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Modeling and verifying a broad array of network properties
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Abstract – Motivated by widely observed examples in nature, society and software, where groups
of related nodes arrive together and attach to existing networks, we consider network growth
via sequential attachment of linked node groups or graphlets. We analyze the simplest case,
attachment of the three node

∨
-graphlet, where, with probability α, we attach a peripheral

node of the graphlet, and with probability (1−α), we attach the central node. Our analytical
results and simulations show that tuning α produces a wide range in degree distribution and
degree assortativity, achieving assortativity values that capture a diverse set of many real-world
systems. We introduce a fifteen-dimensional attribute vector derived from seven well-known
network properties, which enables comprehensive comparison between any two networks. Principal
Component Analysis of this attribute vector space shows a significantly larger coverage potential
of real-world network properties by a simple extension of the above model when compared against
a classic model of network growth.

Copyright c© EPLA, 2009

The ubiquity and importance of network structures has
recently become apparent, leading to an increased focus
on network growth mechanisms [1]. Existing models of
network growth primarily consider the arrival of single
nodes at each time step; however, there are numerous
examples in natural and artificial systems where networks
grow not just by the addition of single nodes but by the
addition of groups of already related nodes. For example,
in biology, in developmental transcriptional gene regu-
lation, whole pathways can be added or eliminated by a
mutation in a master regulator [2]; and in the evolution of
biological networks, gene duplication can add subnetworks
to the network [3]. Growth of computer software networks
(composed of interacting functions or classes) is often due
to the addition of small groups of related elements simul-
taneously. For example, 1) functions to allocate, use, and
free a resource (such as a file) are usually added together
and 2) in object-oriented languages, good design principles
call for classes to be added in small groups called design
patterns [4]. Further, in social networks within cities,
families arrive as units, and growth can be described
via aggregation of small pre-existing modules. Similarly,
in corporate enterprises, the practice of “lift-outs”,
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employing pre-existing functional teams of people (rather
than building up a team from individual hires), is on the
rise [5]. This insight suggests that a new class of network
growth models incorporating group arrival could lead to
more realistic models. Moreover, most existing work in
modeling network growth focuses on matching a single or
few attributes of empirical networks, in particular degree
distribution, clustering coefficient, etc. But networks can
differ in many ways while being similar in others, e.g.,
some with the same degree distribution have different
levels of assortative mixing. Thus, a more comprehensive
comparison, simultaneously across many important
attributes, is desirable.
Hence, the purpose of this letter is twofold. Our first

intent is to propose modeling network growth by sequen-
tial aggregation of groups of nodes, represented by small,
connected graphs or graphlets attaching preferentially in
the network, rather than by preferential attachment of
single nodes. Thus, we introduce the graphlet arrival model
and show that in spite of its added complexity, impor-
tant analytical results can be obtained. The model based
on iteratively adding the three-node

∨

-graphlet yields
networks with degree distributions (the distribution of
the probability of observing a node of degree k) that
follow an asymptotic power law, i.e., pk ∼ k−γ , where,
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Fig. 1: (Color online) The growth process. The
∨
-graphlet arrives and merges into the existing network at either its midpoint

(with probability 1−α) or its periphery (with probability α). Here, we show the process after the arrival of 10 graphlets for
α= 0 (left) and α= 1 (right). Already the creation/surpression of hubs is evident as well as the more homogeneous nature of
the degree distribution for α= 1. Networks grown with 0! α! 1 show behaviors intermediate between these two.

