MAE 298, Lecture 8 April 27, 2006

Timescale, $\tau_{1}=5314 \mathrm{t}_{0}$

Timescale, $\tau_{2}=1092 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{3}=157 \mathrm{t}_{\mathrm{o}}$

"Spectral Methods, Sensor Nets and Self-organization"

Last time: spectral methods, eigen-spectrum

- If two distinct graphs have the same eigen-spectrum, they are likely isomorphic (esp for large graphs).
- Eigenvalues: degeneracy of $\lambda=1$ tells us how many disconnected components in the graph.

Summary: spectral methods, measures

- Mixing time (time to forget where the walk started)
- Relaxation time (related to mixing time, gives bounds)
- Cover time (time to occupy each node)
- Spectral gap: the largest mixing time, $t_{\max }=-1 / \ln \left(\lambda_{2}\right)$
- the larger $t_{\text {max }}$ the longer it takes for a random walk to cover the graph.
- the larger $t_{\text {max }}$ the more accurately a graph can be partitioned into two pieces.

Applications: Wireless sensor networks

- Start with isolated sensor distributed at random.
- Is there a local way to build up global connectivity?
- Locality - why?

Locality

1. Locality \sim distributed
2. Adapt quickly to changing environment
3. Minimal growth in overhead with increasing system size
4. "Self-organizing"

"self-organization"

- Not quantitatively defined.
- (Wikipedia:) Self-organization is a process in which the internal organization of a system, normally an open system , increases in complexity without being guided or managed by an outside source. Self-organizing systems typically (though not always) display emergent properties.

Beaconing

A geometric graph problem

One idea - percolation

Call the graph describing connectivity of nodes: G_{R}

Is this a local algorithm?

(How to determine R_{c} ?)

How to determine R_{c} ?

Keep increasing until only one eigenvalue $\lambda=1$

Percolation

Why is it bad?

- Farthest away node sets operating power for all
- Need to communicate this value R_{c} (critical operating range)
- Assumes wireless footprint a uniform disk

Why is in good?

- Guarantees full global connectivity. In the asymptotic limit $(N \rightarrow \infty)$ know how R_{c} scales with N. So for large N can use theoretical estimate rather than $\lambda=1$ construction.
- Want small range R to conserve power and also reduce interference. Percolation is a "sweet spot" (full connectivity with out too much interference).

Refining percolation graph G_{R} (also called the "unit disk graph")

RNG \& GG

Relative Neighbor Graph (RNG)

- An edge (u, v) exist if $\forall w, d(u, v)$ $\leq \max (\mathrm{d}(\mathrm{u}, \mathrm{w}), \mathrm{d}(\mathrm{w}, \mathrm{v})$

Gabriel graph (GG)

- An edge (u, v) exist, if no other vertex w is present within the circle

$$
\forall w \neq u, v: d^{2}(u, v) \leq d^{2}(u, w)+d^{2}(w, v)
$$

Planarized Graph (Cont’d)

- Preserve connectivity of G_{R}, but sparser (and also planar).
- There is an R-package that computes the disk, Gabriel and relative neighbor graph given an input set of coordinates (http://rss.acs.unt.edu/Rdoc/library/spdep/html/graphneigh.html)

Planar disk graphs \Longrightarrow greedy routing

- What is greedy forward routing?
- Packets are discarded if there is no neighbor which is nearer to the destination node than the current node; otherwise, packets are forwarded to the neighbor which is nearest to the destination node.
- Each node needs to know the locations of itself, its 1-hop neighbors and destination node.
- Pros: easy implement
- Cons: deliverability (stuck in local voids)

Examples

Theory versus reality
 Wireless footprints

[Ganesan, et. al., 2002]

Adaptive Power Topology control (Local algorithms to build connectivity)

- Percolation (Common power) neglects natural clustering.
- Too much power consumption and unnecessary interference.
- Misses certain paths which could optimize traffic.

- How to build up a connected network using only local information?
- Moreover, want to avoid uniform disk requirement

Adaptive Power Topology control

- Adaptive power topology control (APTC) [Wattenhofer, Li, Bahl, and Wang. Infocom 2001]
[D'Souza, Ramanathan, and Temple Lang. Infocom 2003]
Each node individually increases power until it has a neighbor in every θ sector around it:

Call the graph describing connectivity of nodes: G_{θ}

Sample topology

Topology control:

$>$

Percolation:

Beyond the uniform disk model

[D'Souza, Galvin, Moore, Randall, IPSN 2006]

- Can use a local geometric θ-constraint to ensure full network connectivity, independent of wireless footprint!!

- Requires constraints on boundary nodes. (Carefully deploy boundary nodes so can communicate, or else have hardwired boundary channel; then interior nodes can be scattered haphazardly).

Proof overview

Theorem 1. If G_{θ} satisfies the θ-constraint at every internal node with $\theta<\pi$ and all of the boundary nodes are known to be connected, then G_{θ} is fully connected.

Proof: We need only show every internal node v has a path in G_{θ} to some node on the boundary.

Comparison to percolation scheme

How to quantify "better"?

- Need performance metrics
- Direct measures: energy consumption

Power Control: Cross-Layer Design Issues

- Physical Layer
- Power control affects quality of signal
- Link Layer
- Power control affects number of clients sharing channel
- Network Layer
- Power control affects topology/routing
- Transport Layer
- Power control changes interference, which causes congestion
- Application/OS Layer
- Power control affects energy consumption

The "protocol stack"

In general, networks layered

- Social networks
- \rightarrow Email networks
- \rightarrow Data networks
- \rightarrow Protocol networks
- \rightarrow Physical networks

Approximating interference

State transition matrix:
$M_{i i}=\left(k_{i}-1\right) / k_{i}$, for diagonal elements.
$M_{i j}=1 /\left(k_{i}-1\right) k_{i}$, if an edge exists between i and j.

Network self-discovery time (Using mixing time as a proxy)

$$
\tau=-1 / \ln \left(\lambda_{2}\right)
$$

Timescale, $\tau_{1}=5314 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{2}=1092 \mathrm{t}_{\mathrm{o}}$
Timescale, $\tau_{3}=157 \mathrm{t}_{\mathrm{o}}$

Comparison of timescales

Adaptive power
$-1 / \ln (\lambda)$, compared to exponential density of Common Power

Common power
$-1 / \ln (\lambda)$ and exponential density

Comparison of timescales

Scatterplot of timescales
common versus adaptive power

Regimes for routing

Two timescales:

1. $t_{\text {info }}=-1 / \ln \left(\lambda_{2}\right)$
2. $t_{\text {network }}$: time for network topology to change.

Routing:

- If $t_{n e t w o r k} \ll t_{i n f o}$, network essentially static during packet routing, so build up routing information.
- If $t_{\text {network }} \gg t_{\text {info }}$, any info on the network topology will be immediately obsolete, so no routing strategy.

Is there a sharp threshold? Or even any way to bound these behaviors? (What routing protocols work best in which regimes?

Other pressing issues: Sensor networks

- Deployed networks: optimal sensor placement
- Gossip algorithms: spreading shared information quickly through local exchanges.

