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Abstract—This paper presents a novel approach to form an
interdependent network model from time-varying system data.
The research incorporates system meta-data using k-means
clustering to form a layered structure within the dynamics. To
compactly encode the layering, a Cartesian product model is fit
to time-varying data using convex optimization. We show that
under special situations a closed form solution of this model can
be acquired. The Cartesian form is particularly conducive to
reasoning about the role of the interdependent network layers
within the dynamics. This is illustrated through the derivation
of a distributed LQR controller which requires only knowledge
of local layers in the network to apply. To demonstrate the
applicability of this work, the proposed methods and analysis is
applied to time-series data from a high-fidelity interdependent
infrastructure network simulation.

Index Terms—Interdependent networks, Network clustering,
Meta-data modeling, Distributed LQR, Dynamic mode decom-
position

I. INTRODUCTION

The complexity and scale of networked dynamic systems
presents a challenge to direct modeling. Traditional ap-
proaches are a highly specialized activity involving tuning to
the characteristics of the system. An alternative, advocated
in this paper, is to form a model using time-series data
coupled with limited knowledge of the network structure.
When time-series data is sufficiently rich, this data-driven
system identification approach produces a compact model
which captures observed features and can be analyzed using
traditional control-theoretic techniques.

System identification algorithms are typically applied to in-
put/output data which is generated by experimental processes
or high-fidelity simulations, so as to disseminate high-level
features of the system [1]. Output time-series simulation data
{φ(0), . . . , φ(T )}, or snapshots, can also be used to approx-
imate a linear memory-less dynamics φ(k+ 1) = Aφ(k) for
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an unknown linear operator A. The data-driven process of
recovering the eigenvectors and eigenvalues of operator A
is referred to as dynamic mode decomposition (DMD) [2].
DMD has demonstrated its ability to extract essential features
of a dynamic response, reliably approximating models with
low complexity [3], [4]. Rowley et al. [3] connected the
efficacy of DMD to its grounding in Koopman operator
theory.

As we are examining the application of DMD to networked
dynamic systems, we consider each time-varying state in the
data as corresponding to a node in the network. The dynamic
network abstraction implies that edges between nodes are
encoded in the linear operator A. If there is knowledge of
the dynamic interdependencies between states, that is the
underlying edges between nodes, then constraints can be
placed on the data-driven system identification to encode this
network structure.

A specific form of network structure considered is when func-
tional layering occurs within the dynamics. Layered network
structures composed of many interdependent network layers
are purposefully induced in many systems and also evolve
naturally. Man-made structures, due to design advantages,
often take on interdependent network forms. Infrastructure
networks [5], [6], sensor and actuator placement in smart
structures [7], [8] and supply chain networks [9] are just a
few examples of this phenomenon. It has been previously
demonstrated that graph product networks are particularly
well suited at compactly describing interdependent network
structures [10], [11], [12]. For special graph products, like
the Cartesian and Kronecker graph products, system-theoretic
properties can also be described in terms of these topological
graph based representations. Examples are convergence rates,
controllability and observability features and stabilizing feed-
back properties [12], [13], [14].

A focus of this work is to incorporate available classification
data into the DMD to help encode network layers within the
dynamics. One such classification data is coarse-known func-
tional features. Examples include the designation of state’s
measurement types such as a velocity state and temperature
states in a fluid particle network, or known classes of states
such as those which correspond to different types of vehicles
in a transportation network. Another classification type is
static real-valued data. Topological positions corresponding
to physical states in stationary distributed sensor networks
and ages of human subjects in a opinion network fall in this



data type. Ideally, data-driven modelling should be sympath-
etic to these classifications. We propose an approach to use
these classifications to induce clustering of nodes into meta-
nodes that have similar functional and static properties. We
then proceed to fit an interdependent network system model
with respect to these functional and static properties using a
Cartesian graph product.
The organization of the paper is as follows. We begin by
introducing background material on the Cartesian product
and data-driven system identification in §II. §III proposes a
novel clustering technique for generating meta-nodes with
similar functional and static properties. These meta-nodes
are then used to generate a Cartesian product model of the
time-series data which encodes the interdependent layered
network in §IV. To illustrate the benefit of the Cartesian
product model, properties of the model are explored in §V
including its ability to induce distributed controllers which
are optimal in the linear quadratic regulator (LQR) sense.
The paper is concluded with an illustrative example over an
interdependent infrastructure network and some final remarks
in §VI and §VII, respectively.