γ is a parameter ranging from 3! γ ! 5, in agreement
with those found in a number of highly-cited studies of
real-world systems where graphlets could play a crucial
role [6]. We also analytically derive the degree assorta-
tivity, ρ, a measure of the tendency of nodes to link to
nodes of like degree, which has the power to discrimi-
nate between empirical networks from various fields, even
if they have similar degree distributions [7,8]. As noted
recently [7], an interesting open problem is to come up
with a single growth model which could generate networks
of both positive assortativity, such as social networks, and
negative assortativity, such as technological and biological
networks. We find that our model yields tunable assorta-
tivity, with respect to a parameter, α, which determines
the graphlet attachment point probability, as explained
below. Our numerical results for networks up to " 107

nodes in size (which covers most real-world networks)
show assortative behavior, (ρ> 0), for lower α and dissor-
tative behavior, (ρ< 0), for higher values of α. Our
analytical calculations show that ρ" 0 for infinite size
networks.
The second intent of this letter is to introduce tech-

niques for comprehensively comparing networks across a
suite of network properties simultaneously, allowing for a
much more in-depth evaluation of network models than is
possible using the commonly existing practice of compar-
ing the degree distribution primarily. To that end, we
compare the ability of our model networks to match the
variability of 113 real networks under 15 attributes, and
demonstrate how data mining methods such as clustering
and statistical dimension reduction (via Principal Compo-
nent Analysis (PCA)) can be utilized to assess that match.
A simple extension of our model yields remarkably large
coverage of the attribute space spanned by the 113 real
networks, and a significant match of the ranges of real
networks over all attributes.
To fully model with the graphlet arrival paradigm, one

must decide on which graphlet(s) to use, with which

of their nodes to attach, and where in the network to
attach them. Common undirected graphlets include the
dyad (edge), the two triads (3 nodes), and the six tetrads
(4 nodes). To properly analyze their arrival and attach-
ment into the network one must classify the graphlets’
nodes into equivalence classes based on symmetry. Our
model, illustrated in fig. 1, considers the simplest non-
trivial case: series of arriving triads consisting of a single
node of degree two and two identical nodes of degree one,
which we call the

∨

-graphlet. This graphlet’s asymme-
try provides a choice of two topologically different attach-
ment points (the two nodes of degree one are equivalent
but different than the single node of degree two), unlike
the edge and triangle graphlets which allow only one.
The graphlets attach to the network by merging one of
their vertices into an existing node selected with proba-
bility proportional to the node’s degree, i.e., via preferen-
tial attachment. The model chooses the degree-one merge
point with probability α and the degree-two merge point
with probability (1−α).
First, we derive the asymptotic degree distribution, pk,

for the
∨

-graphlet arrival model via a master equation
approach. Starting with a single edge at time t= 0, the
number of nodes at time t is N(t) = 2t+2≈ 2t, for large
t. Let di(t) denote the degree of vertex i at time t. Then,
the probability that incoming graphlet j merges with node
i is pj→i = di(t)/

∑

i di(t) = di(t)/2N(t) = di(t)/4t, where
∑

i di(t) = 2N(t) as there is one edge for each node in the
graph. Let Nk(t) be the number of nodes with degree
k at time t. Due to the asymmetry of the

∨

, we get
separate equations of Nk(t) for k" 3, k= 2, and k= 1.
Making the natural assumption that pk(t) =Nk(t)/N(t)
and assuming steady-state (pk(t)→ pk) leads to Nk(t) =
2tpk. From this and the Nk(t) equations, which may be
detailed elsewhere [9], we get

pk!3 = α

[

(k− 1)

(k+4)

]

pk−1+(1−α)

[

(k− 2)

(k+4)

]

pk−2,
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Fig. 2: (Color online) Points show the mean ρ over 100
simulations of 106 node networks. Bars represent values within
two standard deviations. Solid line is the theoretical prediction
for networks with maximum degree 2500. Inset: distribution of
average degree for α= 0.2 and α= 0.7 over an ensemble of 5000
realizations, together with best-fitting lines with slopes equal
to the, respective, analytical γ’s of 3.2 and 4.1.

