MAE 298, Lecture 8 April 27, 2006

Timescale, $\tau_1 = 5314 t_o$

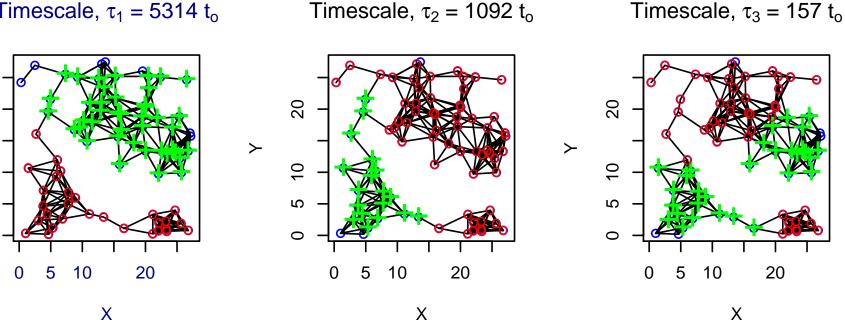
20

10

S

0

 \succ



"Spectral Methods, Sensor Nets and Self-organization"

Last time: spectral methods, eigen-spectrum

- If two distinct graphs have the same eigen-spectrum, they are likely isomorphic (esp for large graphs).
- Eigenvalues: degeneracy of $\lambda = 1$ tells us how many disconnected components in the graph.

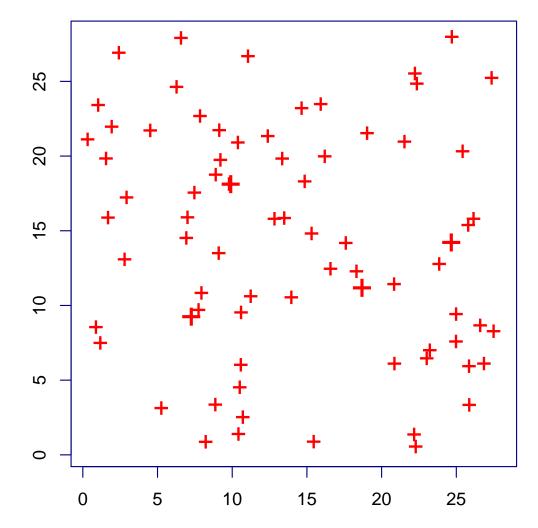
Summary: spectral methods, measures

- Mixing time (time to forget where the walk started)
- Relaxation time (related to mixing time, gives bounds)
- Cover time (time to occupy each node)
- Spectral gap: the largest mixing time, $t_{\rm max} = -1/\ln(\lambda_2)$

– the larger $t_{\rm max}$ the longer it takes for a random walk to cover the graph.

– the larger $t_{\rm max}$ the more accurately a graph can be partitioned into two pieces.

Applications: Wireless sensor networks



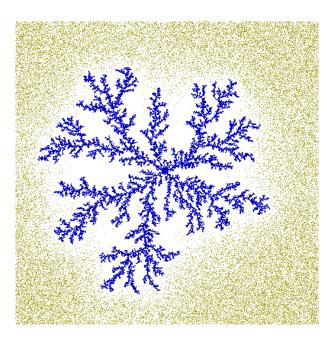
- Start with isolated sensor distributed at random.
- Is there a *local* way to build up global connectivity?
- Locality why?

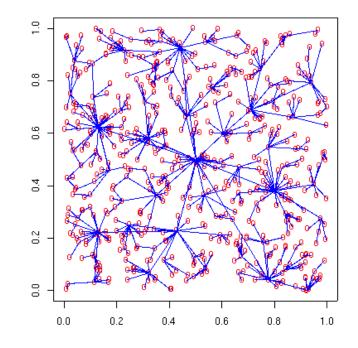
Locality

- 1. Locality \sim distributed
- 2. Adapt quickly to changing environment
- 3. Minimal growth in overhead with increasing system size
- 4. "Self-organizing"

