
PHYSICAL REVIEW E 83, 016114 (2011)

Improving community detection in networks by targeted node removal

Haoran Wen,1 E. A. Leicht,1 and Raissa M. D’Souza1,2,3,*

1Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA
2Department of Computer Science, University of California, Davis, California 95616, USA

3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe New Mexico 87501, USA
(Received 16 August 2010; revised manuscript received 6 December 2010; published 28 January 2011)

How a network breaks up into subnetworks or communities is of wide interest. Here we show that vertices
connected to many other vertices across a network can disturb the community structures of otherwise ordered
networks, introducing noise. We investigate strategies to identify and remove noisy vertices (“violators”) and
develop a quantitative approach using statistical breakpoints to identify when the largest enhancement to a
modularity measure is achieved. We show that removing nodes thus identified reduces noise in detected
community structures for a range of different types of real networks in software systems and in biological
systems.

DOI: 10.1103/PhysRevE.83.016114 PACS number(s): 89.75.Hc, 89.75.Kd, 87.18.Tt, 05.10.−a

I. INTRODUCTION

The last decade has seen a surge of interest in the network
representation of a wide range of real-world systems, from
social relationships among individuals, to interactions of pro-
teins in biological systems, to the interdependence of function
calls in large software projects. Often one wishes to divide
a large network up into smaller related subnetworks, called
“communities” or “modules.” This has been approached using
a wide variety of techniques [1–10]. In real-world networks,
such community structures may represent important groupings
identifying common background, interest, or function [1].

The notion of overlapping communities, where nodes
are allowed to participate simultaneously in more than one
subnetwork, was more recently introduced [11–18]. Although
such considerations greatly expand the applicability of com-
munity structures, there still remain situations where nodes
of relatively high degree can connect across the network,
disturbing the detected community structures of otherwise
well-ordered networks. (See Fig. 1 for an illustration.) Rather
than belonging to multiple communities, such “noisy” nodes
do not belong preferentially to any community. Here we
study several networks present in open source software
(OSS) systems and biological systems where this is the case.
We introduce methodology for identifying such nodes and
develop a quantitative criteria for their removal, showing the
improvement in the quality of the community structures that
results. We provide a comparison with overlapping community
detection methods as well.

Relevant background and related work on community
structure and OSS networks are reviewed in Sec. II. In Sec. III
we develop techniques to reduce noise in community structure,
investigating high degree removal, high modularity removal,
and the use of statistical breakpoints. Also in Sec. III we
apply these techniques to OSS networks and several biological
networks. In Sec. IV we compare results obtained with
our methods to those resulting from overlapping community
algorithms. Overall conclusions are presented in Sec. V.

*hrwen,eleicht,rmdsouza@ucdavis.edu

II. BACKGROUND AND RELATED WORK

A. Empirical studies of noise

In some situations it is possible to use expert or domain
knowledge to identify a priori nodes that may introduce noise,
such as in a study by Bird et al. analyzing the email commu-
nication network of OSS developers [19]. They hypothesized
that developers would divide into communities that parallel
working groups within the project yet found that a small set
of developers (two or three per project) tended to connect
to all communities without preference. Such developers were
presumed to be project leaders or founders who communicated
extensively with others regardless of working group, and these
vertices were removed manually prior to deploying community
detection algorithms. Similarly, a study of currency and
commodity metabolites in modular metabolic networks by
Huss and Holme identified the 10 highest degree nodes as
“currency metabolites,” which they remove manually before
running community-detection algorithms [20].

