
MAE 298, Lecture 7
April 25, 2006
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“Partitioning Networks (Spectral Methods)”



Review (class so far)

• Random graphs:
– basic graph properties (diameter, degree distribution, ...)
– phase transitions

• Power laws:
– signatures of phase transitions
(size distribution of components at the critical point)
– seen pervasively in degree distribution of real-world networks
– for 2 < γ < 3, finite mean but infinite standard deviation.

• Preferential attachment (PA)/ Cumulative advantage

• Robustness of power law random graphs

• Optimization as an underlying mechanism for PA
– also gives rise to saturation of “preferential” attachment



Last time

• Software tools.

• Especially important for connecting data with the structure of
networks.



Partitioning networks

Challenge: Finding groups of vertices that have a high density of
edges within them, with a lower density of edges between groups.

(Find partitions that divide the graph into smaller pieces, while
cutting the minimum number of edges possible).



Partitioning networks: approaches

From Graph Theory (Spectral methods):

• Identifying sub-clusters

• Mixing times for information

• “Betweenness”

Incorporating data attributes:

• “Mixing” (of links amongst different data types)

• Community structure



Graph Theory: Spectral Methods

• Looks only at graph structure without taking into account node
or edge attributes.

• Based on random walks on the graph.

• Extremely useful for quantifying properties of information flow
on networks and algorithms (cover time, mixing time, etc).

• Quantitative (no subjectivity)



Why are other methods subjective?

e.g., Dendrograms

Iterate from bottom up.
Stop when have desired number of clusters.



Spectral methods

• Considers the eigenvalues and eigenvectors of the graph.

• Take adjacency graph and consider a random walk on that
graph.

• For now impose constraint that adjacency matrix be the
symmetric. (Need this to ensure real eigenvalues).

For now, three important measures from random walks:

• Cover time

• Mixing time

• Relaxation time



Sample graph structure



Random walk: State Transition Matrix
(Column-normalize the adjacency matrix)

M =


1/4 1/3 1/2 1/4 0
1/4 1/3 0 1/4 0
1/4 0 1/2 0 0
1/4 1/3 0 1/4 1/2
0 0 0 1/4 1/2



M will have a basis set of eigenvectors {~ui} and corresponding
eigenvalues λi.



Spectral values and graph isomorphisms

• Consider two networks with the same exact topology, but
different labeling of edges (i.e., two isomorphic networks).

• Two isomorphic graphs will have the same eigen-spectra
(same eigenvalues and eigenvectors).

• The eigenvalues and eigenvectors can be used to determine is
two networks are not isomorphic.
– If eigen-spectra different can guarantee graphs not
isomorphic.
– But if eigen-spectra the same cannot guarantee graphs are
isomorphic (but it’s a good clue, especially for large graphs).



Eigenvalues

• Let the vector ~v denote the probability of finding the random
walk on any node (i.e., vi is probability of finding walker on i-th
node).

• We can write ~v =
∑

j aj~uj (sum over the basis vectors).

• Apply the state transition matrix to each eigenvector:

M~uj = λj~uj

• Applying it t-times:

MMM · · ·M~uj = M t~uj = (λj)t~uj



Eigenvalues — what does it mean?

• Steady-state λ1 = 1. The state transition matrix will have at
least one eigenvalue λ1 = 1.

M~u1 = λ1~u1
equivalently:

M t~u1 = (λ1)t~u1 = ~u1

• In fact the number of eigenvalues with λ = 1 equals the
number of components! (Each component relaxes to its
unique, independent steady-state solution).



Spectral gap

• When only one component, the largest eigenvalue λ1 = 1. All
other λ’s are smaller.

• The difference λ1 − λ2 is the spectral gap.

• It tells us how effectively we can partition graphs into separate
pieces. The larger the spectral gap, the worse the partitioning
(cuts too many edges).

• Identify bottle necks.

• Mixing time! (related to λ2).

• Isoperimetric number (the best cut), also related to λ2.



Mixing time/relaxation time

Mixing time: Start a random walker at any arbitrary node. How
long before it forgets, on average, where it started from?

Consider a “dumbbell” graph. Long memory of whether started
on left or right hand side. (But very easy to partition in two w/o

cutting many edges).

A closely related measure is the relaxation time . Time for an
original amplitude to decay to 1/e:

M t~vi = 1
e~vi.



Relaxation time

Want to calculate the relaxation time of the eigenvectors:

M t~ui = 1
e~ui = (λi)t~ui.

=⇒ t ln(λ) = ln(1/e) = − ln(e) = −1.

t = −1/ ln(λ)

Thus, the largest relaxation time in the system:

tmax = −1/ ln(λ2)



Example topologies
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Mixing times and partitioning into two components
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The larger the mixing time, the better the cut.



Higher order modes
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Applications to sensor networks

Standard state transition matrix (column normalize):

• Fastest mixing 1) complete graph, 2) star network.

• Smallest cover time: star network.

Applying this to wireless networks (next time):

• But in real-world often communication overhead (only one
conversation at a time).

• Weighting the random walks:



Asymmetric (directed) graphs

• Can have complex (real + imaginary) eigenvalues.

• Not fully known how to use spectral methods for such graphs
(an open problem).



Summary: spectral methods, eigen-spectrum

• If two distinct graphs have the same eigen-spectrum, they are
likely isomorphic (esp for large graphs).

• Eigenvalues: degeneracy of λ = 1 tells us how many
disconnected components in the graph.



Summary: spectral methods, measures

• Mixing time (time to forget where the walk started)

• Relaxation time (related to mixing time, gives bounds)

• Cover time (time to occupy each node)

• Spectral gap: the largest mixing time, tmax = −1/ ln(λ2)

– the larger tmax the longer it takes for a random walk to cover
the graph.

– the larger tmax the more accurately a graph can be
partitioned into two pieces.


