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1. The diffusion of social innovations in social networks

Social institutions are forms of capital that, together with physical and human

capital, determine the rate of economic growth. Notable examples include

private property rights and legal systems to protect them, accounting methods,

forms of corporate governance, and the terms of economic contracts. Yet, in

contrast with the literature on technological progress, relatively little is known

about the ways in which new institutions are created and how they become

established within a given social framework. In this paper I discuss one

approach to this problem using methods from evolutionary game theory.

In the abstract, an institution can be viewed as a set of rules that structure a given

type of interaction between individuals (North, 1990). These rules can be simple

coordination devices, such as which hand to extend in greeting or who goes

through the door first. Or they can be very elaborate, such as rituals of courtship

and marriage, cycles of retribution, performance criteria in employment

contracts, or litigation procedures in the courts. We would like to know how a

particular set of rules becomes established as common practice, and what process

describes the displacement of one set of rules by another.

The viewpoint we shall adopt here is that new norms and institutions are

introduced through a process of invention or discovery at the local level. This is

followed by an extended period in which people try to coordinate using the new

rules, possibly incorporating refinements along the way. Under certain

conditions that we shall discuss below, this trial and error process will

eventually trigger a general change in expectations and behaviors that

establishes the new institution within society at large. However, it can take a
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very long time for this to happen even though the new way of doing things is

superior to the status quo.

One reason for this inertia is lack of information: it may not be immediately

evident that an innovation actually is superior to the status quo, due to the small

number of prior instances and variability in their outcomes. Thus it may take a

long time for enough information to accumulate before it becomes clear that the

innovation is superior (Young, 2009). A second reason is that an innovation as

initially conceived may not work very well in practice; it must be refined over

time through a process of learning by doing (Arrow, 1962). A third reason is that

innovations often exhibit increasing returns. Indeed this feature is especially

important for social innovations, which by definition require coordinated change

in expectations and behaviors by multiple individuals. For example, an

individual who invents a new form of legal contract cannot simply institute it on

his own: first, the other parties to the contract must enter into it, and second, the

ability to enforce the contract will depend on its usage in society more generally.

Institutions exhibit strongly increasing returns precisely because of their function

as coordination technologies.1

 

This increasing returns phenomenon has important implications for the

dynamics governing institutional change. Of particular relevance is the social

network through which individuals communicate. The reason is that, when a

social innovation first appears, it will typically gain a foothold in a relatively

small subgroup of individuals that are closely linked by geography or social

connections. Once the new way of doing things has become firmly established

                                                 
1 Some forms of technological innovation also exhibit increasing returns due to network
externalities (Katz and Shapiro,1985; Arthur, 1989).
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within a local social group, it propagates to the rest of society through the social

network. Thus a key determinant of the speed with which institutional change

occurs is the network topology, and in particular the extent to which interactions

are �‘localized.�’

Ellison (1993) was the first to study this issue for simple network structures such

as circles and grids; subsequently the analysis was extended by Young (1998,

2003), Morris (2000), and Montanari and Saberi (2010) among others. Broadly

speaking the aim of this literature is to characterize the rate of convergence of

various learning processes as a function of key topological properties. For

example, Young (1998, 2003) shows that log linear learning results in rapid

diffusion when the network is composed of small close knit enclaves or clusters.

Montanari and Saberi (2010) extend this approach by exhibiting a topological

measure called �“tilted cutwidth�” that allows one to characterize the rate of

convergence in a wide range of networks as a function of network size. Morris

(2000) provides necessary and sufficient conditions under which an innovation

spreads throughout the network by deterministic best response dynamics. This

does not address the issue of speed of convergence directly; rather it identifies

necessary and sufficient conditions for the feasibility of convergence when

learning is deterministic.