II. BACKGROUND

In this section, we provide notation and a brief back-
ground on constructs and models that will be used through-
out the paper. For a matrix A ∈ Rm×n with ijth
element aij , the vectorization operator is vec(A) =

[a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn]
T . The ith

indicator vector denoted as ei is defined as the ith column
of the identity matrix. The Kronecker product of matrices M
and N is M⊗N , and the Kronecker sum for square matrices
A ∈ Rna×na and B ∈ Rnb×nb is A⊕B = A⊗Inb

+Ina
⊗B.

A. Cartesian Product Graphs

A weighted digraph G = (V,E,W ) is characterized by a
node set V with cardinality n, an edge set E comprised of
ordered pairs of nodes with cardinality m, and a weight set W
with cardinality m, where an edge exists from node i to j if
(i, j) ∈ E with edge weight wji ∈W . The adjacency matrix
A(G) is a n × n matrix with [A(G)]ij = wji if (i, j) ∈ E
and 0 otherwise.
There are a number of ways to synthesize large-scale net-
works from a set of smaller graphs [15]. The Cartesian
product is one such method and is defined for a pair of
factor graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2)
and denoted by G = G1�G2. The (Cartesian) product graph
G has the vertex set V1 × V2, and there is an edge from
vertex (i, p) to (j, q) in V1 × V2 if and only if either
i = j and (p, q) is an edge in E2, or p = q and (i, j)
is an edge in E1. The corresponding weight if an edge
exists is w((j,q),(i,p)) = δpqwji + δijwqp, where δuv = 1
if u = v and 0 if otherwise. An example of a Cartesian
product is displayed in Figure 1. The Cartesian product
exhibits a distributive adjacency matrix property over its
factors A(G1�G2) = A(G1)⊕A(G2) [15].
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Figure 1: Factor graphs G1 and G2 and composite graph
G1�G2. Edge weights of all graphs are 1 unless otherwise
marked.

B. Linear Operator Theory

An objective of DMD and Koopman operator theory is to
obtain an infinite dimensional operator that describes a non-
linear dynamic process x(k + 1) = f(x(k)) when provided
with a set of observables φ(k) = g (x(k)) ∈ Rn. Truncating
the infinite dimensional operator to create a finite dimensional
operator A ∈ Rn×n forms a discrete-time linear time-
invariant representation that approximates the time evolution
of the observables as φ(k + 1) ≈ Aφ(k). The novelty of
this approach is that A can be approximated using (T + 1)-
time state snapshots of the observables stored in the matrix
Φ =

[
φ(0) φ(1) · · · φ(T )

]
∈ Rn×(T+1).

Constructing A from data can be restated with respect
to a norm measure as a search for an A such that
‖φ(k + 1)−Aφ(k)‖ is small for all consecutive snapshot
pairs (φ(k), φ(k+ 1)) where ‖·‖ is an arbitrary norm.1 This
is equivalent to the optimization problem

min
A∈Rn×n

‖Φ2 −AΦ1‖ , (1)

where Φ is used to form Φ1 = [φ(0), φ(1), . . . , φ(T − 1)]
and Φ2 = [φ(1), φ(2), . . . , φ(T )]. With no additional
structure on the problem, the optimal solution under the
Frobenius norm can be solved in closed form using the
least-squares identity A∗ = arg minA∈Rn×n ‖Φ2 −AΦ1‖F =
Φ2ΦT

1 (Φ1ΦT
1 )−1.

