MAE 298, Lecture 5 April 13, 2006

"Optimization and network growth"

Recall: Preferential Attachment process: Origins of preferential attachment

- 1923 Polya, urn models.
- 1925 Yule, explain genetic diversity.
- 1949 Zipf, distribution of city sizes (1/f).
- 1955 Simon, distribution of wealth in economies. ("The rich get richer").
- [Interesting note, in sociology this is referred to as the *Matthew effect* after the biblical edict, "For to every one that hath shall be given ... " (Matthew 25:29)]

An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

- Goal: Optimize information conveyed for unit transmission cost
- Consider an alphabet of d characters, with n distinct words
- Order all possible words by length (A,B,C,....AA,BB,CC....)
- "Cost" of *j*-th word, $C_j \sim \log_d j$
- Ave information per word: $H = -\sum p_j \log p_j$
- Ave cost per word: $C = \sum p_j C_j$

• Minimize:
$$\frac{d}{dp_j} \left(\frac{C}{H} \right) \implies p_j \sim j^{-\alpha}$$

Optimization versus Preferential Attachment origin of power laws

Mandelbrot and Simon's heated public exchange

- A series of six letters between 1959-61 in *Information and Control*.
- Optimization on hold for many years, but recently resurfaced:
- Calson and Doyle, HOT, 1999
- Fabrikant, Koutsoupias, and Papadimitriou, 2002
- Solé, 2002

From Barabási and Albert to FKP

- Barabási and Albert, "Emergence of Scaling in Random Networks", *Science* 286, 1999.
 A "preferential attachment" model of network growth.
- A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou, "Heuristically Optimized Trade-offs" *Lecture Notes In Computer Science (ICALP 2002)* 2380, 2002.
 FKP extend the ideas of Carlson and Doyle to network context:
- J.M. Carlson and J. Doyle, "Highly optimized tolerance: A mechanism for power laws in designed systems", *Physical Review E*, 1999.
 (See also: J.M. Carlson and J. Doyle, "Complexity and
 - Robustness" PNAS 2002.

 For a recent press account of optimization versus power laws see: Sara Robinson, "Recent Research Provides New Picture of Router-Level Internet," *Computing in Science & Engineering*, 8 (2) March/April 2006, pp. 3-6.

FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

- Nodes arriving sequentially at random in a unit square.
- Upon arrival, each node connects to an already existing node that minimizes "cost": $\alpha d_{ij} + h_j$

Using R to explore the FKP model

- $\alpha = 0$ limit
- $\alpha \to \infty$ limit
- in-between

FKP degree distribution

A bimodal distribution (hubs and leaves, but almost all nodes are leaves). For details see:

N. Berger and B. Bollobas and C. Borgs and J. Chayes and O. Riordan, "Degree distribution of the FKP network model", *Lecture Notes In Computer Science (ICALP 2003)*, 2003.

Competition-Induced Preferential Attachment

[N. Berger, C. Borgs, J. Chayes, R.D., R. Kleinberg, ICALP 2004]

- Like FKP, start with linear tradeoffs, but consider a scale-free metric. (Plus will result in local model.)
- Show how mechanism of PA arises, but with eventual saturation.
- PA w/ Saturation in turn gives with to Power Laws with eventual Exponential Decay.
- Such distributions observed ubiquitously in nature.
- Saturation, like PA, has previously been used as axiom to explain data.

Competition Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along the unit line:

Each incoming node, t, attaches to an existing node j (where j < t), which minimizes the function:

$$F_{tj} = \min_j \left[\alpha_{tj} d_{tj} + h_j \right]$$

Where $\alpha_{tj} = \alpha \rho_{tj} = \alpha n_{tj}/d_{tj}$.

The "cost" becomes:
$$F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$$

$$F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$$

- $\alpha_{tj} = \alpha \rho_{tj}$ local density, e.g. real estate in Manhattan.
- Reduces to n_{tj} number of points in the interval between t and j
- "Transit domains" captures realistic aspects of Internet costs (i.e. AS/ISP-transit requires BGP and peering).
- Like FKP, tradeoff intial connection cost versus usage cost.
- Note cases $\alpha = 0$ and $\alpha > 1$.

The process on the line (for $1/3 < \alpha < 1/2$)

"Border Toll Optimization Problem" (BTOP)

$$F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$$

 $F(30) = \alpha$

"Fertility"

Node 1 becomes "fertile" at time t = 3.

• Define $A = \lceil 1/\alpha \rceil$

• A node must have A - 1 "infertile" children before giving birth to a "fertile" child.