The contribution of this paper is to show that it is not only the network topology

that determines how fast an innovation spreads. In fact, the speed depends on

the interaction between three complementary factors: i) the payoff gain

represented by the innovation in relation to the status quo, ii) the degree of

rationality of the agents (the probability with which they choose a best response

given their information), and iii) the presence of small autonomous enclaves where
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the innovation can gain an initial foothold. (This latter condition is related to

Montanari and Saberi�’s concept of tilted cutwidth as well as to Young�’s concept

of close knittedness.) We also employ a somewhat subtle notion of what it

means for an innovation to �‘spread quickly�’. Namely, we ask how long it takes in

expectation for a high proportion of agents to adopt the innovation and stick

with it with high probability. This latter condition is needed because, in a noisy

best response process, it is quite possible for an innovation to spread initially, but

then go into reverse and perhaps even die out. This is presumably not what we

have in mind when we say that an innovation spreads successfully.

The main results of the paper can be summarized as follows. First we

distinguish between fast and slow rates of diffusion. Roughly speaking, an

innovation spreads quickly in a given class of networks if the expected waiting

time to reach a given level of penetration (say 99%) and stay at that level with

high probability (say 99%) is bounded above independently of the number of

agents; otherwise the innovation spreads slowly. Whether it spreads quickly or

slowly depends on the particular learning rule used, the degree of rationality of

the agents, the gain in payoff from the innovation, and certain topological

properties of the network. In much of the paper we shall focus on log linear

learning to illustrate these points. Similar results hold for other noisy learning

processes.

Among the key findings are the following.
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1. If the agents�’ level of rationality is too low, the waiting time to spread

successfully is very long (in fact it may be infinite) because there is too much

noise in the system for a substantial proportion of the agents to stay coordinated

on the innovation once it has spread initially. However, if the level of rationality

is too high, it takes an exponentially long time in expectation for the innovation

to gain a foothold anywhere. Hence only for intermediate levels of rationality

can one expect the waiting time to be fast in an absolute sense and to be bounded

independently of the number of agents.

2. Certain topological characteristics of the network promote fast learning. In

particular, if the agents fall into small enclaves that are mainly connected with

each other as opposed to outsiders, then learning will be fast (assuming the level

of rationality is not too low and not too high). But not everyone has to be

contained in a small enclave for this to be true: it suffices that the innovation be

able to spread by contagion from a subset of enclaves where it can gain an initial

foothold.

3. For convergence to be fast, it is not necessary for the agents to be contained in

enclaves that are small in an absolute sense; it suffices that everyone be contained

in a subgroup of bounded (possibly large) size that has a sufficiently high

proportion of its interactions with other members of the group as opposed to

outsiders. Various natural networks have this property, including those in

which agents are embedded more or less uniformly in a finite Euclidean space,

and are neighbors if and only if they are within some specified distance of one

another. (This follows from Proposition 2 below; a similar result is proved by

Montanari and Saberi (2010).)
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4. The payoff gain from the innovation relative to the status quo �– the size of the

advance has an important bearing on the absolute speed with which it spreads.

If the advance is sufficiently large, no special topological properties of the

network are required for fast learning: it suffices that the maximum degree is

bounded.

5. An innovation that leads to a small advance will tend to take exponentially

longer to spread than an innovation with a large advance. This implies that

successful innovations will often occur in big bursts, because a major advance

may overtake prior attempts at small advances, which take too long relative to

the former. This idea is illustrated by example toward the end of the paper.

2. The model

Let be a graph with vertex set V and edge set E, where the edges are assumed

to be undirected. Thus E is a collection of unordered pairs of vertices { , }i j  

where i j . Assume that there are n vertices, which we shall sometimes refer to

as nodes. Each edge { , }i j has a weight 0ij jiw w  which we shall interpret as a

measure of the mutual influence that i and j have on one another. For example,

ijw  may increase the closer that i and j are to each other geographically. Since

we can always assume that 0ij jiw w  whenever { , }i j  is not an edge, the graph

is completely specified by a set V consisting of n vertices, and a symmetric

nonnegative n x nmatrix of weights ( )ijW w  where 0iiw  for all i .