In both Refs. [19] and [20], high-degree vertices were
found to be noisy. Figure 1 illustrates this concept. We
generate a small network of 40 vertices where we impose
a community structure by initially assigning each vertex
to one of four different communities at random. We also
assign to each vertex a degree 1 � k � 30 drawn from a
power-law distribution, pk ∝ k−2.5. The two vertices with the
largest degree are chosen to be noisy vertices or violators
that connect without preference to any other vertex in the
network. The remaining nodes connect preferentially within
their communities, with approximately 85% of their edges
falling within their assigned communities. Figure 1(a) shows
the communities found in this network when using the
spectral partitioning algorithm of Newman [4]. The large
boxes indicate the detected communities, while colors and
shapes represent the communities to which the vertices were
initially assigned; the two violators are shown as hexagons.
The algorithm finds only three communities, two of which
blend the assigned communities. As expected, if we remove
the two violators and run the same algorithm, we recover the
initially assigned community structure as seen in Fig. 1(b).
In this small example it was known a priori the number

016114-11539-3755/2011/83(1)/016114(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.016114


HAORAN WEN, E. A. LEICHT, AND RAISSA M. D’SOUZA PHYSICAL REVIEW E 83, 016114 (2011)

(a) (b)

FIG. 1. Community structures of a sample network (a) before and
(b) after violator removal, showing the effect of two violators out of
40 nodes. Vertices are initially assigned to one of four communities at
random (identified via node shape and shading). The two vertices with
the largest degree are violators (hexagons) and do not preferentially
connect to any single community. The remaining edges fall within
communities with 85% probability and between them with 15%.
Boxes illustrate the communities detected using the algorithm in
Ref. [4].

and identity of the violators. The methods we develop herein
allow detection of vertices acting as violators without needing
a priori knowledge or requiring that violators necessarily be
the largest degree vertices.

B. Community detection algorithms

There are numerous methods available to detect commu-
nity structure in networks, with comprehensive reviews in
Refs. [21–23]. Due to its simplicity and easy extension to
directed and weighted networks, we choose as our base
algorithm the spectral partitioning algorithm of Newman,
which calculates the leading eigenvector of a modularity
matrix to identify a network’s modular structure [4]. However,
our methods should easily generalize to alternate community-
finding algorithms.

The chosen spectral partitioning algorithm determines the
number of communities via an optimization process. It divides
a network into communities by maximizing a quality of
modularity function Q. Here Q measures the difference
between the actual and expected number of edges falling within
a community and is normalized to range from zero to one.
Specifically,

Q = 1

2m

∑
i,j

(
Aij − kikj

2m

)
δ(Gi,Gj ), AE (1)

where Aij is the ij th element of the adjacency matrix, ki and
kj are the degrees of vertices i and j , respectively, δ(r,s) is the
Krönecker delta, Gi and Gj are the groups vertex i and j are
assigned to, and m is the number of edges in the network [4].
The goal of the algorithm is to assign vertices to groups Gi and
Gj so that Q in Eq. (1) is maximized, with this maximal Q

representing how well a network breaks apart into subgroups.
Q is not a property of a network; instead it is a measure of the
quality of a specific grouping of a network [10]. Finding the
global optimal assignment is NP hard, so one turns to methods
of approximation, some of which are stochastic. As a result,
one may not be able to ascertain a unique maximal value of
Q for a given network. Q was originally defined for simple

networks but has now been extended to weighted and directed
networks [24–26].

Recently several researchers have developed methods for
detecting community structure when vertices may belong to
multiple communities and communities may thus overlap
[11–16]. However, in a network where some vertices belong
to one-quarter or one-half of all communities detected (as
we show later is the case for many networks) the question
arises as to whether these vertices truly participate in all of the
communities. Regardless, such vertices can act as violators
obscuring underlying community structures.

C. Empirical OSS Networks

Both software developer communication networks and
software dependency networks have attracted much research
attention [27–29]. In this work we examine the developer
communication networks from four OSS projects: Apache
HTTP server, Python, PostgresSQL, and Perl. Each network is
constructed by combining monthly mailing list archives of the
respective OSS project into a cumulative view spanning several
years [30–32]. In these networks, a vertex is a developer, and
weighted directed edges represent emails between developers.
The size of these projects range between 1000 and 2500
developers. Developers migrate in out of projects over time
[32], making the email social networks noisier than the
Apache callgraph network described next. As mentioned,
project leaders can participate broadly across the network and
introduce noise in community structures.