III. CLUSTERING

Each node i ∈ V in a networked system is assumed to
have a state φi(k) ∈ R at time k which is dependent
on all node states in the network and evolves dynamic-
ally through the model described in §II-B, where φ(k) =[
φ1(k) φ2(k) · · · φn(k)

]T
and Φ ∈ Rn×(T+1) com-

bines this data for T + 1 time steps. Each node is assumed
to have a functional labelling which partitions the nodes into
ns disjoint nonempty sets S = (S1, S2, . . . , Sns

) called par-
titions with V =

⋃ns

i=1 Si and Si

⋂
Sj = ∅. These functional

classifiers are assumed to encode known heterogeneity within
the network and form the basis of the interdependent network

1Unless otherwise stated assume that ‖·‖ is the Frobenius norm.



structure, namely the layers in the network. Additional func-
tional labelling, with associated partitions S1,S2, . . . ,Sk can
also be added, forming multiplexed network layers, but for
simplicity only one is formally presented. It is assumed that
additional real-valued static data ψi ∈ Rp is also associated
with each node i. Concatenating this non-time varying data
forms the matrix Ψ =

[
ψ1 ψ2 · · · ψn

]T ∈ Rn×p.
The objective of this work is to form a reduced-order dynam-
ics for the network sympathetic to the data triplet (Φ,Ψ,S).
The approach consists of two stages. The first stage clusters
the nodes into meta-nodes based on the partition S and
the partition R across the nodes which is formed using
data clustering over the states φi and ψi. The second stage
takes the newly found meta-node states and forms a low-
order approximation of the linear operator using a Cartesian
product which aligns with the first stage clusters.
Dimensionality is often a challenge when reasoning about
large-scale networks. A favorable approach is to formulate
a compact mathematical representation of the system. A
reduced order recovery operator may be formulated, for
example using a data clustering technique. To include the
static data into the modeling, nodes that are ‘similar’ with
respect to the states φi and ψi are grouped into nr non-empty
partitionsR = (R1, R2, . . . , Rnr ). This approach reduces the
order of the dynamics from n to nr. Selecting good measures
of similarity is key to maintaining an accurate reduced-order
representation of the system. One such approach approach
is k-means clustering which, when provided with a classifier
state ξj ∈ Rs for each node j, constructs partitions R so
as to minimize the variance VarRi of the node classifier
within each cluster Ri. For the complete classifier matrix
Ξ =

[
ξ1 ξ2 · · · ξn

]T ∈ Rn×s. The associated cost
function is

JΞ(R) =

nr∑
i=1

|Ri|VarRi =

nr∑
i=1

∑
j∈Ri

‖ξj − µi‖2 , (2)

where µi = 1
|Ri|

∑
j∈Ri

ξj is the mean of the points in Ri.
The mean can be considered a representative classifier for
the cluster. Finding the partitions R that minimizes (2) is
generally NP-hard with many proposed sub-optimal solutions
in the literature [16]. The k-means algorithm is the most
commonly applied heuristic method to provide a ‘favorable’
R for the cost function (2).
With the objective of clustering with respect to the static data
Ψ and the time-scale data Φ, a suitable vector is ξj(γ) =[

γψj

(1− γ)φj

]
∈ Rp+T+1 where γ ∈ [0, 1]. The aggregated

classifier matrix is then Ξ(γ) =
[
γΨ (1− γ)Φ

]
∈

Rn×(p+T+1). The role of the variable γ is as a tuning para-
meter which varies the importance of node similarity from a
clustering based solely on the static data when γ = 1 to one
based wholly on the time-scale data when γ = 0. To improve
sensitivity to γ, a cursory scaling can also be performed on Ψ
and Φ. One such scaling is to center each column of the mat-
rix about 0 and then normalize the matrix using the Frobenius
norm as h(Ψ) = (Ψ − 1T ⊗ E(Ψ))/

∥∥Ψ− 1T ⊗ E(Ψ)
∥∥
F
,

where E(Ψ) is a column vector of averages over the rows
of Ψ. The subsequent classifier matrix is then Ξ(γ) =[
γh(Ψ) (1− γ)h(Φ)

]
∈ Rn×(p+T+1). For the tuning

parameter γ = 1/2, the k-means clustering has a roughly
even contribution from the static and time-scale data classi-
fiers with ‖γh(Ψ)‖F = ‖(1− γ)h(Φ)‖F . The output of the
k-means clustering with classifier Ξ(γ) over a nominated nr
clusters induces a classifier layering encoded in R.

