
MAE 298, Lecture 5
April 13, 2006
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“Optimization and network growth”



Recall: Preferential Attachment process:
Origins of preferential attachment

• 1923 — Polya, urn models.

• 1925 — Yule, explain genetic diversity.

• 1949 — Zipf, distribution of city sizes (1/f ).

• 1955 — Simon, distribution of wealth in economies. (“The rich
get richer”).

• [Interesting note, in sociology this is referred to as the Matthew
effect after the biblical edict, “For to every one that hath shall
be given ... ” (Matthew 25:29)]



An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

• Goal: Optimize information conveyed for unit transmission cost

• Consider an alphabet of d characters, with n distinct words

• Order all possible words by length (A,B,C,....AA,BB,CC....)

• “Cost” of j-th word, Cj ∼ logd j

• Ave information per word: H = −
∑

pj log pj

• Ave cost per word: C =
∑

pjCj

• Minimize: d
dpj

(
C
H

)
=⇒ pj ∼ j−α



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

• A series of six letters between 1959-61 in Information and
Control.

• Optimization on hold for many years, but recently resurfaced:

• Calson and Doyle, HOT, 1999

• Fabrikant, Koutsoupias, and Papadimitriou, 2002

• Solé, 2002



From Barabási and Albert to FKP

• Barabási and Albert, “Emergence of Scaling in Random
Networks”, Science 286, 1999.
A “preferential attachment” model of network growth.

• A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou,
“Heuristically Optimized Trade-offs” Lecture Notes In Computer
Science (ICALP 2002) 2380, 2002.
FKP extend the ideas of Carlson and Doyle to network context:

• J.M. Carlson and J. Doyle, “Highly optimized tolerance: A
mechanism for power laws in designed systems”, Physical
Review E, 1999.
(See also: J.M. Carlson and J. Doyle, “Complexity and
Robustness” PNAS 2002.



• For a recent press account of optimization versus power laws
see: Sara Robinson, “Recent Research Provides New Picture
of Router-Level Internet,” Computing in Science & Engineering,
8 (2) March/April 2006, pp. 3-6.



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

• Nodes arriving sequentially at random in a unit square.

• Upon arrival, each node connects to an already existing node
that minimizes “cost”: αdij + hj
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Using R to explore the FKP model

• α = 0 limit

• α →∞ limit

• in-between



FKP degree distribution
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FKP vs dFKP, N=500, alpha=gamma=5
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FKP vs dFKP, N=1000, alpha=gamma=5
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A bimodal distribution (hubs and leaves, but almost all nodes
are leaves). For details see:

N. Berger and B. Bollobas and C. Borgs and J. Chayes and O.
Riordan, “Degree distribution of the FKP network model”, Lecture
Notes In Computer Science (ICALP 2003), 2003.



Competition-Induced Preferential Attachment

[N. Berger, C. Borgs, J. Chayes, R.D., R. Kleinberg, ICALP 2004]

• Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.)

• Show how mechanism of PA arises, but with eventual
saturation.

• PA w/ Saturation in turn gives with to Power Laws with eventual
Exponential Decay.

• Such distributions observed ubiquitously in nature.

• Saturation, like PA, has previously been used as axiom to
explain data.



Competition Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:

0
2 3 1 4

Each incoming node, t, attaches to an existing node j

(where j < t), which minimizes the function:

Ftj = minj [αtjdtj + hj]

Where αtj = αρtj = αntj/dtj.

The “cost” becomes: Ftj = minj [αntj + hj]



Ftj = minj [αntj + hj]

• αtj = αρtj local density, e.g. real estate in Manhattan.

• Reduces to ntj — number of points in the interval between t

and j

• “Transit domains” — captures realistic aspects of Internet costs
(i.e. AS/ISP-transit requires BGP and peering).

• Like FKP, tradeoff intial connection cost versus usage cost.

• Note cases α = 0 and α > 1.



The process on the line (for 1/3 < α < 1/2)
“Border Toll Optimization Problem” (BTOP)

Ftj = minj [αntj + hj]
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“Fertility”
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Node 1 becomes “fertile” at time t = 3.