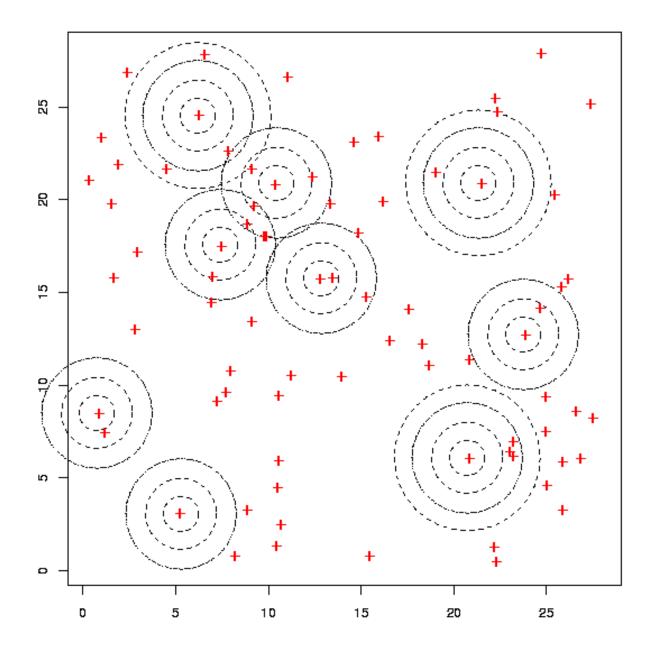
"self-organization"

- Not quantitatively defined.
- (Wikipedia:) Self-organization is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source. Self-organizing systems typically (though not always) display emergent properties.



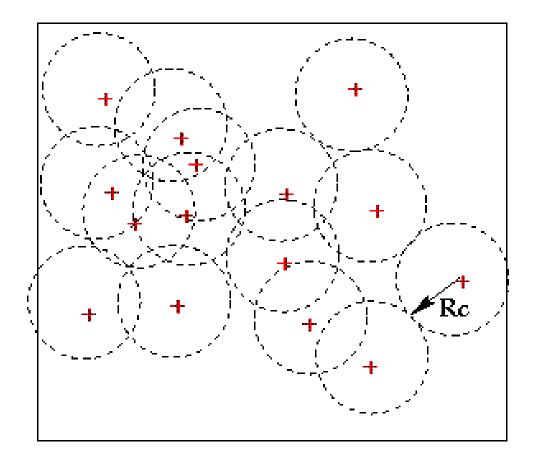


Beaconing



A geometric graph problem

One idea — percolation



Call the graph describing connectivity of nodes: G_R

Is this a local algorithm?

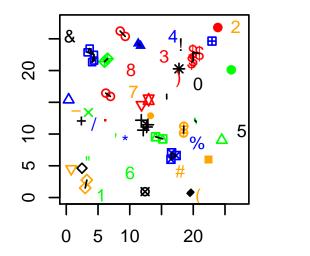
(How to determine R_c ?)

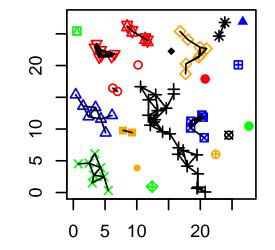
How to determine R_c ?

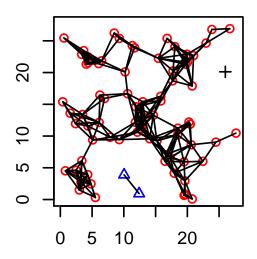
R = 1.362

R = 2.724

R = 4.904







Keep increasing until only one eigenvalue $\lambda=1$

Percolation

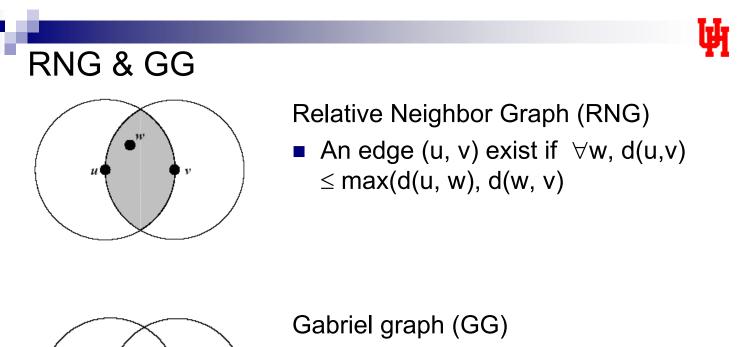
Why is it bad?

- Farthest away node sets operating power for all
- Need to *communicate* this value R_c (critical operating range)
- Assumes wireless footprint a uniform disk

Why is in good?

- Guarantees full global connectivity. In the asymptotic limit $(N \to \infty)$ know how R_c scales with N. So for large N can use theoretical estimate rather than $\lambda = 1$ construction.
- Want small range *R* to conserve power and also reduce interference. Percolation is a "sweet spot" (full connectivity with out too much interference).