IV. CARTESIAN NETWORK MODEL: INTRA AND INTER
DYNAMIC DEPENDENCIES

A network node’s membership in the functional partition S
and classifier partition R describe the ‘character’ of the node.
Similar nodes share similar memberships and as such model
order reductions that group nodes with the same functional
and classifier memberships can be applied. The partitions S
and R can be used to create a finer partition T = {Tij} with
Tij = Si

⋂
Rj for each Si ∈ S and Rj ∈ R. The partition T

is a disjoint clustering of nodes of size nsnr. It is assumed
that S and R are coarse enough such that no element of T
is empty. By fusing node states in the same cluster, a fused
meta-node can be formed. The ijth partition then corresponds
to a fused meta-node with accumulative time-series state
φ̄ij(k) =

∑
h∈Tij

φh(k). Isolating the dynamic features both
within layers and between layers provides an ordered state
vector that can be used to reason about the character of the
network as a whole. Focusing on the network layers based
on the partition S, the state vector φ̄(k) can be ordered with
respect to S into ns layers of S. The time-series snapshot
k becomes the stacked vectors of ns layered state vectors
with φ̄S(k) =

[
φ̄S1(k)T , φ̄S2(k)T , . . . , φ̄Sns

(k)T
]T

where
φ̄Si

(k) =
[
φ̄i1(k), . . . , φ̄inr

(k)
]T

. The mapping of φ(k) to
φ̄S(k) with the order prescribed by S can be compactly
represented through the matrix PS with its right inverse QS

defined as

PSpijh =

{
1 if h ∈ Tij
0 otherwise,

QShpij
=

{
1/ |Tij | if h ∈ Tij
0 otherwise,

and pij = (i−1)nr +j, where PSQS = I . For compactness,
unless otherwise stated, the triple

(
PS , QS , φ̄S(k)

)
shall

be written as
(
P,Q, φ̄(k)

)
.2 The meta-node states can be

concatenated to form a time-series block matrixΦ̃, as per
§II-B, which can be represented in terms of the non-clustering
state Φ as Φ̃ = PΦ, and Φ̃i = PΦi, for i ∈ {1, 2} . The
quality of the cluster partition T evaluated using the k-means

cost (2) is JΦ(T ) =
∥∥∥Φ−QΦ̃

∥∥∥2

F
= ‖(I −QP )Φ‖2F . A

non-structured reduced order linear operator A can be formed
by solving (1), which is sympathetic to the partition structure
of S. Consider A as a block matrix composed of |Si| × |Sk|
subblocks ASiSk

which encodes the coupling between parti-
tion Si and Sk. The main diagonal blocks capture the intra-
layer coupling and the off-diagonal elements describe the
inter-layer dependencies leading to the S-layered dynamics

2A similar triple
(
PR, QR, φ̄R(k)

)
can be constructed if φ̄(k) is ordered

by partitions R rather than S.



φ̄ij(k + 1) = eTj
∑ns

k=1ASiSh
φ̄Si

(k). Permuting the rows
and columns of A to correspond to the linear operator for
the state vector φ̄R(k) rather than φ̄S(k) forms a similar
R-layered dynamics φ̄ij(k + 1) = eTi

∑nr

k=1ARjRh
φ̄Rj

(k)
where ARjRk

encodes the coupling between partition Rj and
Rk.
We propose a model to encode the partitions S and R as
factors of a Cartesian linear operator. The model assumes
a Cartesian graph product relationship structure based on
a node’s membership in S and R, with φ̄ij(k) directly
coupled to φ̄pq(k) if and only if either i = p or j = q.
Further, the model assumes a common S (and R) intra-layer
dependency, i.e., ASiSi

= AS and ARiRi
= AR for all i,

and no inter-layered dependency, i.e., ASiSh
= 0 and ARiRh

for all i 6= h. The corresponding form of the meta-node
dynamics is then φ̄ij(k+1) = eTj AS φ̄Si

(k)+eTi ARφ̄Rj
(k).