We also study the code base for the Apache 2.0 HTTP
server, an OSS project written in the C programming language
(a procedural, rather than objected-oriented, software system).
Our data are composed of monthly snapshots of the functions
and function calls over a four-year period. (For details on the
extraction procedure see Ref. [33].) The callgraph network
is built by considering each function as a vertex and each
function call a directed edge. The Apache 2.0’s callgraph is
extremely stable [34], with data from each snapshot yielding
similar results; thus we report on a representative snapshot
(10/1/2001).

III. REMOVING NOISY VERTICES

We hypothesize that, for the software callgraph, low-level
functions that are called commonly by other functions across
the network disrupt community detection. This is analogous to
the empirical observations that project leaders in OSS projects,
who have high degree, and currency metabolites, such as H2O
and CO2, interfere with community detection [19,20]. The in-
degree of a function is the number of other functions it is called
by; thus low-level functions have high in-degree. Note, for
Apache, that the largest in-degrees are an order of magnitude
larger than the largest out-degrees. (Reference [34] contains a
discussion of constraints giving rise to this disparity.)

In this section we show that degree-targeted node removal
is not always satisfactory and that better results are obtained
by targeting removal of nodes that cause the largest increase
in Q. We also introduce the statistical technique of change
point detection as a criteria to determine when to stop node
removal.

016114-2



IMPROVING COMMUNITY DETECTION IN NETWORKS BY . . . PHYSICAL REVIEW E 83, 016114 (2011)

0 10 20 30 40

0.3

0.4

0.5

0.6

0.7

No. of removed vertices

Q

 

 

CG targeted
CG random
Email targeted
Email random

FIG. 2. Change in modularity in response to degree targeted and
to random vertex removal for the Apache callgraph (CG), with N =
2213 vertices and E = 6455 edges, and the Apache email social
network (Email), with N = 1232 and E = 8064.

A. Degree-targeted removal

To assess the impact on modularity of removing vertices
successively from a network, in Fig. 2 we show the modularity
for the Apache callgraph (dark line) and the Apache developer
email network (light line) for both degree targeted (solid
line) and random removal (dashed line) of vertices. (Under
degree-targeted removal, we recalculate the degrees of every
vertex after each removal.) Note that the modularity is
calculated for the largest connected component of the network
that remains comparable (more than 80%) with its original
size throughout the first 10 removals for both networks
and both removal strategies. Under degree-targeted removal
modularity increases very rapidly. Yet it continually increases
with subsequent vertex removal within the regime shown. Thus
Q alone does not indicate the relative value gained by that node
removal and hence when to stop removal.

As shown previously, dependent upon the degree sequence
it is possible for a network constructed at random to exhibit
relatively high values of modularity [35–37]. We consider this
the modularity inherent in the degree sequence and denote
it by Qconfig. Thus, we consider the difference between the
actual value of Q (as shown in Fig. 2) and Qconfig, the
value for that particular degree sequence, and call Q − Qconfig

the absolute modularity of the real network. A maximum
in Q − Qconfig after a certain number of vertex removals
indicates that the removed vertices were adversely impacting
the modularity score more than would be expected by random
chance.

In Ref. [35] a simple function is introduced as an ansatz to
approximate Qconfig, whereas in Refs. [36,37] more complex
mathematical methods are proposed. We find a simpler
approach is sufficient. We take the exact degree sequence
of the network of interest and generate an ensemble of 10
random networks with this same degree sequence via the
configuration model [38,39]. Then we calculate the values of
inherent modularity, Qconfig, by averaging over these generated
networks. Note that increasing the number of random networks
beyond 10 does not change the results for Qconfig but adds only
computational cost.