Refining percolation graph G_R (also called the "unit disk graph")

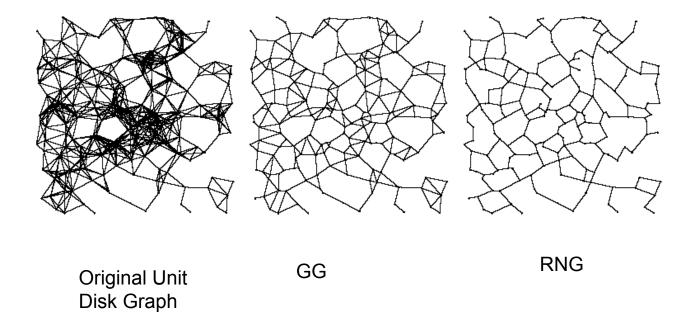


 An edge (u, v) exist, if no other vertex w is present within the circle

 $\forall w \neq u, v : d^2(u, v) \le d^2(u, w) + d^2(w, v)$

154

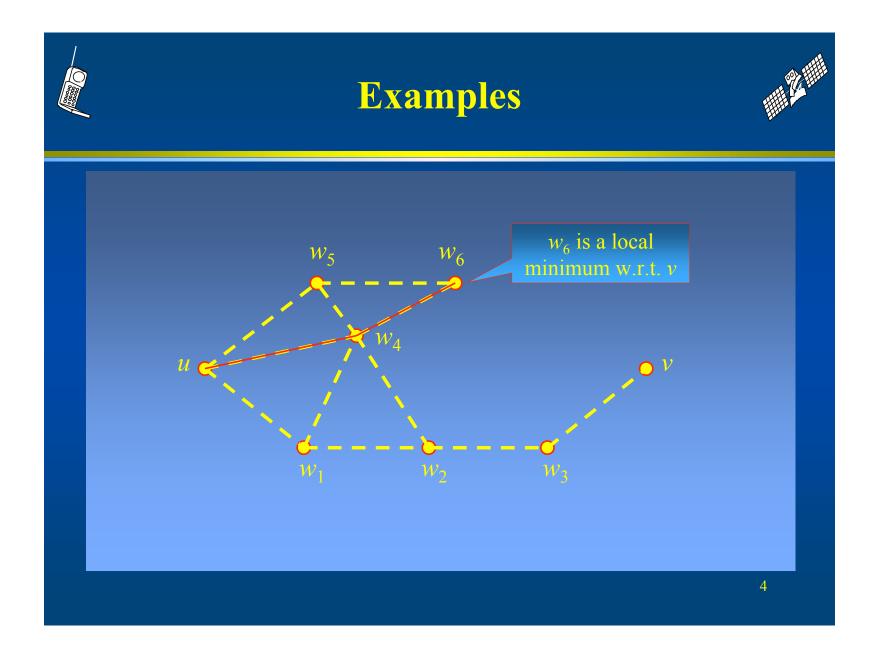
Planarized Graph (Cont'd)



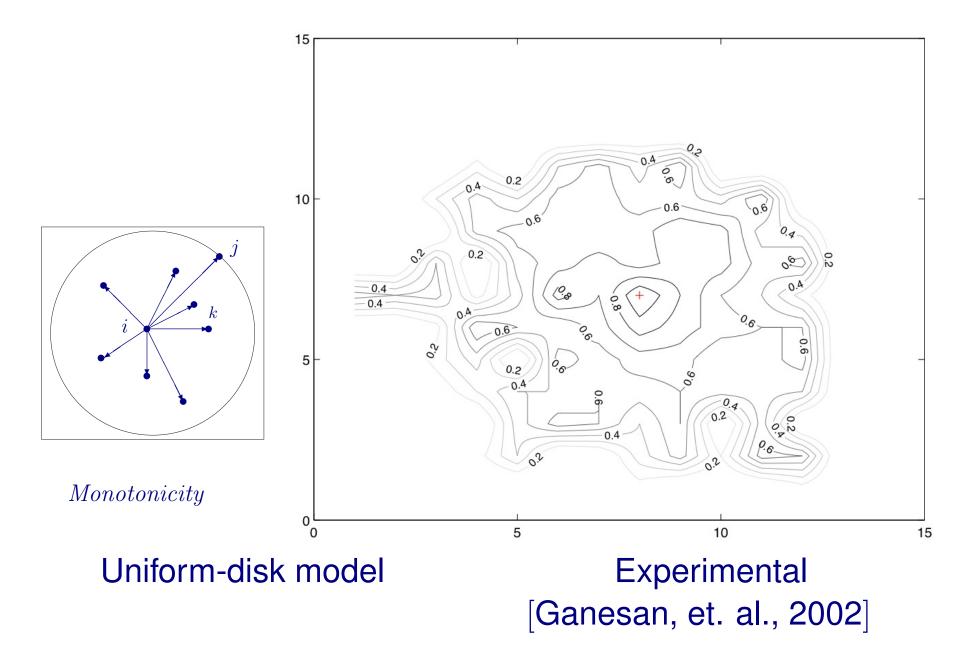
- Preserve connectivity of G_R , but sparser (and also planar).
- There is an R-package that computes the disk, Gabriel and relative neighbor graph given an input set of coordinates (http://rss.acs.unt.edu/Rdoc/library/spdep/html/graphneigh.html)