Motivated by the similarity with the form of the adjacency
matrix in the Cartesian graph product, we refer to these
dynamics as Cartesian dynamics. The Cartesian dynamics
can be compactly represented as

φ̄S(k+1) = (AR⊗Inr
+Ins

⊗AS)φ̄S(k) = AR⊕AS φ̄S(k),
(3)

and similarly φ̄R(k + 1) = AS ⊕ ARφ̄R(k). This reduced
order representation of the network highlights the role of each
layer within the dynamics as well as providing a compact
representation of the functional flow through the dynamics.
The optimal Cartesian linear operator A⊕ = AR ⊕ AS can
be found by solving the convex optimization β⊕ = f(A⊕) =

min
AR∈Rns×ns ,AS∈Rnr×nr

∥∥∥Φ̃2 −AR ⊕ASΦ̃1

∥∥∥ . (4)

Additional convex constraints can be added to problem (4)
to provide more structure to A⊕, for example element-wise
positivity restrictions and spectral convergence bounds. An-
other option it to augment the cost function with a regularizer
term such as the LASSO method L1-norm sparsification
of A⊕. These modifications retain the convexity of the
problem and hence its solution efficiency. In its basic form,
the optimization (4) can be reformulated as a least-squares
problem with a closed form solution for A⊕.

Theorem 1. The solution of (4) can be found by re-
shaping the vector a =

[
vec(AT

R)T vec(AS)T
]T

=(
MTM

)−1
MT vec(Φ̃2) where

M =


Inr
⊗ V (φ̄(0)) V (φ̄(0))T ⊗ Ins

Inr ⊗ V (φ̄(1)) V (φ̄(1))T ⊗ Ins

...
...

Inr
⊗ V (φ̄(T − 1)) V (φ̄(T − 1))T ⊗ Ins

 .
Here, V (·) : Rnrns → Rnr×ns is the inverse operator of
vec(·).

Proof: Applying the identity (B ⊗A) vec(X) =
vec(AXBT ) then (B ⊗ I) vec(X) = vec(XBT ) =
(I ⊗X) vec(BT ) and (I ⊗ A)vec(X) = (XT ⊗ I)vec(A)
[17]. Decomposing f(A⊕)2 into a sum of norms then the
result follows.

The Cartesian linear operator is optimized using the parti-
tioned time-series states Φ̃, with the accuracy of the fit as
β⊕. Ideally, the operator A⊕, once projected into the correct
dimension, is also a favorable operator on the unmodified
time-series data Φ. Consider the approximate model gener-
ated by A⊕ applicable to the full φ(k) state. For every node
h ∈ Tij = Si

⋂
Rj , its state φh(k) is identical and follows

the model

φh(k+1) = eTj AS(
1

|Si|
∑
p∈Si

φp(k))+eTi AR(
1

|Rj |
∑
q∈Rj

φq(k)).

In compact form, the approximate model is then φ(k+ 1) =
QA⊕Pφ(k). The following theorem bounds the performance
of the operator QA⊕P , measured against the original cost
function (1) by the accuracy of the reduced order data fit β⊕
and the cluster quality measure JΦ(T ). The result indicates
that with better reduced order fit, improved cluster quality and
finer clusters the more accurate A⊕ can be used to describe
the time evolution of the states.

Theorem 2. Consider the pair (β⊕, A⊕) and cost
JΦ(T ) defined in (4) and (2), respectively. Let β =
‖QA⊕PΦ1 − Φ2‖ , then (max |Tij |)−1/2β⊕ ≤ β ≤
(min |Tij |)−1/2β⊕ + JΦ(T ).

Proof: As PQ = I , A⊕Φ̃1−Φ̃2 = (PQ)A⊕(PΦ1)−PΦ2 =
P (QA⊕PΦ1 − Φ2). Let Z = QA⊕PΦ1 − Φ2 and observe
that PPT is a diagonal matrix with

[
PPT

]
kk

= |Tk| then

β2
⊕ = ‖PZ‖2 = tr

(
ZTPTPZ

)
≤ σmax(PTP )tr

(
ZTZ

)
= σmax(PPT ) ‖Z‖2 = max |Tk|β2.