with p2 =
α
15 (7−α) and p1 =

2
5 (2−α). Since pk!3 depends

on both pk−1 and pk−2 non-trivially, we cannot solve it
analytically. However for large k, a simple linear approx-
imation results in γ = (6−α)/(2−α). The results of
numerical solutions are shown in the inset of fig. 2.
The degree assortativity, ρ, is defined as the Pearson

correlation coefficient between the degrees of all pairs
of connected vertices in the network [7]. Here, using a
rate equation approach [10,11], we directly calculate ρ
from ekl, the probability distribution that an edge in an
undirected graph is incident to vertices of degree k and
l, and pk, the degree distribution [9]. Let Ekl(t) denote
the number of edges with a vertex of degree k at one end
and a vertex of degree l at the other at time t. We note
that

∑

k!lEkl(t) = 2t+2≈ 2t, for large t, which implies
Ekl = 2tekl, for steady state. To derive a rate equation
for Ekl(t), we account for the processes that change it
when a new

∨

arrives. The processes that increase Ekl are
when: with probability (1−α), a

∨

merges its midpoint
to a vertex of degree k− 2, which is already attached
to a vertex of degree l (and the same argument with
k and l reversed); with probability α, a

∨

merges one
of its endpoints to a vertex of degree k− 1 (respectively
l− 1), which is already attached to a vertex of degree l
(respectively k); in the special case when k= 1, with
probability (1−α), a

∨

merges its midpoint to a vertex
of degree l− 2, producing two new edges, each incident to
vertices of degree l and 1; in the special case when k= 2,
with probability α, a

∨

merges one of its endpoints to a
vertex of degree l− 1, producing one new edge incident
to vertices of degree l and 2. The processes that decrease
Ekl are when: with probability (1−α) a new

∨

merges its
midpoint to a vertex of degree k (respectively l), which is
already attached to a vertex of degree l (respectively k);
with probability α a new

∨

merges one of its endpoints

to a vertex of degree k (respectively l), which is already
attached to a vertex of degree l (respectively k). From
these cases, and incorporating preferential attachment (by
multiplying the number of edges gained or lost by m/4t,
where m is the degree of the node to which the new

∨

is
attached), we derive a rate equation for Ekl

4t
d

dt
(Ekl) = (1−α) [Ek−2, l(t)(k− 2)

+ Ek, l−2(t)(l− 2)+ 2Nl−2(l− 2)δk, 1]

+α [Ek−1, l(t)(k− 1)+Ek, l−1(t)(l− 1)

+ Nl−1(l− 1)δk, 2]−Ekl(t)(k+ l),

where δi,j is the Kronecker delta. Substituting Ekl(t) =
2tekl and Nk(t) = 2tpk eliminates time from this equation
and yields expressions for ek! 3, l, e1, l! 3, and e2, l! 3. To
initialize the recurrences we similarly calculate e11 = 0,
e21 = e12 = 2α/7, and e22 = α(e12+ p1)/8. In addition,
because of the symmetry of the Eij terms, and since the
edges are undirected when i= j, we are over-counting so
we divide eij by 2. Conversely, when 0< |i− j|! 2, we are
under-counting and so we multiply eij by 2. Therefore,
the ekl’s (and hence, ρ) can be calculated [9] for a given
value of α. A plot of ρ vs. α can be seen in fig. 2, where
a good agreement is apparent with networks simulated
from our model. Previous attempts to create a model that
admitted varying ρ values worked by rewiring the edges
of an existing network [12]. In contrast, our model grows
networks with a range of negative and positive ρ values
from first principles, giving insight into how assortativity
may arise in networks. We note that in our experiments
ρ approaches 0 from the negative side for α< 2/3, but it
does so very slowly and is negative for all networks we
tried (up to 107 nodes). It can be shown that [9] in the
thermodynamic limit Newman’s original formula for ρ [7]
yields ρ= 0 when α< 2/3.
The