Assume that each agent has two available choices, A and B. We shall think of B

as the status quo behavior and A as the innovative behavior. The state of the
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evolutionary process at time t is a vector { , }t nx A B , where t
ix is i�’s choice at

time t. Let G be a symmetric two person game with payoff function ( , )u x y ,

which is the payoff to the player who chooses x against an opponent who

chooses y. The payoff matrix can be written as follows:

 
A B

A a, a c, d
(1)

B d, c b, b
 
 
 
We assume that a > d and b > c, hence this is a coordination game with pure

equilibria (A, A) and (B, B).

 
The two person game G induces an n person network game on as follows: the

payoff to individual i in any given period results from playing the game G

against each of his neighbors once, where i�’s current strategy t
ix is unconditional

on which neighbor he plays. The payoff from any given match is weighted

according to the influence of that neighbor. For each agent i, let iN denote the set

of i�’s neighbors, that is, the set of all vertices j such that { , }i j is an edge. Thus the

payoff to i in state x is

 
                                                     ( ) ( , )

i

i ij i j
j N

U x w u x x .                                             (2) 

To give this a concrete interpretation, suppose that B is a form of contractual

negotiation that relies solely on a verbal understanding and a handshake,

whereas A requires a written agreement and a witness to the parties�’ signatures.

If one side insists on a written agreement (A) while the other side views a verbal
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understanding as appropriate (B), they will fail to coordinate because they

disagree on the basic rules of the game. Note that this meta game (agreeing on

the rules of the game) can be viewed as a pure coordination game: if the parties

fail to coordinate there are no payoff gains relative to the status quo. This

situation is shown below, where  is the added benefit from having a written

agreement.

A B

A 1 + , 1 + 0, 0
(3)

B 0, 0 1, 1

This is the set up we shall use throughout the paper.2

2.1. Learning

How do agents adapt their expectations and behaviors in such an environment?

Several models of the learning process have been proposed in the literature; here

we shall discuss two of the main contenders. Suppose that each agent updates at

random times according to the realization of a Poisson arrival process with unit

expectation. The processes are assumed to be independent among agents. Thus

the probability is zero that two agents update simultaneously, and each agent

updates once per unit time period in expectation. We shall think of each update

                                                 
2 This formulation is fairly general, because given any symmetric 2 x 2 game G we can rescale the
payoffs so that the game has a potential function of this form (assuming A has higher potential
than B). Most of our results hold with this interpretation of , namely, that it is the gain in
potential of A relative to B. 
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as a tick of the clock, where the ticks are denoted by t = 1, 2, 3, �….. Each of these

will be called a period.

Denote the state of the process at the start of period t by 1tx . Let 0 be a small

error probability. Suppose that agent i is the unique agent who updates in

period t. Assume that, with probability 1 , i chooses an action w  that

maximizes 1( , )t
i iU w x , and with probability  he chooses A or B uniformly at

random. This is known as the uniform error model (Kandori, Mailath, and Rob,

1993; Young, 1993).

An alternative approach is the log linear model suggested by Blume (1993, 1995).

Given a real number 0 , assume that agent i chooses Awith probability

                                                              
1

1 1

( , )

( , ) ( , )

t
i i

t t
i i i i

U A x

U A x U B x

e
e e

.                                         (4)

In other words, the log probability of choosing A minus the log probability of

choosing B is times the difference in payoff; hence the term �‘log linear

learning.�’3 The parameter measures the rationality of the agent: the larger is,

the more likely it is that he chooses a best reply given the actions of his

neighbors. In what follows we shall focus mainly on this case since it is

particularly easy to work with analytically. The game will be specified by the size

of the advance , and the log learning process by the level of rationality .

2.2. The speed of diffusion

                                                 
3 This model is also standard in the discrete choice literature (McFadden, 1973). In statistical
mechanics it is known as heat bath or Glauber dynamics.



 11

Let B be the initial state in which everyone is following the status quo behavior

B. How long does it take for the innovative behavior A to become widely

adopted? One criterion would be the expected waiting time until the first time

that everyone plays A. Unfortunately this definition is not satisfactory, because

of the noise in the learning process. To understand the nature of the problem,

consider a situation in which is close to zero, so that the probability of playing

A is only slightly larger than the probability of playing B. If society consists of n

agents, the expected waiting time until the first time that all of them play A is on

the order of 2 n . But no matter how long we wait, the probability is high that a

sizable proportion of the population will be playing B at any given future time.

