MAE 298, Lecture 7 April 25, 2006

Timescale, $\tau_{1}=5314 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{2}=1092 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{3}=157 \mathrm{t}_{\mathrm{o}}$

"Partitioning Networks (Spectral Methods)"

Review (class so far)

- Random graphs:
- basic graph properties (diameter, degree distribution, ...)
- phase transitions
- Power laws:
- signatures of phase transitions
(size distribution of components at the critical point)
- seen pervasively in degree distribution of real-world networks
- for $2<\gamma<3$, finite mean but infinite standard deviation.
- Preferential attachment (PA)/ Cumulative advantage
- Robustness of power law random graphs
- Optimization as an underlying mechanism for PA
- also gives rise to saturation of "preferential" attachment

Last time

- Software tools.
- Especially important for connecting data with the structure of networks.

Partitioning networks

Challenge: Finding groups of vertices that have a high density of edges within them, with a lower density of edges between groups.
(Find partitions that divide the graph into smaller pieces, while cutting the minimum number of edges possible).

Partitioning networks: approaches

From Graph Theory (Spectral methods):

- Identifying sub-clusters
- Mixing times for information
- "Betweenness"

Incorporating data attributes:

- "Mixing" (of links amongst different data types)
- Community structure

Graph Theory: Spectral Methods

- Looks only at graph structure without taking into account node or edge attributes.
- Based on random walks on the graph.
- Extremely useful for quantifying properties of information flow on networks and algorithms (cover time, mixing time, etc).
- Quantitative (no subjectivity)

Why are other methods subjective?

e.g., Dendrograms

Iterate from bottom up.
Stop when have desired number of clusters.

Spectral methods

- Considers the eigenvalues and eigenvectors of the graph.
- Take adjacency graph and consider a random walk on that graph.
- For now impose constraint that adjacency matrix be the symmetric. (Need this to ensure real eigenvalues).

For now, three important measures from random walks:

- Cover time
- Mixing time
- Relaxation time

Sample graph structure

Random walk: State Transition Matrix (Column-normalize the adjacency matrix)

$$
M=\left(\begin{array}{ccccc}
1 / 4 & 1 / 3 & 1 / 2 & 1 / 4 & 0 \\
1 / 4 & 1 / 3 & 0 & 1 / 4 & 0 \\
1 / 4 & 0 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 3 & 0 & 1 / 4 & 1 / 2 \\
0 & 0 & 0 & 1 / 4 & 1 / 2
\end{array}\right)
$$

M will have a basis set of eigenvectors $\left\{\vec{u}_{i}\right\}$ and corresponding eigenvalues λ_{i}.

Spectral values and graph isomorphisms

- Consider two networks with the same exact topology, but different labeling of edges (i.e., two isomorphic networks).
- Two isomorphic graphs will have the same eigen-spectra (same eigenvalues and eigenvectors).
- The eigenvalues and eigenvectors can be used to determine is two networks are not isomorphic.
- If eigen-spectra different can guarantee graphs not isomorphic.
- But if eigen-spectra the same cannot guarantee graphs are isomorphic (but it's a good clue, especially for large graphs).

Eigenvalues

- Let the vector \vec{v} denote the probability of finding the random walk on any node (i.e., v_{i} is probability of finding walker on i-th node).
- We can write $\vec{v}=\sum_{j} a_{j} \vec{u}_{j}$ (sum over the basis vectors).
- Apply the state transition matrix to each eigenvector:

$$
M \vec{u}_{j}=\lambda_{j} \vec{u}_{j}
$$

- Applying it t-times:

$$
M M M \cdots M \vec{u}_{j}=M^{t} \vec{u}_{j}=\left(\lambda_{j}\right)^{t} \vec{u}_{j}
$$

Eigenvalues - what does it mean?

- Steady-state $\lambda_{1}=1$. The state transition matrix will have at least one eigenvalue $\lambda_{1}=1$.

$$
M \vec{u}_{1}=\lambda_{1} \vec{u}_{1}
$$

equivalently:

$$
M^{t} \vec{u}_{1}=\left(\lambda_{1}\right)^{t} \vec{u}_{1}=\vec{u}_{1}
$$

- In fact the number of eigenvalues with $\lambda=1$ equals the number of components! (Each component relaxes to its unique, independent steady-state solution).

Spectral gap

- When only one component, the largest eigenvalue $\lambda_{1}=1$. All other λ 's are smaller.
- The difference $\lambda_{1}-\lambda_{2}$ is the spectral gap.
- It tells us how effectively we can partition graphs into separate pieces. The larger the spectral gap, the worse the partitioning (cuts too many edges).
- Identify bottle necks.
- Mixing time! (related to λ_{2}).
- Isoperimetric number (the best cut), also related to λ_{2}.

Mixing time/relaxation time

Mixing time: Start a random walker at any arbitrary node. How long before it forgets, on average, where it started from?

Consider a "dumbbell" graph. Long memory of whether started on left or right hand side. (But very easy to partition in two w/o cutting many edges).

A closely related measure is the relaxation time. Time for an original amplitude to decay to $1 / e$:

$$
M^{t} \vec{v}_{i}=\frac{1}{e} \vec{v}_{i}
$$

Relaxation time

Want to calculate the relaxation time of the eigenvectors:

$$
\begin{gathered}
M^{t} \vec{u}_{i}=\frac{1}{e} \vec{u}_{i}=\left(\lambda_{i}\right)^{t} \vec{u}_{i} . \\
\Longrightarrow t \ln (\lambda)=\ln (1 / e)=-\ln (e)=-1 . \\
t=-1 / \ln (\lambda)
\end{gathered}
$$

Thus, the largest relaxation time in the system:

$$
t_{\max }=-1 / \ln \left(\lambda_{2}\right)
$$

Example topologies

Mixing times and partitioning into two components

The larger the mixing time, the better the cut.

Higher order modes

Timescale, $\tau_{1}=5314 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{2}=1092 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{3}=157 \mathrm{t}_{\mathrm{o}}$

Applications to sensor networks

Standard state transition matrix (column normalize):

- Fastest mixing 1) complete graph, 2) star network.
- Smallest cover time: star network.

Applying this to wireless networks (next time):

- But in real-world often communication overhead (only one conversation at a time).
- Weighting the random walks:

Asymmetric (directed) graphs

- Can have complex (real + imaginary) eigenvalues.
- Not fully known how to use spectral methods for such graphs (an open problem).

Summary: spectral methods, eigen-spectrum

- If two distinct graphs have the same eigen-spectrum, they are likely isomorphic (esp for large graphs).
- Eigenvalues: degeneracy of $\lambda=1$ tells us how many disconnected components in the graph.

Summary: spectral methods, measures

- Mixing time (time to forget where the walk started)
- Relaxation time (related to mixing time, gives bounds)
- Cover time (time to occupy each node)
- Spectral gap: the largest mixing time, $t_{\max }=-1 / \ln \left(\lambda_{2}\right)$
- the larger $t_{\text {max }}$ the longer it takes for a random walk to cover the graph.
- the larger $t_{\text {max }}$ the more accurately a graph can be partitioned into two pieces.