Planar disk graphs \implies greedy routing

- What is greedy forward routing?
- Packets are discarded if there is no neighbor which is nearer to the destination node than the current node; otherwise, packets are forwarded to the neighbor which is nearest to the destination node.
- Each node needs to know the locations of itself, its 1-hop neighbors and destination node.
- Pros: easy implement
- Cons: deliverability (stuck in local voids)

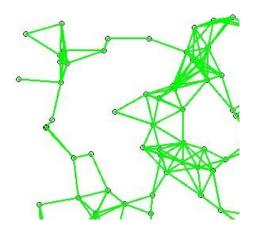


Theory versus reality Wireless footprints



Adaptive Power Topology control (Local algorithms to build connectivity)

- Percolation (Common power) neglects natural clustering.
 - Too much power consumption and unnecessary interference.
 - Misses certain paths which could optimize traffic.

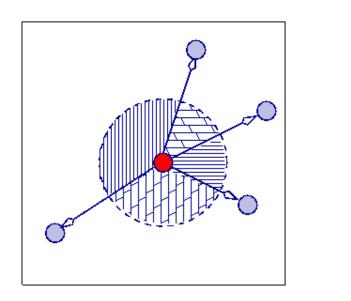


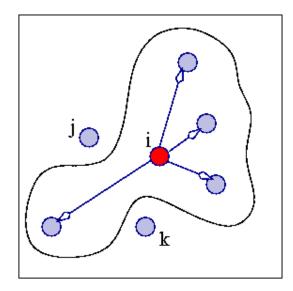
- How to build up a connected network using only local information?
 - Moreover, want to avoid uniform disk requirement

Adaptive Power Topology control

 Adaptive power topology control (APTC) [Wattenhofer, Li, Bahl, and Wang. Infocom 2001]
[D'Souza, Ramanathan, and Temple Lang. Infocom 2003]

Each node *individually* increases power until it has a neighbor in every θ sector around it:

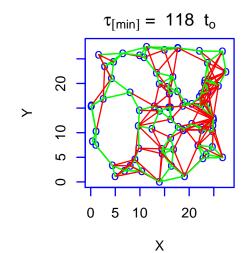


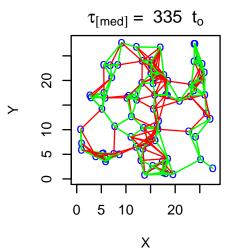


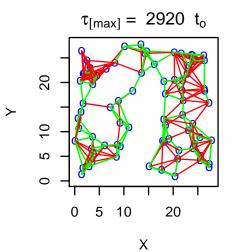
Call the graph describing connectivity of nodes: $G_ heta$

Sample topology

Topology control:

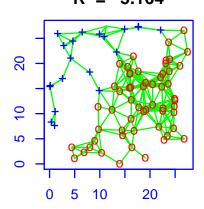


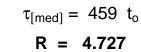




Percolation:

 $\tau_{[min]} = 183 t_o$ **R = 5.164**





5 10

20

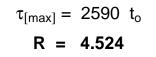
20

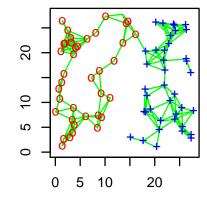
10

S

0

0

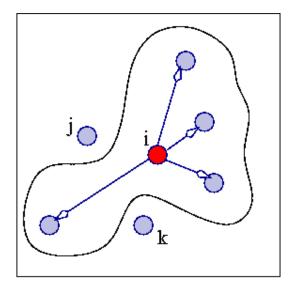




Beyond the uniform disk model

[D'Souza, Galvin, Moore, Randall, IPSN 2006]

• Can use a local geometric *θ*-constraint to ensure full network connectivity, *independent of wireless footprint!*.

