MAE 298, Lecture 5 April 13, 2006

"Optimization and network growth"

Recall: Preferential Attachment process: Origins of preferential attachment

- 1923 - Polya, urn models.
- 1925 - Yule, explain genetic diversity.
- 1949 - Zipf, distribution of city sizes (1/f).
- 1955 - Simon, distribution of wealth in economies. ("The rich get richer").
- [Interesting note, in sociology this is referred to as the Matthew effect after the biblical edict, "For to every one that hath shall be given ... " (Matthew 25:29)]

An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

- Goal: Optimize information conveyed for unit transmission cost
- Consider an alphabet of d characters, with n distinct words
- Order all possible words by length (A,B,C,....AA,BB,CC....)
- "Cost" of j-th word, $C_{j} \sim \log _{d} j$
- Ave information per word: $H=-\sum p_{j} \log p_{j}$
- Ave cost per word: $C=\sum p_{j} C_{j}$
- Minimize: $\frac{d}{d p_{j}}\left(\frac{C}{H}\right) \Longrightarrow p_{j} \sim j^{-\alpha}$

Optimization versus Preferential Attachment origin of power laws

Mandelbrot and Simon's heated public exchange

- A series of six letters between 1959-61 in Information and Control.
- Optimization on hold for many years, but recently resurfaced:
- Calson and Doyle, HOT, 1999
- Fabrikant, Koutsoupias, and Papadimitriou, 2002
- Solé, 2002

From Barabási and Albert to FKP

- Barabási and Albert, "Emergence of Scaling in Random Networks", Science 286, 1999.
A "preferential attachment" model of network growth.
- A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou, "Heuristically Optimized Trade-offs" Lecture Notes In Computer Science (ICALP 2002) 2380, 2002. FKP extend the ideas of Carlson and Doyle to network context:
- J.M. Carlson and J. Doyle, "Highly optimized tolerance: A mechanism for power laws in designed systems", Physical Review E, 1999.
(See also: J.M. Carlson and J. Doyle, "Complexity and Robustness" PNAS 2002.
- For a recent press account of optimization versus power laws see: Sara Robinson, "Recent Research Provides New Picture of Router-Level Internet," Computing in Science \& Engineering, 8 (2) March/April 2006, pp. 3-6.

FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

- Nodes arriving sequentially at random in a unit square.
- Upon arrival, each node connects to an already existing node that minimizes "cost":

$$
\alpha d_{i j}+h_{j}
$$

Using R to explore the FKP model

- $\alpha=0$ limit
- $\alpha \rightarrow \infty$ limit
- in-between

FKP degree distribution

A bimodal distribution (hubs and leaves, but almost all nodes are leaves). For details see:
N. Berger and B. Bollobas and C. Borgs and J. Chayes and O. Riordan, "Degree distribution of the FKP network model", Lecture Notes In Computer Science (ICALP 2003), 2003.

Competition-Induced Preferential Attachment

[N. Berger, C. Borgs, J. Chayes, R.D., R. Kleinberg, ICALP 2004]

- Like FKP, start with linear tradeoffs, but consider a scale-free metric. (Plus will result in local model.)
- Show how mechanism of PA arises, but with eventual saturation.
- PA w/ Saturation in turn gives with to Power Laws with eventual Exponential Decay.
- Such distributions observed ubiquitously in nature.
- Saturation, like PA, has previously been used as axiom to explain data.

Competition Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along the unit line:

Each incoming node, t, attaches to an existing node j (where $j<t$), which minimizes the function:
$F_{t j}=\min _{j}\left[\alpha_{t j} d_{t j}+h_{j}\right]$
Where $\quad \alpha_{t j}=\alpha \rho_{t j}=\alpha n_{t j} / d_{t j}$.
The "cost" becomes: $F_{t j}=\min _{j}\left[\alpha n_{t j}+h_{j}\right]$

$$
F_{t j}=\min _{j}\left[\alpha n_{t j}+h_{j}\right]
$$

- $\alpha_{t j}=\alpha \rho_{t j}$ local density, e.g. real estate in Manhattan.
- Reduces to $n_{t j}$ - number of points in the interval between t and j
- "Transit domains" - captures realistic aspects of Internet costs (i.e. AS/ISP-transit requires BGP and peering).
- Like FKP, tradeoff intial connection cost versus usage cost.
- Note cases $\alpha=0$ and $\alpha>1$.

The process on the line (for $1 / 3<\alpha<1 / 2$)

"Border Toll Optimization Problem" (BTOP)

$$
F_{t j}=\min _{j}\left[\alpha n_{t j}+h_{j}\right]
$$

"Fertility"

Node 1 becomes "fertile" at time $t=3$.

- Define $A=\lceil 1 / \alpha\rceil$
- A node must have $A-1$ "infertile" children before giving birth to a "fertile" child.