This corresponds to the lower bound in the result. Applying
a similar approach to solve for the upper bound, QTQ is a
diagonal matrix with diagonal elements 1/ |Tk| and noting
that

∥∥∥Φ2 −QΦ̃2

∥∥∥ ≤ ∥∥∥Φ−QΦ̃
∥∥∥ then from the triangle

inequality, the result follows.
Additional relationship can be drawn from Theorem 2 by not-
ing that partition T is always finer than partitions S and R.
This hierarchical partitioning implies that the cluster quality
is bounded as JΦ(T ) ≤ min (JΦ(S), JΦ(R)). Further, the
size of the partitions in T is bounded by |Tij | ≤ max |Si|
and |Tij | ≤ max |Rj | and a nontrivial intersection of Si and
Rj implies that |Tij | ≥ 1. A relaxation of the inequality in
Theorem 2 is β ∈ [(min {max |Si| ,max |Rj |})−1/2β⊕, β⊕+
min (JΦ(S), JΦ(R))]. The bounds indicate that the accuracy
of A⊕ is related to the cluster quality for the optimized
classifier partition R, with tighter bounds generated with
smaller clusters.

V. DISTRIBUTED ANALYSIS AND CONTROL

In this section we describe features of and techniques to study
the Cartesian dynamics (3). Existing work typically embeds
the Cartesian state matrix AR⊕AS into continuous time dy-
namics opposed to the discrete time form (3) explored in §IV.
Applying the approximate transform from discrete dynamics
φ̄(k + 1) = AR ⊕ AS φ̄(k) sampled at time intervals ∆t to



the continuous dynamics ẋ(t) = Ax(t) where x(t) is the
continuous form of φ̄(k) then AR⊕AS = eA∆t ≈ I+A∆t.
As such the continuous dynamics for the discrete dynamics
(3) can be approximated with a Cartesian state matrix as

A ≈
[

1

∆t
(AR − (1− γ)I)

]
⊕
[

1

∆t
(AS − γI)

]
:= A1⊕A2,

with γ ∈ R. For notational convenience we assume that A1

and A2 are square matrices of dimension n1 = ns and n2 =
nr, respectively. In this section, decompositional features are
presented as well as the controlled (and observed) form of
the dynamics. An attraction of the Cartesian dynamics (3)
is that features of the full dynamics are often decomposable
into similar features on the layers. Consider an n-node graph
abstraction of an arbitrary state matrix A ∈ Rn×n formed by
assuming the edge (i, j) is present with weight wji in G(A)
only if [A]ji = wji is nonzero. The Cartesian state matrix
can be decomposed as G(AR⊕AS) = G(AR)�G(AS). The
graph layers G(AR) and G(AS) represent to the partition R
and S, respectively.

For situations where an external control is applied to the
network, decompositional properties are also possible if the
inputs are sympathetic to the network layers. One example
occurs when a common input structure is applied to each
layer, represented by the dynamics ẋ(t) = A1 ⊕ A2x(t) +
B1 ⊗ In2

u(t). A decomposed form of these dynamics on
only one layer is ẋ1(t) = A1x1(t) + B1u1(t). Figure 1(a)
depicts an example of these dynamics on G1 = G(A1)
with the input (and output) applied to lower-shaded node
1’ encoded in the input matrix B1 =

[
1 0 0

]T
. Figure

1(c) is the associated dynamics on G(A1⊕A2) with B1⊗In2

representing the lower-shaded nodes which are at a common
location for each repeated layer of G1.