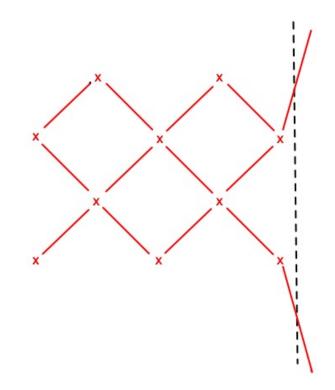


• Requires constraints on boundary nodes. (Carefully deploy boundary nodes so can communicate, or else have hard-wired boundary channel; then interior nodes can be scattered haphazardly).

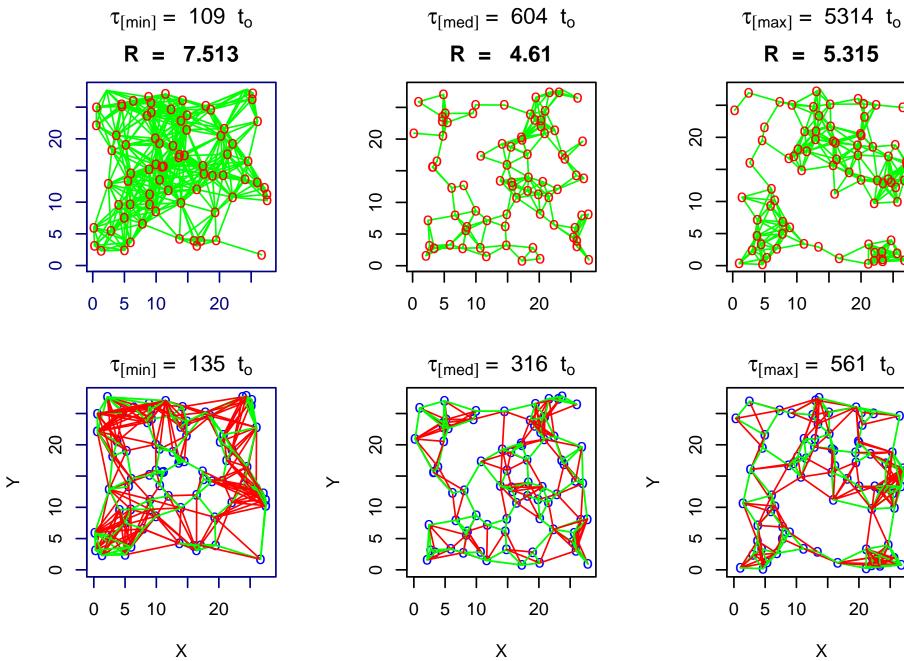
Proof overview

Theorem 1. If G_{θ} satisfies the θ -constraint at every internal node with $\theta < \pi$ and all of the boundary nodes are known to be connected, then G_{θ} is fully connected.

Proof: We need only show every internal node v has a path in G_{θ} to some node on the boundary.



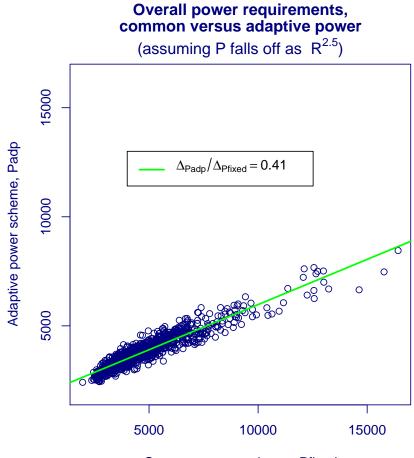
Comparison to percolation scheme



Х

How to quantify "better"?

- Need performance metrics
- Direct measures: energy consumption



Common power scheme, Pfixed

Power Control: Cross-Layer Design Issues

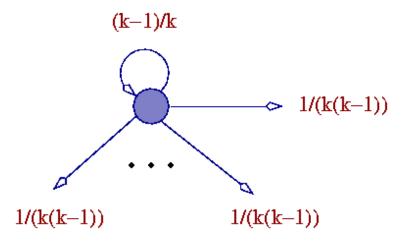
- Physical Layer
 - Power control affects quality of signal
- Link Layer
 - Power control affects number of clients sharing channel
- Network Layer
 - Power control affects topology/routing
- Transport Layer
 - Power control changes interference, which causes congestion
- Application/OS Layer
 - Power control affects energy consumption

The "protocol stack"

In general, networks layered

- Social networks
- $\bullet \rightarrow \text{Email networks}$
- $\bullet \rightarrow \text{Data networks}$
- $\bullet \rightarrow Protocol \ networks$
- $\bullet \rightarrow Physical \ networks$

Approximating interference



State transition matrix:

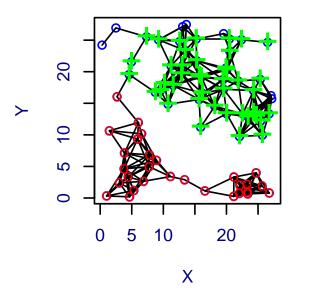
 $M_{ii} = (k_i - 1)/k_i$, for diagonal elements.