• Define A = d1/αe

• A node must have A − 1 “infertile” children before giving birth
to a “fertile” child.



Mapping onto a tree
(equal in distribution to the line)
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From line to tree

Integrating out the dependence on interval length from the
conditional probability:

Pr [xt+1 ∈ Ik |π(t)] =
∫

Pr [xt+1 ∈ Ik |π(t), ~s(t)] dP (~s(t))

=
∫

sk(t)dP (~s(t)) =
1

t + 1
,

i.e., The probability to land in the k-th interval is uniform over all

intervals.



Preferential attachment with a cutoff

0 2 13 4

Let dj(t) equal the degree of fertile node j at time t.

The number of intervals contributing to j’s fertility is max(dj(t), A).

Probability node (t + 1) attaches to node j is:

Pr(t + 1 → j) = max(dj(t), A)/(t + 1).



The process on degree sequence
(Can go through a similar heuristic derivation as with PA)

Let N0(t) ≡ number of infertile vertices.

Let Nk(t) ≡ number of fertile vertices of degree k

(for 1 ≤ k < A).

Let NA(t) ≡ number of fertile vertices of degree k ≥ A

(i.e. NA(t) =
∑∞

k=A Nk(t) “the tail”)



0 1 3 4 A (A+1)2



Recursion relation

pk = (k − 1)pk−1(t)− kpk(t), 1 < k < A.

and

(pk−1 − pk) , k ≥ A.

Implies:

pk =
∏k

i=2

(
i−1
i+1

)
p1, 1 < k < A.

and

pk =
(

A
A+1

)k−A

pA, k ≥ A.



Power law for 1 < k < A

pk

p1
=

k∏
i=2

(
i− 1
i + 1

)
=

2
k(k + 1)

∼ c k−2



Exponential decay for k > A

Recursion relation: pk = A (pk−1 − pk) , k ≥ A.

Implies

pk =
(

A
A+1

)k−A

pA, k ≥ A.

pk =
(

1− 1
A + 1

)k−A

pA =

[(
1− 1

A + 1

)A+1
](k−A)/(A+1)

pA

∼ exp [−(k −A)/(A + 1)] pA.



Degree sequence (summary)

pk = c1k
−γ for k < A

pk = c2 exp[−k/(A + 1)] for k > A.



“Power law” → power law with exponential tail

Ubiquitous empirical measurements:
(Saturation and PA often put in apriori to explain)

System with: p(x) ∼ x−B exp(−x/C) B C

Full protein-interaction map of Drosophila 1.20 0.038

High-confidence protein-interaction map of Drosophila 1.26 0.27

Gene-flow/hydridization network of plants
as function of spatial distance 0.75 105 m

Earthquake magnitude 1.35 - 1.7 ∼ 1021 Nm

Avalanche size of ferromagnetic materials 1.2 - 1.4 L1.4

ArXiv co-author network 1.3 53

MEDLINE co-author network 2.1 ∼ 5800

PNAS paper citation network 0.49 4.21

WHOIS AS Internet data 0.59 178



Fitting the “WHOIS” AS level Internet data
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'Whois' AS data with CIPA fit

Definitely not a power law, so previously no model to explain
distribution.



Comparing CIPA and PA graphs

CIPA PA



Network growth models

• Preferential attachment.

• Heuristically Optimized Tolerance

• Competition-Induced Preferential Attachment

• Validation! — (but what does this really mean, can only validate
aspects).



Further reading

• A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou,
“Heuristically Optimized Trade-offs” Lecture Notes In Computer
Science (ICALP 2002) 2380, 2002.
FKP extend the ideas of Carlson and Doyle to network context:

• J.M. Carlson and J. Doyle, “Highly optimized tolerance: A
mechanism for power laws in designed systems”, Physical
Review E, 1999.
(See also: J.M. Carlson and J. Doyle, “Complexity and
Robustness” PNAS 2002.

• N. Berger, C. Borgs, J. Chayes, R. D’Souza, R. Kleinberg,
“Competition-Induced Preferential Attachment”, Lecture Notes
in Computer Science (ICALP 2004) 3142 208-221, 2004.