An attraction of the Cartesian operator form is that distributed
controllers (observers) with performance guarantees can be
formed. A controller of the form u(t) = (K⊗M)x(t), where
K ∈ Rn1×n2 and M ∈ Rn2×n2 are diagonal matrices, can
be implemented distributively with the local layer feedback
appearing as ui(t) = [M ]iiKxi(t) where xi(t) is the states
in layer i. Consider the linear quadratic regulator (LQR)
problem which involves finding the optimal control u for
the following optimization problem

u∗ = argmin
ˆ ∞

0

xTQx+ uTRu+ 2xTNu dt (5)

s.t. ẋ = Ax+Bu,

where R � 0 and Q − NR−1NT � 0. The problem
framework is fully defined by the 5-tuple (A,B,Q,R,N).
The closed form algebraic solution to (5) corresponds to a
feedback law u = −Kx = −R−1(BTP + NT )x [18]. The
matrix P � 0 is the unique solution to the algebraic Riccati
equation 0 = Q+ATP+PA−(PB +N)R−1 (PB +N)

T
.

The solution is characterized by the pair (K,P ). The fol-
lowing theorem describes a distributed LQR solution on the
Cartesian dynamics for a special class of triple (Q,R,N).

Theorem 3. The solution pair for the optimal LQR controller
on the 5-tuple (A1 ⊕A2, B1 ⊗ I,Q,R,N) is (K1⊗M2, P1⊗
M2) where Q = Q1 ⊗ M2 − P1 ⊗ F2, R = R1 ⊗ M2,
N = N1 ⊗ M2, M2 is a positive diagonal matrix, F2 =
A2M2 +M2A

T
2 � 0 and (K1, P1) is the solution pair for the

optimal LQR controller on the 5-tuple (A1, B1, Q1, R1, N1).

Proof: The result follows from the distributive properties of
the Kronecker product.

Theorem 3 can be considered as describing a type of inverse-
LQR problem, whereby if each layer applies a scaled version
of the layered LQR controller ui(t) = [M ]iiK1xi(t) with
K1 the optimal gain for the triple (Q1, R1, N1) then the full
controller u(t) = K1 ⊗ M2x(t) is the optimal controller
for the global LQR problem with triple (Q,R,N). The
appearance of A2 in the matrix Q is accredited to the fact the
global controller is formed independently of the graph layer
G(A2). The extended version of this paper provides sufficient
condition on γ for the existence of a negative semidefinite
F2(γ) required in Theorem 3 and guarantees that the triple
(Q,R,N) satisfies the positive semidefinite requirements of
the LQR optimization problem.

VI. EXAMPLE

This section applies the clustering and Cartesian product
model creation techniques to a high-fidelity infrastructure
simulation. The simulation models the dynamic recovery
of nodes in an infrastructure network in response to a
damaging earthquake event. A detailed description of the
simulation model is described in the publication by González
and Dueñas-Osorio [19]. The simulation was applied to the
water, gas and power interdependent infrastructure networks
in Shelby County, TN.

The water state output of the simulation w(k) ∈ R49 repres-
ents the states of the 49 water nodes at time k ∈ [0, . . . , T ].
If wi(k) = 0 then water node i at time k is functional; if
wi(k) = 1 then water node i is damaged. Similarly output is
the 16 gas node state vector g(k) ∈ R16 and the 60 power
node state vector p(k) ∈ R60. Concatenating these over
multiple recovery runs, the complete state of the network
at time k is φ(k) =

[
w(k)T g(k)T p(k)T

]T
. Also

available is the state ψi ∈ R2 corresponds to the physical
location of infrastructure node i, displayed in Figure 2a for
the water and gas nodes.

The clustering approach from §III is applied using time-
series repair data Φ and static position data Ψ to form a
classifier partitionR. Figure 3 visualizes the effect of γ as the
clustering shifts from a time-series focused clustering with
γ = 0 to a position focused clustering with γ = 1 for a
partition set R of dimension 8.

Following the method of §IV, with γ = 0.66, a functional
partition S, formed from the utility type, and the classifier
partition R is used to generate a finer partition T . Con-
structing φ̄R(k) then the optimization (4) was solved to
form the approximate Cartesian dynamics φ̄R(k + 1) =



(a) (b)

Figure 2: (a) Infrastructure network topology for the water
(circles) and gas (square) networks in Shelby County, TN.
(b) G(AS) with self loops omitted and edges with magnitude
less than 0.01.
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Figure 3: Weighted clustering balancing the importance of
recovery proximity and spatial proximity.