 $M_{ij} = 1/(k_i - 1)k_i$, if an edge exists between *i* and *j*.

Network self-discovery time (Using mixing time as a proxy)

$$au = -1/\ln(\lambda_2)$$

Timescale, $\tau_1 = 5314 t_o$

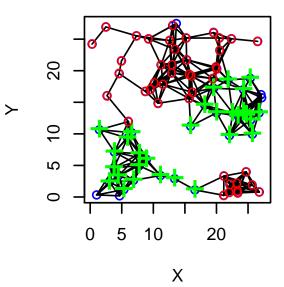


20 ≻ 10 S 0 5 10 20 0

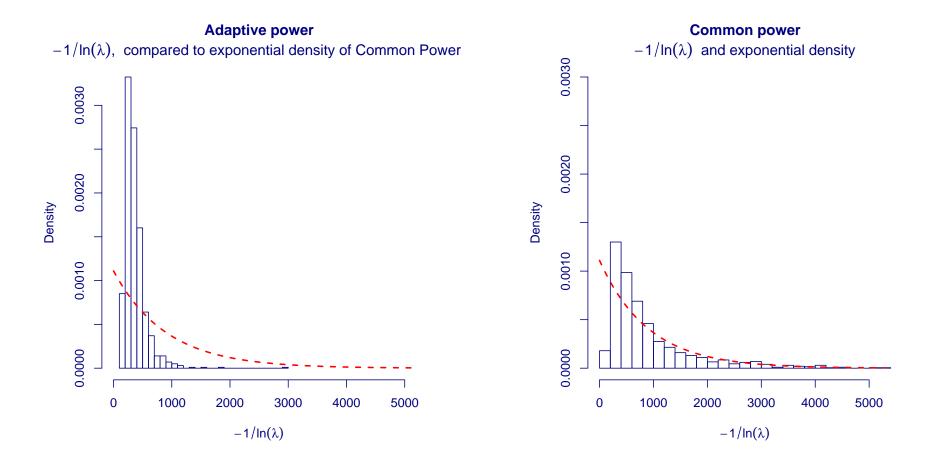
Х

Timescale, $\tau_2 = 1092 t_o$

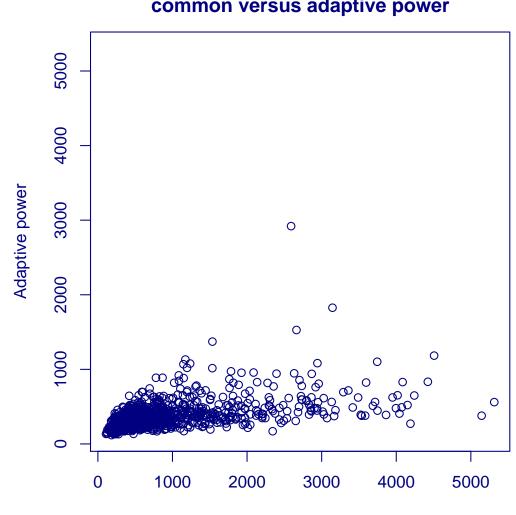
Timescale, $\tau_3 = 157 t_o$



Comparison of timescales



Comparison of timescales



Scatterplot of timescales common versus adaptive power

Common power

Regimes for routing

Two timescales:

- **1.** $t_{info} = -1/\ln(\lambda_2)$
- 2. $t_{network}$: time for network *topology* to change.

Routing:

- If $t_{network} \ll t_{info}$, network essentially static during packet routing, so build up routing information.
- If $t_{network} \gg t_{info}$, any info on the network topology will be immediately obsolete, so no routing strategy.

Is there a sharp threshold? Or even any way to bound these behaviors? (What routing protocols work best in which regimes?

Other pressing issues: Sensor networks

- Deployed networks: optimal sensor placement
- Gossip algorithms: spreading shared information quickly through local exchanges.