Mapping onto a tree

(equal in distribution to the line)

From line to tree

Integrating out the dependence on interval length from the conditional probability:

$$
\begin{aligned}
\operatorname{Pr}\left[x_{t+1} \in I_{k} \mid \pi(t)\right] & =\int \operatorname{Pr}\left[x_{t+1} \in I_{k} \mid \pi(t), \vec{s}(t)\right] d P(\vec{s}(t)) \\
& =\int s_{k}(t) d P(\vec{s}(t))=\frac{1}{t+1},
\end{aligned}
$$

i.e., The probability to land in the k-th interval is uniform over all intervals.

Preferential attachment with a cutoff

Let $d_{j}(t)$ equal the degree of fertile node j at time t.
The number of intervals contributing to j 's fertility is $\max \left(d_{j}(t), A\right)$.

Probability node $(t+1)$ attaches to node j is:

$$
\operatorname{Pr}(t+1 \rightarrow j)=\max \left(d_{j}(t), A\right) /(t+1)
$$

The process on degree sequence

(Can go through a similar heuristic derivation as with PA)

Let $N_{0}(t) \equiv$ number of infertile vertices.

Let $N_{k}(t) \equiv$ number of fertile vertices of degree k (for $1 \leq k<A$).

Let $N_{A}(t) \equiv$ number of fertile vertices of degree $k \geq A$ (i.e. $N_{A}(t)=\sum_{k=A}^{\infty} N_{k}(t)$ "the tail")

Recursion relation

$$
p_{k}=(k-1) p_{k-1}(t)-k p_{k}(t), \quad 1<k<A
$$

and
$\left(p_{k-1}-p_{k}\right), \quad k \geq A$.

Implies:

$$
p_{k}=\prod_{i=2}^{k}\left(\frac{i-1}{i+1}\right) p_{1}, \quad 1<k<A .
$$

and

$$
p_{k}=\left(\frac{A}{A+1}\right)^{k-A} p_{A}, \quad k \geq A
$$

Power law for $1<k<A$

$$
\begin{aligned}
\frac{p_{k}}{p_{1}} & =\prod_{i=2}^{k}\left(\frac{i-1}{i+1}\right)=\frac{2}{k(k+1)} \\
& \sim c k^{-2}
\end{aligned}
$$

Exponential decay for $k>A$

Recursion relation: $\quad p_{k}=A\left(p_{k-1}-p_{k}\right), \quad k \geq A$. Implies

$$
p_{k}=\left(\frac{A}{A+1}\right)^{k-A} p_{A}, \quad k \geq A .
$$

$$
\begin{aligned}
p_{k} & =\left(1-\frac{1}{A+1}\right)^{k-A} p_{A}=\left[\left(1-\frac{1}{A+1}\right)^{A+1}\right]^{(k-A) /(A+1)} p_{A} \\
& \sim \exp [-(k-A) /(A+1)] p_{A} .
\end{aligned}
$$

Degree sequence (summary)

$$
\begin{aligned}
& p_{k}=c_{1} k^{-\gamma} \text { for } k<A \\
& p_{k}=c_{2} \exp [-k /(A+1)] \text { for } k>A .
\end{aligned}
$$

"Power law" \rightarrow power law with exponential tail

Ubiquitous empirical measurements: (Saturation and PA often put in apriori to explain)

System with: $p(x) \sim x^{-B} \exp (-x / C)$	B	C
Full protein-interaction map of Drosophila	1.20	0.038
High-confidence protein-interaction map of Drosophila	1.26	0.27
Gene-flow/hydridization network of plants as function of spatial distance	0.75	$10^{5} \mathrm{~m}$
Earthquake magnitude	$1.35-1.7$	$\sim 10^{21} \mathrm{Nm}$
Avalanche size of ferromagnetic materials	$1.2-1.4$	$L^{1.4}$
ArXiv co-author network	1.3	53
MEDLINE co-author network	2.1	~ 5800
PNAS paper citation network	0.49	4.21
WHOIS AS Internet data	0.59	178

Fitting the "WHOIS" AS level Internet data

'Whois' AS data with CIPA fit

Definitely not a power law, so previously no model to explain distribution.

Comparing CIPA and PA graphs

Network growth models

- Preferential attachment.
- Heuristically Optimized Tolerance
- Competition-Induced Preferential Attachment
- Validation! - (but what does this really mean, can only validate aspects).

Further reading

- A. Fabrikant, E. Koutsoupias, and C. H.Papadimitriou, "Heuristically Optimized Trade-offs" Lecture Notes In Computer Science (ICALP 2002) 2380, 2002. FKP extend the ideas of Carlson and Doyle to network context:
- J.M. Carlson and J. Doyle, "Highly optimized tolerance: A mechanism for power laws in designed systems", Physical Review E, 1999.
(See also: J.M. Carlson and J. Doyle, "Complexity and Robustness" PNAS 2002.
- N. Berger, C. Borgs, J. Chayes, R. D'Souza, R. Kleinberg, "Competition-Induced Preferential Attachment", Lecture Notes in Computer Science (ICALP 2004) 3142 208-221, 2004.