In Fig. 3(a) we plot Q for the Apache callgraph and Qconfig

of the corresponding degree sequence as a function of degree-
targeted node removal (with their difference Q − Qconfig

plotted in the inset). The inset plot shows that Q − Qconfig

reaches a maximum value after approximately 15 vertices
are removed, a reasonable number of low-level functions.
However, the data are noisy, and several local maxima exist
as well. We plot the same quantities for the Apache email
network in Fig. 3(b). The inset plot of Q − Qconfig is very
noisy and reaches its maximal value after more than 40 vertices
are removed, which is an order of magnitude larger than the
two to three developers identified in Ref. [19]. We find similar
results to those in Fig. 3(b) for the other three email networks
studied (Python, PostgresSQL, and Perl). In summary, for the
callgraph networks high-degree node removal is plausible,
with the location of the peak in Q − Qconfig providing a criteria
for when to stop removing vertices. The email networks,
however, are not amenable to this treatment.

B. High-� Q-targeted removal

Degree-targeted removal provides a starting point, yet
the highest-degree vertices are not necessarily violators. For
instance in the OSS email networks it is possible that a
developer with very high degree may be strongly tied to just
one community. To develop intuition on methods to remove
the correct nodes from a network efficiently, we first simulate

0 10 20 30 40
0

0.2

0.4

0.6

0.8

No. of removed vertices

Q

0 10 20
0.18

0.2

0.22

0.24

Q
Breakpoints
Q

config

Q−Q
config

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of removed vertices

Q

0 10 20
0.1

0.15

0.2

Q
Breakpoints
Qconfig

Q−Qconfig

(a) (b)

FIG. 3. Q for the real networks plotted in black and the modularity of an ensemble of random networks with a degree sequence identical
to the real network, Qconfig, in gray, both as functions of in-degree targeted removal for (a) the Apache callgraph and (b) the Apache developer
email network. The points in the main figure indicate “breakpoints” as discussed in Sec. III C. The inset plot shows Q − Qconfig, with the
vertical dashed line indicating the location of the first breakpoint.

016114-3



HAORAN WEN, E. A. LEICHT, AND RAISSA M. D’SOUZA PHYSICAL REVIEW E 83, 016114 (2011)

(a)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of removed vertices

Q

0 10 20

0.16

0.18

0.2

0.22

Q

Breakpoints

Q
config

Q−Q
config

(b)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of removed vertices

Q

0 5 10
0.2

0.22

0.24
Q

Breakpoints

Q
config

Q−Q
config

FIG. 4. Modularity change for simulated networks having the degree sequence of the Apache callgraph and with three nodes set to be
violators. Inset is Q − Qconfig, with the vertical dashed line indicating the location of the first breakpoint. (a) Modularity change by removing
high-degree vertices. (b) Modularity change by removing high-�Q vertices.

a series of networks in which noisy vertices are known,
enforcing that the simulated networks have the same degree
sequences as the real networks of interest. We construct the
model networks by assigning most vertices to one of four
predefined communities at random, while three vertices out
of the 10 highest degree ones are selected at random to be
violators that connect without preference across the network.
We use a modified configuration model technique where
an edge was allowed to fall between nonviolator vertices
in different communities with a probability pbetween = 0.15
and between nonviolator vertices in the same community
with a probability pwithin = 0.85. After constructing this
model network we identify the communities and calculate the
modularity via maximizing Eq. (1).

We exhaustively search through each vertex in the network
and identify the vertex whose removal would lead to the largest
increase in modularity �Q, and remove it. We then apply this
technique recursively to the remaining network to find the next
noisy vertex, and so on. Notice here that �Q values must be
recalculated after each vertex removal, making this strategy
time consuming. (In practice, for the simulated networks and
all the real networks studied herein, ranging to a few thousand
nodes in size, testing the 20 highest-degree nodes present at
any moment is sufficient; increasing the number further does
not change the results obtained.)