∨

-graphlet arrival model always produces trees
and hence is not expected to match empirical networks
on some interesting properties (such as clustering coef-
ficient). Therefore, we examine a simple extension to
the
∨

model which allows it to produce denser graphs,
without significantly affecting the model’s degree distri-
bution and assortativity features. The extended model,
illustrated in fig. 3, adds with probability β at each
time step, l edges (or dyads) from the arriving graphlet
into the existing network, with the attachment points
being chosen uniformly at random. In addition to allowing
denser graphs, this “

∨

β model” also reflects the behavior
in various real-world networks, where a newly arriving
graphlet may attach to the existing network at more than
one point (e.g., new families arriving in a city, etc.).
A theoretical analysis for the extended model is very
complex. Instead, in the following model comparison we
simulate networks for many values across the possible
parameter space (α, β, l).
Existing network literature compares networks or

network models by studying one or two particular
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Fig. 3: (Color online) Illustration of the
∨
β model. Once the

graphlet attaches to the network, based on α, we introduce up
to l (here l= 4) additional edges from the graphlet into random
nodes of the network, each with probability β.

properties, and most commonly the degree distribution.
In this letter, we introduce a fifteen-dimensional attribute
vector of seven well-known network properties, which
should enable a general and comprehensive comparison
between any set of networks. These properties are: the
number of nodes, the number of edges, the geodesic
distribution, the betweenness coefficient distribution,
the clustering coefficient distribution, the assortativity,
and the degree distribution of the network. For the four
distributions, we use the mean, standard deviation, and
skewness as proxy attributes, for a total of 15 attributes.
Networks are mapped to points in a 15-dimensional
space defined by these attributes, normalizing each value
by subtracting the attribute mean and dividing by the
attribute’s standard deviation.
Our collection of real-world networks consists of 113

diverse networks from biological, social, and technical
domains. It includes software call graphs [13], a social
network of software developers [14], political social net-
works [15,16], three gene networks [17–19], three protein-
protein interaction networks [20], cellular networks for
several organisms [21], and several others downloaded
from a web repository of networks [22–29]. The degree
of overlap, or dependence, between the attributes when
characterizing networks can be assessed by the symmetric
heatmap in fig. 4, showing the pairwise correlations
(Pearson) of the network attributes over a representative
sample of real-world networks (one from each data set
described above). The rows and columns of the heatmap
are ordered so that, within the limitations of the hier-
archical clustering used, the attributes most correlated
with each other are placed closest. The map allows us
to identify clusters of “similar” network attributes by
looking for blocks of squares along the diagonal of the
figure. Since there is only a small amount of clustering
along the diagonal, it follows that most network attributes
we have chosen are relatively independent, and thus,
provide information to our analysis.

Fig. 4: (Color online) Symmetric heatmap of attribute correla-
tions among networks. Red (blue) indicates perfect correlation
(anti-correlation). White is the intermediate case of no correla-
tion. The small amount of clustering along the diagonal attests
to the relative independence of the attributes.

In the following analysis we have eliminated 4 of the
15 network attributes and retained 11. One reason is that
some attributes, such as number of nodes and edges, were
tightly correlated as indicated in the heatmap. Hence, we
kept only one of them, the number of edges. Another
reason is that since the l-th moment of a power-law
distribution, p(k)∼ k−γ , is only defined for l < (γ− 1),
we have omitted the skew of the degree distribution, as
a precaution. For the same reason, the variance and skew
of the betweenness distribution have been left out, even
though the exact nature of the betweenness distribution
does not seem to be known. The distribution of the
clustering coefficient and geodesic are defined for the
models investigated in this paper [30] and have hence been
retained.
Next, we compare a collection of

∨

β-arrival growth
networks to the above collection and to a baseline collec-
tion of networks from the well-known BA model [31]. We
chose BA as a baseline because, like BA, our graphlet
arrival model uses the mechanism of preferential attach-
ment, only instead of nodes we have graphlets arriving.
We sample a large swath of the parameter space for the
∨