Thus the expected waiting time until everyone first plays A is not the relevant

concept. This difficulty arises for any noisy learning process: if the noise is too

large it is unlikely that everyone is playing A in any given period.

We are therefore led to the following definition, which was first proposed in

Young (1998). Given a noisy learning process P on a graph (not necessarily

log linear learning), for each state x let ( )x  denote the proportion of agents

playing A in state x . Given a target level of penetration 0 1p , define

 

                   '( , , , ) [  { : ( ) & ' , ( ( ) ) ]t tT P G p E t x p t t P x p pmin  .         (5)

In other words, ( , , , )T P G p  is the expected waiting time until at least p of the

agents are playing A, and the probability is at least p that at least this proportion

plays A at all subsequent times. The waiting time depends on the learning

process P (including the specific level of noise , as well as on the graph and
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the game G . In particular, the higher the value of p, the smaller the noise must

be or the waiting time as defined in (5) will be infinite.

To distinguish between fast and slow learning as a function of the number of

agents, we shall consider families of networks of different sizes, where the size of

a network is the number of nodes (equivalently, the number of agents).

Fast versus slow learning. Given a family of networks G and an innovation

advance 0 , learning is fast for G  and if, for every 1p  there exists 0p  

such that for all (0, )p ,

( , , , ) is bounded above for all T P p G .4                       (6)

Otherwise learning is slow, that is, there is an infinite sequence of graphs

1 2, ,..., ,...n G   such that lim ( , , , ) = .n nT P p

2.3. Autonomy

In this section we describe a general condition on families of networks that

guarantees fast learning. Fix a network ( , )V W , a learning process P , and an

advance 0 . Given a subset of vertices S V , define the restricted learning

process SP as follows: all nodes i S are held fixed at strategy B while the nodes

in S update according to the process P .  Let ( , )S V SA B  denote the state in which

every member of S plays A and every member of V �– S plays B.

                                                 
4 For log linear learning, the definition is that the waiting time is bounded above for all networks
in the family whenever the response parameter is sufficiently large.
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The set S is autonomous for ( , , )P  if and only if ( , )S V SA B  is stochastically

stable for the restricted process SP .5   

Proposition 1. Given a learning process P , a family of networks G , and an innovation

with advance 0 , suppose that there exists a positive integer s such that for every

G , every node of is contained in a subset of size at most s that is autonomous for 

( , , )P . Then learning is fast.

Concretely this means that given any target level of penetration 1p , there is an 

upper bound on the noise, ,p , such that for any given in the range

,0 p , the expected waiting time until at least p of the agents play A (and

continue to do so with probability at least p in each subsequent period) is

bounded above independently of the number of agents n in the network. This

differs from the results of Montanari and Saberi (2010), who establish conditions

under which the waiting time to reach all A with high probability is bounded as

a function of n provided that the noise level is arbitrarily small (which implies that

the absolute waiting time is arbitrarily large). The proof of Proposition 1 is

accomplished by a coupling argument similar to that in Young (1998, Chapter 6).

2.4. Autonomy and close knittedness

                                                 
5 A state is stochastically stable if it has nonvanishing probability in the limit as the noise goes to
zero (Foster and Young, 1990).
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The autonomy condition has a particularly natural topological interpretation

under the log linear learning model. Let ( , )V W  be a graph and 0  the

size of the advance.

For every subset of vertices S V let

                                                             
,

( ) ij
i S j V

d S w .                                                (7) 

   

Further, for every nonempty subset 'S S  let

                                                          
{ , }: ',

( ', ) ij
i j i S j S

d S S w .                                       (8)

In other words, ( )d S is the weighted sum of edges with at least one end in S

whereas ( ', )d S S is the weighted sum of edges with one end in 'S and the other

end in S . Given any real number (0,1/ 2]r , we say that the set S is r close knit if

                                        ' , ' ,    ( ', ) / ( ')S S S d S S d S r .6                                (9)

S is r close knit if no subset has �‘too many�’ interactions with outsiders, where

�‘too many�’ means �‘more than 1 �– r of its interactions�’. This implies in particular

that no individual i S has more than 1 �– r of its interactions with outsiders. 