Results for the simulated networks with the degree sequence
of Apache callgraph, generated as we have described, are

shown in Fig. 4. The modularity change in response to degree
targeted removal is shown Fig. 4(a), and response to high-�Q

removal is shown in Fig. 4(b). In Fig. 4(a), we see both Q and
Q − Qconfig are extremely noisy. Furthermore, on examining
the identities of vertices, we find that the high-degree vertices
removed first are not the violators we had intended to remove.
As shown in Fig. 4(b), Q increases rapidly as the first three
nodes are removed under high-�Q removal. On inspecting the
identity of these three vertices we find that they are exactly the
three nodes set initially to be violators.

As seen in Fig. 4(b), Q − Qconfig reaches its maximum,
not right at three as we would expect, but after three nodes
are removed. Thus a peak in Q − Qconfig does not provide a
rigorous criteria to determine when to stop node removal (as
will be developed in Sec. III C). Note that we also examined
different number of violators and different simulated networks
(e.g., with the degree sequence of developer email network),
and all show similar results: Modularity increases rapidly
while violators are being removed and then stabilizes.

When we apply the high-�Q removal method to the data
for the real Apache callgraph, as shown in Fig. 5(a), we find
similar results to those found based upon removing vertices
simply by decreasing degree [shown in Fig. 3(a)]. In particular,
we find that almost the identical nodes are removed by both
techniques.

Results for high-�Q removal for the real Apache developer
email network are shown in Fig. 5(b). Although Q increases

(a)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

No. of removed vertices

Q

0 10 20
0.18

0.2

0.22

0.24

Q

Breakpoints

Q
config

Q−Q
config

(b)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

No. of removed vertices

Q

0 10 20
0.1

0.15

0.2

0.25

Q

Breakpoints

Q
config

Q−Q
config

FIG. 5. Modularity change resulting from successively removing high-�Q vertices, shown for (a) the Apache callgraph and (b) the Apache
email network. The inset plot shows Q − Qconfig, with the vertical dashed line indicating the first breakpoint.

016114-4



IMPROVING COMMUNITY DETECTION IN NETWORKS BY . . . PHYSICAL REVIEW E 83, 016114 (2011)

much more smoothly than via degree-targeted removal [shown
in Fig. 3(b)], we still cannot identify a clear global or local
maximum in the quantity Q − Qconfig. In comparing the
degree-target removal and high-�Q removal methods applied
to this data set, we find substantial differences in the vertices
removed, indicating that the highest-degree vertices are not
necessarily the most noisy. We show only the results for the
Apache developer email network; however, the email networks
for the other projects behave very similarly.

C. Breakpoints to identify the number of violators

To develop a rigorous criteria for determining the number
of noisy vertices, we turn to a well-known technique from
statistics called change-point detection [40]. This technique
was originally used to quantify structural changes in linear
regression, identifying breakpoints that divide the data into
distinct segments where, within each segment, the regression
relationship is stable and the coefficients of the regressions
vary between the distinct segments. We utilize a dynamic
programming algorithm to estimate the optimal breakpoints
[41]. Additional details of the algorithm can be found in
Refs. [40] and [42]. The breakpoints found are indicated in
Figs. 3–5. For all these simulated and real data sets, we find
that the first breakpoint is the appropriate stopping point for
removing vertices acting as violators. Likewise, similar exact
agreement between location of breakpoints and the number of
violators was found when we implement different numbers of
violators in the simulated networks.

In all of our examples we analyze Q as the first 60 nodes
are removed (with figures focusing on the first 40). If we look
only at n < 60 points, the exact number and location of the
breakpoints can vary, but the location of the first breakpoint
is extremely stable so long as the data sample can be divided
into at least three breakpoints.

D. Interpreting results for OSS networks

For the real Apache callgraph data, as shown in Fig. 5(a),
the first breakpoint occurs at the point where eight vertices
have been removed. Four of these eight functions come from
APR, a low-level interface library. The other four are from
the C standard library. All these eight functions are basic
and low level with general functionality. Yet, there exist even
lower-level functions that are not identified as violators. Upon
manual inspection we find that these lower-level functions
have very specific functionality and belong to only one or a
few communities.