AS ⊕ ARφ̄R(k). An L1 regularizer term ‖AS‖1 + ‖AR‖1
was added to the cost function (4) to promote a sparse AS

and AR. The resultant AR is

 0.208 0.013 0.005
0 0.116 0
0 0.010 0.202

 and

the graph representation of AS is shown in Figure 2b.
The Cartesian decomposition serves to isolate the effect of
a node’s utility type and its classifier cluster in its dynamics
evolution. Examining AR with [AR]1,2 and [AR]3,2 nonzero,
for example, describes the dependence of the water and
power utilities on the gas utility. This can be attributed to
the fact that gas nodes are dangerous to repair crews and
must be preferentially repaired before power and water nodes.
Similarly, the top left classifier cluster in Figure 2b has a
significant impact on many of the other nodes due to the
large number of water distribution stations in the area which
are necessary to supply the large city of Memphis in the
bottom left of the map.

VII. CONCLUSION

This paper explores the inclusion of classification data into
the time-series data model fitting for an interdependent net-
worked system. Applying k-means clustering to the classi-
fication data, we were able to form meta-nodes that grouped
similar network states together. The benefit of this grouping
is that a compact Cartesian product model can be fit to the

time-series data. Furthermore, this can be formed efficiently
using convex optimization, or in some cases directly through
a closed form solution of the problem. The Cartesian product
model presents a particularly attractive form for analysis
and design, separating the role of each interdependent net-
work layer in the system. Directions for future work are
the exploration of Cartesian product modeling without the
addition of classification data, and the examination of the
distributed LQR formulation without the requirement that the
cost matrices must conform to a layered structure.
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[3] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics, vol.
641, pp. 115–127, 2009.

[4] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, “Applications of the
dynamic mode decomposition,” Theoretical and Computational Fluid
Dynamics, vol. 25, no. 1-4, pp. 249–259, 2011.

[5] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in 13th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2007, pp. 420–429.

[6] X. Liu, H. Peng, and J. Gao, “Vulnerability and controllability of
networks of networks,” Chaos, Solitons and Fractals, vol. 80, pp. 125–
138, 2015.

[7] T. L. Rocha, S. Silva, and V. Lopes, “Optimal location of piezoelectric
sensor and actuator for flexible structures,” in 11th International
Congress on Sound and Vibration, no. 1998, 2004, pp. 1807–1814.

[8] V. Gupta, M. Sharma, and N. Thakur, “Optimization criteria for
optimal placement of piezoelectric sensors and actuators on a smart
structure: a technical review,” Journal of Intelligent Material Systems
and Structures, vol. 21, no. 12, pp. 1227–1243, 2010.

[9] J. Gong, J. E. Mitchell, A. Krishnamurthy, and W. A. Wallace, “An
interdependent layered network model for a resilient supply chain,”
Omega, vol. 46, pp. 104–116, 2014.

[10] J. Leskovec, “Kronecker Graphs : An Approach to Modeling Net-
works,” Journal of Machine Learning Research, vol. 11, pp. 985–1042,
2010.

[11] E. Parsonage, H. X. Nguyen, R. Bowden, S. Knight, N. Falkner, and
M. Roughan, “Generalized graph products for network design and
analysis,” in 2011 19th IEEE International Conference on Network
Protocols, 2011, pp. 79–88.

[12] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Controllability
and observability of networks-of-networks via Cartesian products,”
IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2668–
2679, 2014.

[13] A. Nguyen and M. Mesbahi, “A factorization lemma for the agreement
dynamics,” in 46th IEEE Conference on Decision and Control, no. 1,
2007, pp. 288–293.

[14] A. Chapman and M. Mesbahi, “Kronecker product of networked
systems and their approximates,” in 21st International Symposium on
the Mathematical Theory of Networks and Systems, 2014, pp. 1426–
1431.

[15] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition.
New York: Wiley, 2000.

[16] R. Xu and D. Wunsch, “Survey of Clustering Algorithms,” IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[17] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New York:
Cambridge University Press, 1991.

[18] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quad-
ratic Methods. Upper Saddle River, NJ, USA: Prentice Hall, 1990.
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