Mapping onto a tree

(equal in distribution to the line)

t=4

From line to tree

Integrating out the dependence on interval length from the conditional probability:

$$Pr[x_{t+1} \in I_k | \pi(t)] = \int Pr[x_{t+1} \in I_k | \pi(t), \vec{s}(t)] dP(\vec{s}(t))$$
$$= \int s_k(t) dP(\vec{s}(t)) = \frac{1}{t+1},$$

i.e., The probability to land in the k-th interval is uniform over all

intervals.

Preferential attachment with a cutoff

Let $d_j(t)$ equal the degree of fertile node j at time t.

The number of intervals contributing to j's fertility is $max(d_j(t), A)$.

Probability node (t + 1) attaches to node j is:

$$Pr(t+1 \to j) = \max(d_j(t), A)/(t+1).$$

The process on degree sequence (Can go through a similar heuristic derivation as with PA)

Let $N_0(t) \equiv$ number of infertile vertices.

Let $N_k(t) \equiv$ number of fertile vertices of degree k(for $1 \leq k < A$).

Let $N_A(t) \equiv$ number of fertile vertices of degree $k \ge A$ (i.e. $N_A(t) = \sum_{k=A}^{\infty} N_k(t)$ "the tail")

Recursion relation

$$p_k = (k-1)p_{k-1}(t) - kp_k(t), \qquad 1 < k < A.$$

and

$$(p_{k-1} - p_k), \qquad k \ge A.$$

Implies:

$$p_k = \prod_{i=2}^k \left(\frac{i-1}{i+1}\right) p_1, \quad 1 < k < A.$$

and

$$p_k = \left(\frac{A}{A+1}\right)^{k-A} p_A, \quad k \ge A.$$

Power law for 1 < k < A

$$\frac{p_k}{p_1} = \prod_{i=2}^k \left(\frac{i-1}{i+1}\right) = \frac{2}{k(k+1)}$$

 $\sim c k^{-2}$

Exponential decay for k > A

Recursion relation: $p_k = A(p_{k-1} - p_k), \quad k \ge A.$

Implies

$$p_k = \left(\frac{A}{A+1}\right)^{k-A} p_A, \quad k \ge A.$$

$$p_k = \left(1 - \frac{1}{A+1}\right)^{k-A} p_A = \left[\left(1 - \frac{1}{A+1}\right)^{A+1}\right]^{(k-A)/(A+1)} p_A$$

~ $\exp\left[-(k-A)/(A+1)\right]p_A.$

Degree sequence (summary)

$$p_k = c_1 k^{-\gamma}$$
 for $k < A$

$$p_k = c_2 \exp[-k/(A+1)]$$
 for $k > A$.

"Power law" \rightarrow power law with exponential tail

Ubiquitous empirical measurements: (Saturation and PA often put in apriori to explain)

System with: $p(x) \sim x^{-B} \exp(-x/C)$	В	C
Full protein-interaction map of <i>Drosophila</i>	1.20	0.038
High-confidence protein-interaction map of <i>Drosophila</i>	1.26	0.27
Gene-flow/hydridization network of plants		
as function of spatial distance	0.75	$10^5 \ {\sf m}$
Earthquake magnitude	1.35 - 1.7	$\sim 10^{21}\mathrm{Nm}$
Avalanche size of ferromagnetic materials	1.2 - 1.4	$L^{1.4}$
ArXiv co-author network	1.3	53
MEDLINE co-author network	2.1	~ 5800
PNAS paper citation network	0.49	4.21
WHOIS AS Internet data	0.59	178

Fitting the "WHOIS" AS level Internet data

Definitely not a power law, so previously no model to explain distribution.

Comparing CIPA and PA graphs

Network growth models

- Preferential attachment.
- Heuristically Optimized Tolerance
- Competition-Induced Preferential Attachment
- Validation! (but what does this really mean, can only validate aspects).

Further reading

- A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou, "Heuristically Optimized Trade-offs" *Lecture Notes In Computer Science (ICALP 2002)* 2380, 2002.
 FKP extend the ideas of Carlson and Doyle to network context:
- J.M. Carlson and J. Doyle, "Highly optimized tolerance: A mechanism for power laws in designed systems", *Physical Review E*, 1999.
 (See also: J.M. Carlson and J. Doyle, "Complexity and Robustness" *PNAS* 2002.
- N. Berger, C. Borgs, J. Chayes, R. D'Souza, R. Kleinberg, "Competition-Induced Preferential Attachment", *Lecture Notes in Computer Science (ICALP 2004)* 3142 208-221, 2004.