Manually inspecting the communities detected in the
Apache callgraph after violator removal, we find that each
community roughly corresponds to a group of functions
that complete on relatively independent or several similar
tasks. These communities typically contain only functions
belonging to one or a few distinct modules, where modules
are organized software subprojects with different concerns. For
example, there is an identified community consisting only of
functions from a single module, called SDBM (which handles
database transactions), and the low-level functions they call.
These coherent communities, which reflect the function of the
project, were originally hidden and emerge only as we iterate
the removal of violators.

Under high-�Q removal three of the OSS developer email
networks (Apache, Perl, and Python) have breakpoints when
three vertices are removed, while for Postgres the breakpoint
occurs when four vertices are removed. The four OSS projects
have different management styles. Apache is a foundation-
based project with a group of core developers and several more
minor developers. Perl and Python are considered monarchies,
with only a few core developers. Postgres is a community
without identified project leaders. It is reasonable that in
projects with only a few core developers one finds violators.
More interesting is that even in a project structured like
Postgres (with dynamic self-organized communities), there
can exist a small number of “noisy” developers.

Commensurate with the intuition put forth by Bird et al. we
find approximately three violators in each of the developer
email networks [19]. Bird et al. used an a priori criteria
of removing the three vertices with the highest betweenness
centrality. In both Apache and Perl, two of the three violators
identified by our technique are also among the three highest
betweenness vertices; in Postgres, three of the four violators
are the top three betweenness vertices; but in Python, only
one of the three violators identified are among the top three
betweenness vertices. Similar to how degree-targeted removal
can result in removing high-degree nodes that are not violators,
our results indicate that previous methods may have wrongly
removed vertices with very high betweenness that were not
violating community structures.

Note that removing vertices necessarily reduces the size
of the largest connected component in a network, but not
significantly. For example, with all eight violators removed, the
largest connected component of the Apache callgraph network
is 97% of its original size. For all four email social networks
after violator removal, the largest connected component is at
least 80% of its original size.

E. Application to biological networks

We apply our technique to different types of networks
present in biological systems. In particular, we investigate
two gene regulation networks (E. coli and yeast transcription
network [43]), one metabolite network (E. coli metabolite
network [18]), and five protein-protein interaction (PPI)
networks (all from the online BioGRID database [44]). The
two transcription networks are directed and weighted, while
the E. coli metabolite network and the PPI networks are
undirected and unweighted.

In the yeast transcription network and three of the PPI
networks, we find that removing vertices does not increase
the modularity. Hence, we find no vertices acting as violators
in these networks. In the E. coli transcription network and
E. coli metabolite network, noisy vertices are identified. As
shown in Fig. 6 there are three violators identified at the first
breakpoint for the E. coli transcription network. (In contrast,
the difference between Q and Qconfig, not shown in the figure,
reaches its maximum around five.) Likewise, in the E. coli
metabolite network, three violators are identified at the first
breakpoint as shown in Fig. 6. These three violators are proton,
water, and ATP, which were found to belong to high numbers
of communities in Ref. [18] when overlapping communities
were considered (discussed in detail in the next section). For

016114-5



HAORAN WEN, E. A. LEICHT, AND RAISSA M. D’SOUZA PHYSICAL REVIEW E 83, 016114 (2011)

0 20 40 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

No. of removed vertices

Q

E. coli transcription
E. coli metabolite
Mus musculus PPI
Synthetic rescue PPI

FIG. 6. Modularity change for four biological networks with
high-�Q vertex removal. Breakpoints for each network are shown
respectively; all the first breakpoints occur at three.

two of the PPI networks from BioGRID (Mus musculus and
Synthetic rescue), we find violators by applying our technique,
as also shown in Fig. 6.

