Strongly Connected Component used extensively to categorize networks.

The giant component/Strongly Connected Component of the WWW

From "The web is a bow tie" Nature 405, 113 (11 May 2000)

"On-line" algorithms for suppressing the emergence of the Giant Component

Back to Erdös-Rényi random graphs

Degree distribution of a graph

- The degree of a node is how many edges connect that node to others.
- If edges are directed, a node has a distinct in-degree and outdegree. (Edges in $G(n, p)$ are undirected, so don't have to make that distinction here).

The degree distribution of the graph is the distribution over all the degrees of all the nodes.

Degree distribution of $G(n, p)$

- Now consider $G(n, p)$ for a fixed value of p and the large n limit.
- The mean degree $z=(n-1) p$ is constant.
- The absence or presence of an edge is independent for all edges.
- Probability for node i to connect to all other n nodes is p^{n}.
- Probability for node i to be isolated is $(1-p)^{n}$.
- Probability for a vertex to have degree k follows a binomial distribution:

$$
p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Binomial converges to Poisson as $n \rightarrow \infty$

- Recall that $z=(n-1) p=n p$ (for large n).

$$
\begin{aligned}
\lim _{n \rightarrow \infty} p_{k} & =\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!}(z / n)^{k}(1-z / n)^{n-k} \\
& =z^{k} e^{-z} / k!
\end{aligned}
$$

For more details see for instance: http://en.wikipedia.org/wiki/Poisson_distribution

Poisson Distribution

Diameter

The diameter of a graph is the maximum distance between any two connected vertices in the graph.

- Below the phase transition, only tiny components exist. In some sense, the diameter is infinite.
- Above the phase transition, all vertices in the giant component connected to one another by some path.
- The mean number of neighbors a distance l away is z^{l}. To determine the diameter we want $z^{l} \approx n$. Thus the typical distance through the network, $l \approx \log n / \log z$.
- This is a small-world network: diameter $d \sim O(\log N)$.

Clustering coefficient

A measure of transitivity: If node A is known to be connected to B and to C, does this make it more likely that B and C are connected?
(i.e., The friends of my friends are my friends)

- In E-R random graphs, all edges created independently, so no clustering coefficient!

Properties of Erdös-Rényi random graphs:

1. Phase transition in connectivity at average node degree, $z=1$ (i.e., $p=1 / n$).
2. Poisson degree distribution, $p_{k}=z^{k} e^{-z} / k$!.
3. Diameter, $d \sim \log N$, a small-world network.
4. Clustering coefficient; none.

How well does $G(n, p)$ model common real-world networks?

1. Phase transtion: Yes! We see the emergence of a giant component in social and in technological systems.
2. Poisson degree distribution: NO! Most real networks have much broader distributions. (See handout).
3. Small-world diameter: YES! Social systems, subway systems, the Internet, the WWW, biological networks, etc.
4. Clustering coefficient: NO!

Well then, why are random graphs important?

- Much of our basic intuition comes from the study of random graphs.
- Phase transition and the existence of the giant component. Even if not a giant component, many systems have a dominate component much larger than all others.

Generalized random graph

Much effort has gone into thinking about how to make a random graph have a degree distribution different from Poisson.

The configuration model (1970's)

- Specify a degree distribution p_{k}, such that p_{k} is the fraction of vertices in the network having degree k.
- We chose an explicit degree sequence by sampling in some unbiased way from p_{k}. And generate the set of n values for k_{i}, the degree of vertex i.
- Think of attaching k_{i} "spokes" or "stubs" to each vertex i.
- Choose pairs of "stubs" (from two distinct vertices) at random, and join them. Iterate until done.

Summary: Terms introduced today

- Component
- Phase transition
- Degree distribution
- Graph diameter

Further reading on random graphs

- M. E. J. Newman review, pages 20-25. (Heuristic arguments)
- R. Durrett book, Chaps 1 and 2. (Technical proofs)
- B. Bollobás, Random Graphs, 2nd Edition, Cambridge U Press, 2001 (the seminal text on the mathematics of random graphs).