β-arrival model, iterating across several possible values
for each parameter and creating networks that cover the
size range of real-world networks. To this end, we use
network sizes ranging from 500 to 5250 nodes at 250 node
intervals, α values in the range 0! α! 1 at intervals of 0.1,
β values in the range 0! β ! 1 at intervals of 0.1, and l
values in the range 1 to 5. For each possible combination of
values of these four parameters, we create five networks,
giving us a total of 60500 networks. For the BA model,
we generate 500 sample networks by varying the number
of nodes in the same range as our model (with identical
increments), varying the number of edges added at each
attachment from 1 to 5, and creating five sample networks
for each possible combination of these two parameters.
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Fig. 5: (Color online) A projection of our model nets (orange points), the BA model nets (light blue), and real-world nets
(black) onto the first three principal components of the eleven-dimensional PCA space of our real-world data set (we omitted
the number of nodes, skew of the degree distribution, and variance and skew of the betweenness distribution from the original
15 attributes, as described in the text). Here, the PCA1 axis is primarily composed of (in terms of their coefficient’s magnitude)
a combination of the number of edges, mean and skew of geodesic, mean and st. dev. of clustering, and mean and st. dev. of
degree. PCA2 is mainly a combination of the st. dev and mean of geodesic, and assortativity. PCA3 is mainly a combination
of the mean of betweenness, mean of clustering, number of edges, and st. dev of degree. As an example of a spread along an
original parameter, the gray arrow is parallel to and shows the direction and magnitude of assortativity when projected onto
this space.

To objectively assess the extent to which our model
networks cover the range of attributes simultaneously,
we visualize the attribute space using an established
statistical dimension-reduction technique, Principal
Components Analysis (PCA), which guarantees maximal
retention of the variance when projecting data into
a lower dimension [32]. PCA finds the projection of
an n-dimensional data set onto a space of the same
dimension, where the new axes, or principal components,
are orthogonal and linear combinations of the original

dimensional variables, such that the first d axes, d! n,
retain the maximal variance of the original data set
possible with that many dimensions. Figure 5 shows
the projections of the sets of

∨

β model, BA model,
and real-world networks onto the first three principal
components (out of 11) of the real-world data set found
by the PCA algorithm. These principal components
retain 71% of the original data variance and demonstrate
the larger coverage potential of the extended graphlet
arrival model. We note that these results are fairly stable
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with respect to the number of variables used in the PCA
analysis: using between 2 and 4 fewer (or more) than the
11 variables does not qualitatively change the results [9].
While PCA has been used before to cluster networks [33],
our methodology here is novel in that it offers a general
and explicit way to compare growth models relative to
each other, with respect to the fraction of PCA space they
cover. Additionally, it allows for models to be compared
more finely, along individual or combinations of original
variables, by projecting those variable vectors in the same
PCA space, e.g., assortativity in fig. 5, and then observing
the spread differentials between the model networks along
those vectors.
In conclusion, graphlet arrival models are a positive

step toward more realistic network models which, as
we show, better approximate empirical networks in biol-
ogy, software, and social science, both in the model-
ing step (graphlet vs. node arrival) and in the results
(matching more complex measures of networks, such
as assortativity). A broad degree distribution and wide
variation of assortativity are features of the

∨

-arrival
model which are not present in preferential attachment
models that grow via individual nodes, and/or edges.
In particular, we believe that the attachment asymme-
try of the

∨

-graphlet is largely responsible for these
features and that they would not be apparent in a graphlet
model of fully connected graphlets (e.g., edge, triangle,
or square). Therefore, we expect more complete graphlet
arrival models (whose theoretical analysis would also
be more complex), considering a larger set of possible
graphlets to yield even better models of empirical networks
(we also note that the addition of simpler graphlets should
expand the range of possible γ’s to below 3, where the
exponents of most real-world networks with power-law
degree-distributions reside). Finally, we anticipate that
the technique of comprehensive comparison of networks
across a suite of network properties introduced in this
letter would find wider use in the network literature.
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