(The set S is said to be r cohesive if this holds for all i S ; see Morris (2000).)

                                                 
6 Montanari and Saberi (2010) employ a different concept in their analysis, namely the isoperimetric 
function of the graph, which is defined for each positive integer k as the minimum of ( , )/ | |d S V S S over 
all subsets S of size k.    
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One consequence of close knittedness is that the �“perimeter�” of S must not be

too large relative to its �“area.�” Specifically, let us define the perimeter and area of

any nonempty set of vertices S V as follows:

( ) ( , )peri S d S V S , ( ) ( , )area S d S S . (10)

Next observe that ( ) 2 ( ) ( )d S area S peri S . It follows from (9) with S S that

( ) / ( ) (1 / ) 2peri S area S r . (11)

It is straightforward to show the following:

Proposition 2. Given a graph and innovation advance 0 , S is autonomous for

under log linear learning if and only if S is r close knit for some 1/ ( 2)r .

Corollary 2.1. If S is autonomous for under log linear learning, then

( ) / ( )peri S area S .

A family of graphs G is close knit if for every (0,1/ 2)r  there exists a positive

integer s(r) such that, for every G , every node of is in an r close knit set of

cardinality at most s(r) (Young, 1998, Chapter 6).

Corollary 2.2. Given any close knit family of graphs G , log linear learning is fast for

all 0 . 

2.5. Examples
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Consider n nodes located around a circle, where each node is linked by an edge

to its two immediate neighbors and the edge weights are one. (This is the

situation originally studied by Ellison (1993).) Any set of s consecutive nodes has

area s 1 and perimeter 2. It follows that for any 0 , log linear learning is

fast.

Next consider a two dimensional regular lattice (a square grid) in which every

vertex has degree 4 (see figure 1). Assume that each edge has weight 1. The

shaded region in figure 1 is a subset of nine nodes that is 1/3 close knit. Hence it

is autonomous whenever 1 .

Figure 1. A two dimensional lattice with a subset of nine vertices that is

autonomous for any 1 under log linear learning.

More generally, observe that any square S of side m has 2 ( 1)m m internal edges

and 2m vertices, each of degree 4, hence
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                                        2( , ) / ( ) 2 ( 1) / 4 1/ 2 1/ 2d S S d S m m m m .                    (12)

 

Furthermore it is easily checked that for every nonempty subset 'S S , 

 

                                                ( ', ) / ( ') 1/ 2 1/ 2d S S d S m .                                      (13)

Therefore every square of side m is (1/ 2 1/ 2 )m close knit, hence is autonomous

for all 2 / ( 1)m . A similar argument holds for any regular d dimensional

regular lattice: given any 0 every sufficiently large sublattice is autonomous

for , and this holds independently of the number of vertices in the full lattice.7

Notice that in these examples fast learning does not arise because neighbors of

neighbors tend to be neighbors of one another. In fact, a d dimensional lattice

has the property that none of the neighbors of a given agent are themselves

neighbors. Rather, fast learning arises from a basic fact of euclidean geometry:

the ratio of �“surface�” to �“volume�” of a d dimensional cube goes to zero as the

cube becomes arbitrarily large.

A d dimensional lattice illustrates the concept of autonomy in a very transparent

way, but it applies in many other situations as well. Indeed one could argue that

many real world networks are composed of relatively small autonomous groups,

either because people tend to cluster geographically, or because they tend to

interact with people of their own kind (homophily), or for both reasons.