F. Quantifying the differences before and after violator removal

As we have discussed in the context of the Apache callgraph
network, using domain knowledge we are able to verify
the improvement in community detection when violators
are removed. To quantitatively compare the difference in
community structure before and after removing violators, we
adopt the measure of variation of information (VI) [45]. This
normalized measure, ranging between zero and one, is used to
compare statistical overlap of two grouping results. When two
groupings are exactly the same, the measure is zero. Notice
that it compares different groupings of one specific network;
thus we consider only vertices present both before and after
violator removal. Table I shows results for the networks in
which violators are detected. Although most of the VI values
are small, they are significant. (The only exception is the E. coli
transcription network.) The number of communities detected
before and after violator removal are shown in the second row
of Table I, with the number of violators detected indicated in
parentheses.

IV. OVERLAPPING VERSUS NOISE IN COMMUNITIES

To understand the role violator vertices play when com-
munities are allowed to overlap, we implement two methods
for detecting overlapping community structure. The first is
the method of Palla et al., which is one of the original
such techniques [11,46]. The method initially detects fully
connected subgraphs of size k (i.e., k-cliques) and forms
communities by grouping together k-cliques that share one
or more vertices. Varying k results in detection of different

TABLE II. The total number of communities detected (column 2)
for the Apache callgraph data using two different algorithms, labeled
Palla [11] and Shen [14], respectively. The remaining columns show
the identity of the first four violators and the number of communities
each violator is assigned to by each algorithm. (The clique size used
is k = 4.)

Total apr pstrdup strlen apr palloc apr pstrcat

Palla 31 7 11 4 6
Shen 18 4 8 2 4

communities, and the authors suggest that a typically good
choice is k = 4 [11]. When the algorithm was applied to our
Apache callgraph data, only 141 out of the total 2,213 vertices
could be assigned to any community (as the algorithm does
not guarantee that every vertex will be assigned to at least
one community). Yet all eight of the vertices we detected as
violators were assigned to one or more communities. Details
are in Table II, showing the total number of communities
detected and the number of communities to which each of the
first four violators (out of eight) belong. Of the 141 Apache
callgraph vertices assigned to communities, 119 belong to only
one community, 12 vertices belong to two communities, and
only 10 vertices belong to more than two. As shown in Table II
the first four violators belong to at least four communities. In
particular note apr pstrdup and strlen, which belong to seven
and 11 communities, respectively, which are over 20% of all
communities.

Shen et al. proposed a revised version of the Palla et al.
algorithm [14] that treats the maximal cliques as vertices and,
moreover, guarantees all vertices are assigned to at least one
community. Table II shows a comparison of the two methods.
The Shen algorithm finds in total fewer communities, yet that
the violators belong to multiple. Note, in particular the function
strlen, which is assigned to eight of 18 communities (over 44%
of all communities), and the two functions assigned to four
communities (over 22% of all communities).

Table III summarizes the results when applying these
two methods to the other networks. The first five networks
listed were found by our high-�Q method to have disruptive
vertices, whereas the final three networks did not show this.
The column “Total” gives the total number of communities
detected via the Palla et al. and Shen et al. algorithms. The last
three columns indicate the number of communities to which
the three most noisy vertices identified belong.

When applied to the Apache social network and the E. coli
network the Palla algorithm does not converge. (The algorithm
was run for more than three days without outputting a solution.)
Yet the Shen algorithm converges for all of the networks. As

TABLE I. Comparison of community structures before and after violators removal. The first row is the variation of information between
the grouping of the original network and the network with violators removed. The second row shows the change in the number of communities
detected, with the number of violators removed shown in parentheses.

Apache callgraph Apache Perl Postgres Python E. coli trans. E. coli meta. Mus muscalis Synthetic Rescue

VI 0.3222 0.2252 0.1969 0.2390 0.2360 0.0838 0.2362 0.1453 0.2652
Groups 18→ 21(8) 5→6(3) 6→7(3) 7→7(4) 8→7(3) 20→18(3) 10→12(3) 40→30(3) 27→34(3)

016114-6



IMPROVING COMMUNITY DETECTION IN NETWORKS BY . . . PHYSICAL REVIEW E 83, 016114 (2011)

TABLE III. Total number of communities identified by the two
algorithms [11] and [14] and the total number of communities to
which each of the first three vertices removed are assigned. The first
five networks listed were found via our high-�Q removal technique
to have disruptive vertices, while no such vertices are found in the
final three networks.

