
MAE 298, Lecture 8
April 27, 2006
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“Spectral Methods, Sensor Nets and
Self-organization”



Last time: spectral methods, eigen-spectrum

• If two distinct graphs have the same eigen-spectrum, they are
likely isomorphic (esp for large graphs).

• Eigenvalues: degeneracy of λ = 1 tells us how many
disconnected components in the graph.



Summary: spectral methods, measures

• Mixing time (time to forget where the walk started)

• Relaxation time (related to mixing time, gives bounds)

• Cover time (time to occupy each node)

• Spectral gap: the largest mixing time, tmax = −1/ ln(λ2)

– the larger tmax the longer it takes for a random walk to cover
the graph.

– the larger tmax the more accurately a graph can be
partitioned into two pieces.



Applications: Wireless sensor networks
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• Start with isolated sensor distributed at random.

• Is there a local way to build up global connectivity?

• Locality — why?



Locality

1. Locality ∼ distributed

2. Adapt quickly to changing environment

3. Minimal growth in overhead with increasing system size

4. “Self-organizing”



“self-organization”

• Not quantitatively defined.

• (Wikipedia:) Self-organization is a process in which the internal
organization of a system , normally an open system , increases
in complexity without being guided or managed by an outside
source. Self-organizing systems typically (though not always)
display emergent properties.



Beaconing



A geometric graph problem

One idea — percolation

Call the graph describing connectivity of nodes: GR



Is this a local algorithm?

(How to determine Rc?)



How to determine Rc?
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Percolation

Why is it bad?

• Farthest away node sets operating power for all

• Need to communicate this value Rc (critical operating range)

• Assumes wireless footprint a uniform disk

Why is in good?

• Guarantees full global connectivity. In the asymptotic limit
(N → ∞) know how Rc scales with N . So for large N can
use theoretical estimate rather than λ = 1 construction.

• Want small range R to conserve power and also reduce
interference. Percolation is a “sweet spot” (full connectivity with
out too much interference).



Refining percolation graph GR

(also called the “unit disk graph”)

153

RNG & GG
Relative Neighbor Graph (RNG)
! An edge (u, v) exist if !w, d(u,v) 
" max(d(u, w), d(w, v)

Gabriel graph (GG)
! An edge (u, v) exist, if no other 

vertex w is present within the 
circle

2 2 2, : ( , ) ( , ) ( , )w u v d u v d u w d w v! # " $



154

Planarized Graph (Cont’d)

Original Unit 
Disk Graph

GG RNG

• Preserve connectivity of GR, but sparser (and also planar).

• There is an R-package that computes the disk, Gabriel and
relative neighbor graph given an input set of coordinates
(http://rss.acs.unt.edu/Rdoc/library/spdep/html/graphneigh.html)



Planar disk graphs =⇒ greedy routing

• What is greedy forward routing?

• Packets are discarded if there is no neighbor which is nearer
to the destination node than the current node; otherwise,
packets are forwarded to the neighbor which is nearest to the
destination node.

• Each node needs to know the locations of itself, its 1-hop
neighbors and destination node.

• Pros: easy implement

• Cons: deliverability (stuck in local voids)



4

Examples

u
w4

v

w1 w2 w3

w5 w6
w6 is a local

minimum w.r.t. v



Theory versus reality
Wireless footprints
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Uniform-disk model Experimental
[Ganesan, et. al., 2002]



Adaptive Power Topology control
(Local algorithms to build connectivity)

• Percolation (Common power) neglects natural clustering.
– Too much power consumption and unnecessary interference.
– Misses certain paths which could optimize traffic.

• How to build up a connected network using only local
information?
– Moreover, want to avoid uniform disk requirement



Adaptive Power Topology control

• Adaptive power topology control (APTC)
[Wattenhofer, Li, Bahl, and Wang. Infocom 2001]

[D’Souza, Ramanathan, and Temple Lang. Infocom 2003]

Each node individually increases power until it has a neighbor in
every θ sector around it:

Call the graph describing connectivity of nodes: Gθ



Sample topology

Topology control:
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Percolation:
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Beyond the uniform disk model

[D’Souza, Galvin, Moore, Randall, IPSN 2006 ]

• Can use a local geometric θ-constraint to ensure full network
connectivity, independent of wireless footprint!.

• Requires constraints on boundary nodes. (Carefully deploy
boundary nodes so can communicate, or else have hard-
wired boundary channel; then interior nodes can be scattered
haphazardly).



Proof overview

Theorem 1. If Gθ satisfies the θ-constraint at every internal
node with θ < π and all of the boundary nodes are known to
be connected, then Gθ is fully connected.

Proof: We need only show every internal node v has a path in
Gθ to some node on the boundary.



Comparison to percolation scheme
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How to quantify “better”?

• Need performance metrics

• Direct measures: energy consumption
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Power Control:
Cross-Layer Design Issues

• Physical Layer
– Power control affects quality of signal

• Link Layer
– Power control affects number of clients sharing channel

• Network Layer
– Power control affects topology/routing

• Transport Layer
– Power control changes interference, which causes

congestion
• Application/OS Layer

– Power control affects energy consumption

The “protocol stack”



In general, networks layered

• Social networks

• → Email networks

• → Data networks

• → Protocol networks

• → Physical networks



Approximating interference

State transition matrix:

Mii = (ki − 1)/ki, for diagonal elements.

Mij = 1/(ki − 1)ki, if an edge exists between i and j.



Network self-discovery time
(Using mixing time as a proxy)

τ = −1/ ln(λ2)
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Comparison of timescales
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Comparison of timescales
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Regimes for routing

Two timescales:

1. tinfo = −1/ ln(λ2)

2. tnetwork: time for network topology to change.

Routing:

• If tnetwork � tinfo, network essentially static during packet
routing, so build up routing information.

• If tnetwork � tinfo, any info on the network topology will be
immediately obsolete, so no routing strategy.

Is there a sharp threshold? Or even any way to bound these
behaviors? (What routing protocols work best in which regimes?



Other pressing issues: Sensor networks

• Deployed networks: optimal sensor placement

• Gossip algorithms: spreading shared information quickly
through local exchanges.