                                                 
7 Montanari and Saberi (2010, Proposition 5) establish a similar result for this class of networks
but with a different notion of waiting time.
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To understand the difference between a network with small autonomous groups

and one without, consider the pair of networks in Figure 2. The top panel shows

a tree in which every node other than the end nodes has degree 4, and there is a

�“hub�” (not shown) that is connected to all the end nodes. The bottom panel

shows a graph with a similar overall structure in which every node other than

the hub has degree 4; however, in this case everyone (except the hub) is

contained in a clique of size 4. In both networks all edges are assumed to have

weight 1.

Suppose that we begin in the all B state in both networks, that agents use log

linear learning with 1 , and that the size of the advance is 2 / 3 . Let each

network have n vertices. It can be shown that the waiting time to reach at least

99% A (and stay there with probability at least 99%) is unbounded in n for the

network in the top panel, whereas it is bounded independently of n for the

network in the bottom panel. In fact, simulations show that it takes less than 25

periods (on average) for A to penetrate to the 99% level independently of n. The

key difference between the two situations is that the innovation can establish a

toehold in the cliques relatively quickly, which then causes the hub to switch to

the innovation also.

Note, however, that fast learning in the network with cliques does not follow

from Proposition 2, because not every node is contained in a clique. In particular,

the hub is connected to all of the leaves, the number of which grows with the size

of the tree, so it is not in an r close knit set of bounded size for any given r < 1/2.

Nevertheless learning is fast: any given clique adopts A with high probability in

bounded time, hence a sizable proportion of the cliques linked to the hub switch
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to A in bounded time, and then the hub switches to A also. In other words, fast

learning occurs through a combination of autonomy and contagion, a topic that

we explore in detail in the next section.

 

Figure 2. Two networks of degree 4, except for a hub (not shown) that is
connected to every end node (dashed lines). All edge weights equal 1.

3. Autonomy and contagion
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Contagion expresses the idea that once an innovation has become established for

some core group, it spreads throughout the network via the best reply dynamic.

Morris (2000) was the first to study the properties of contagion in the setting of

local interaction games, and to formulate graph theoretic conditions under which

contagion causes the innovation to spread throughout the network. While

contagion by itself may not guarantee fast learning in a stochastic environment, a

combination of autonomy and contagion does suffice. The idea is that autonomy

allows the innovation to gain a foothold somewhere in a reasonably short period

of time, after which contagion assures that the process will spread through the

rest of society fairly quickly.

Consider a subset S of nodes, all of which are playing A, and choose some i S .

Let be the size of the advance of A relative to B. Then A is a strict best response

by i provided that

ij ij
j S j S

w w(1 ) . (14)

Letting 1/ ( 2)r , we can write this as follows

 ij ij i
j S j i

w r w rd . (15)

Recall that for any vertex i and subset of vertices S, ij
j S j i

d i S w
,

( , ) is the total

weight on the edges linking i to a member of S. Given a graph V W( , ) , a real

number r (0,1 / 2) , and a subset of vertices S, define the first r orbit of S as

follows
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1( ) { : ( , ) }r iO S S i S d i S rd . (16)

Similarly, for each integer k > 1 recursively define the thk r orbit by

1 1 1( ) { : ( , ) }k k k k
r r r r iO S O i O d i O rd . (17)

Now suppose that r 1 / ( 2) . Suppose also that everyone in the set S is

playing A. If the learning process is deterministic best response dynamics, and if

everyone updates once per time period, then after k periods everyone in the thk r

orbit of S will be playing A. Of course, this does not show that log linear

learning with asynchronous updating will produce the same result. The key

difficulty is that the core set S of A players might unravel before contagion

converts the other players to A. However, this problem can be avoided if: i) the

core set S reaches the all A state within a bounded period of time; ii) S is

autonomous and hence its members continue to play A with high probability.

These conditions are satisfied if the core set is the union of autonomous sets of

bounded size. We therefore have the following result.

Proposition 3. Let G be a family of graphs of bounded degree. Suppose that there exist

positive integers s, k and a real number r (0,1 / 2) such that, for every V W( , ) G ,

there is a subset of vertices S such that: i) S is the union of r close knit sets of size at

most s; and ii) k
rO S V( ) . Then log linear learning is fast on G whenever (1/ ) 2r .

We illustrate with a simple example. Let the network consist of a circle of n

agents (the rim) plus a central agent (the hub). Each agent on the rim is adjacent

to the hub and to its two immediate neighbors on the rim. Note that the hub is
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not contained in an r close knit set of bounded size for any r < ½ . However, for

every r < ½ , the hub is in the first r orbit of the rim. Moreover, for every r < 1/3,

there is an r close knit set of bounded size that consists of rim nodes; namely,

choose any sequence of k adjacent rim nodes where k r1 / (1 �– 3 ) . It follows

from Proposition 3 that learning is fast for this family of graphs whenever 1 .

Fast learning says that the waiting time is bounded for a given family of

networks, but it does not specify the size of the bound concretely. Actual

examples show that the waiting time can be surprisingly short in an absolute

sense. Consider an innovation with advance 1 , and suppose that all agents

use log linear learning with 1.  Figure 3 shows the expected waiting time to

reach the 99% penetration level for two families of networks: circles where agents

are adjacent to their nearest four neighbors, and two dimensional lattices. (Thus

in both cases the networks are regular of degree 4.) The expected waiting time is

less than 25 periods in both situations. In other words, almost everyone will be

playing A after just 25 revision opportunities per individual.

Notice that this waiting time is substantially shorter than it takes for a given

individual to switch to A when his neighbors are playing B. Indeed, the

probability of such a switch is 0 0 4 4/ ( ) 0.018e e e e .  Hence, in expectation,

it takes about 1/ .018 54 periods for any given agent to adopt A when none of

his neighbors has adopted. Yet it takes only about half as much time for nearly

everyone to adopt. The reason, of course, is that the process is speeded up by

contagion. The rate at which the innovation spreads results from a combination

of autonomy and contagion.
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Figure 3. Simulated waiting times to reach 99% A starting from all B for circles
and two dimensional lattices. Time periods represent the expected number of
updates per individual.

4. Bursts of innovation

We have seen that the speed with which innovations spread in a social network

depends crucially on the interaction between three features: the size of the

advance , the degree of rationality , and the existence of autonomous groups

that allow the innovation to gain a secure foothold. The greater the advance

from the innovation relative to the status quo, the more rapidly it spreads for any

given topology, and the more that people are clustered in small autonomous

groups the more rapidly the innovation spreads for any given size of advance.

Furthermore the degree of rationality must be at an intermediate level for the

rate of spread to be reasonably fast: if is too high it will take a very long time

before anyone even experiments with the innovation, whereas if is too low
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there will be so much random behavior that even approximate convergence will

not take place.

In this section we examine the interaction between the network topology and the

size of advance in more detail, and show that it leads to an important qualitative

prediction about the spread of social innovations. Namely, they tend to occur in

large bursts rather than through small incremental improvements. The reason is

that a small improvement takes a much longer time to gain an initial foothold

than does an innovation that results in a major gain.

To illustrate this point concretely, fix a network and assume for simplicity that

all edge weights equal 1. Consider an individual i with id neighbors. The

probability that i tries A, given that none of his neighbors is currently using A,

equals 1/ (1 )i id de e .  (Notice that this expression does not depend on the size

of the advance .) This highlights the complementary nature of and id :

together they measure the inertia that results from increasing returns and

rationality. The more neighbors an agent has, the more irrational it is to try out

something new, because the expected loss in payoff is very large.8  

Now consider one of i�’s neighbors, say j, whose degree is jd . If i was the sole

adopter in period t, then j�’s probability of adopting in period t + 1 is

approximately equal to

                                                 
8 One could argue, of course, that a forward looking rational agent might deliberately try out an
innovation in anticipation of future gains in the event that his neighbors adopt later on. This
leads to a more complex model that we shall not investigate here. For related work on this issue
see Ellison (1997). 
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                              [( 2 )](1 1/ )(1/ ) jde e e if 2jd  and is large. (18)

This follows from the assumption that each agent updates according to a Poisson

process with expectation one: the probability is (1 1/e) that i does not update in

period t + 1 and that j does update. Note, however, that if 2jd , the

probability is fairly high that j will adopt �– indeed the probability is close to one

when is large.9

Thus the probability that any given edge { , }i j becomes coordinated on A within

two periods is [( 2 ]( )j id dO e e . Furthermore the set { , }i j  is autonomous if is

sufficiently large, specifically, it suffices that 2 i jd d . Assume now that

contains no isolated vertices and that the degrees are bounded above by some

positive integer d. The preceding shows that if 2 2 2i jd d d then every

edge is autonomous. One can extend this line of argument to show that a tree T

consisting of m vertices and m 1 edges is autonomous provided that

(1 1/ ) 2m d .10 Now suppose that 2d .  If the network is connected and

n is sufficiently large, then every vertex is in an autonomous set, namely a tree

with a sufficiently large number of vertices. Hence we can apply Proposition 2 to

conclude the following.11

                                                 
9 Given that exactly one neighbor of j plays A, j adopts A with probability ((1 ) (1 ) 1)/ [ ]jda ae e e , 

which is approximately equal to [( 2 ]jde  when 2jd , and is O(1)when 2jd . 
10 A tree T with m vertices necessarily has m – 1 edges.  T is autonomous for if the all-A state on T  has 
higher potential than the all-B state on T conditional on the vertices outside of T being held fixed at B. This 
holds if (1 )( 1) ( 1) 1i

i T

m d m md m , which implies that (1 1 / ) 2m d . 

11 I am indebted to Gabriel Kreindler for suggesting this formulation of the result.
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Proposition 4. Let G be a family of networks with no isolated vertices and bounded

degree d > 0. If 2d , then learning is fast. In particular, given any penetration

level p < 1 and any sufficiently large , the expected waiting time ,pT to reach p is

bounded above independently of the number of agents.

We now illustrate how the speed of learning varies with  in a concrete case. Let

G be the family of two dimensional lattices where each agent has degree four.

Figure 4 shows the simulated waiting time to reach the target .99p  as a

function of .  For small values of the waiting time grows exponentially and

is many thousands of periods long, whereas for large values of (e.g. a > 1) the

waiting time is less than 20 periods.

 

 

Figure 4. Expected number of periods to reach 99% playing A as a function of the
size of advance ( = 1). Estimated from 10,000 simulations starting from the
all B state.

To understand the implications of this relationship, suppose that each successive

innovation leads to an advance of size .  Let ( )T be the expected waiting time

for such an innovation to spread (for a given level of penetration p and level of
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rationality ). Assume that each new advance starts as soon as the previous one

has reached the target p. Then the average rate of advance per period is ( )r ,

where ( )(1 ( )) 1Tr , that is,

                                                     ( ) (ln(1 ) / ( )) 1r T .                                  (19) 

 

The inverse function f(r) mapping r to is shown in Figure 5 for a two

dimensional lattice and log linear learning with = 1.

Figure 5. The level of innovative advance = f(r) required to achieve an average
growth rate of r per period. Log linear learning with =1 on a 30 x 30 two
dimensional lattice.

The figure shows that to achieve a 1% average growth rate per period requires

innovative bursts of size at least 40%. A 3% growth rate requires innovative
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bursts of at least 80%, and so forth.12 Of course, these numbers depend on the

topological properties of the grid and on our assumption that agents update

using a log linear model. Different network structures and different learning

rules may yield different results.

Nevertheless, this example illustrates a general phenomenon that we conjecture

holds across a range of situations. Institutional change that involves a series of

small step by step advances may take a very long time to spread as compared to

a change of comparable magnitude that occurs all at once. The basic reason is

that it takes much longer for a small advance to gain a secure foothold in an

autonomous group: the group must be quite large and/or it must be quite

interconnected to prevent the small advance from unraveling. Furthermore,

under a small advance there are fewer pathways through that allow contagion to

complete the diffusion process. The point is that social innovations are

technologies that facilitate �– and require coordination with others to be

successful. It is this feature that makes social change so difficult, and that favors

large advances when change does occur.
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