Algorithm Total v. 1 v. 2 v. 3

Apache social Shen 35 11 12 9
E. coli trans. Shen 12 1 1 1
E. coli metabolite Palla 15 4 3 1

Shen 9 9 9 9
Mus musculus Palla 3 0 0 0

Shen 23 1 1 1
Synthetic Rescue Palla 8 1 0 1

Shen 25 1 1 1
Yeast Palla 1 0 0 0

Shen 17 1 3 1
Co-purification Palla 28 1 1 1

Shen 15 1 1 1
Dosage Rescue Palla 28 3 1 0

Shen 31 1 1 1

seen in Table III, in most cases the violators identified by our
technique are those vertices that belong to many communities.
Of particular note is the E. coli metabolite network where the
three violators (proton, water, and ATP) are found to belong
to every community identified by the Shen algorithm. It is
also noteworthy that the Mus musculus and the Synthetic
Rescue networks show no indication of being noisy when
viewed from the overlapping community lens, yet do show
noise when treated by our techniques of high-�Q removal
and breakpoints. Our technique, therefore, can identify noise
in scenarios where overlapping community algorithms would
not provide an indication.

V. CONCLUSIONS

Significant noise in the community structures of networks,
even those comprising thousands of nodes, can be introduced
by just a few nodes. This phenomena was identified previously
using a priori knowledge [19] and heuristic techniques such
as removal of the top ten highest-degree nodes [20]. In the

work presented here we develop a quantitative framework
for identifying and removing noisy nodes. While high-degree
vertices tend to be more noisy than low-degree vertices, we
show in several places that the most noisy vertex is not
necessarily the vertex with highest degree. We instead develop
a procedure to identify and remove noisy nodes based on
high-�Q removal iterated until the first breakpoint in the
resulting value of Q. The violators thus identified in email
social networks are commensurate with the violators identified
using a heuristic approach developed using domain knowledge
in Ref. [19]. We also show our technique identifies violators
successfully in simulated networks and in a series of biological
networks. Our technique provides a systematic solution to the
problem of identifying noisy vertices and can be especially
useful in the absence of domain knowledge.

We also compare our results with results obtained by
overlapping community-finding algorithms. In many cases the
violators identified by our technique belong to an extreme
number of communities and should be classified as noise.
Yet there are instances where overlapping communities would
not indicate evidence of noise yet our technique nonetheless
does identify noisy vertices. Our method can be considered
orthogonal or complementary to overlapping community-
finding algorithms.

Here we use Newman’s proceedure [4] as our base
algorithm. Any other algorithm that assigns each vertex to a
community could be used instead, as our method depends only
on calculating the modularity Q for the resulting assignment
of vertices to communities. Removing the noisy vertices thus
identified can help improve the quality of community structure
detected in networks.

ACKNOWLEDGMENTS

We thank C. Bird, M. F. Rahman, P. Devanbu, and
V. Filkov for useful discussions; A. Dandekar, F. Martinelli,
and R. Reagan for Citrus PPI network data; Y.-Y. Ahn and
S. Lehmann for the E. coli metabolite network data; and H.-W.
Shen for providing his executable code. This research was
supported in part by the Army Research Laboratory under
Cooperative Agreement Number W911NF-09-2-0053 and the
National Science Foundation under Grant No. IIS-0613949.

[1] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci USA 99,
7821 (2002).

[2] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004).

[3] M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).
[4] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[5] M. E. J. Newman, Proc. Natl. Acad. Sci. 103, 8577 (2006).
[6] Y. Sun, B. Danila, K. Josic, and K. E. Bassler, Europhys. Lett.

86, 28004 (2009).
[7] L. Donetti and M. A. Munoz, J. Stat. Mech. (2004) P10012.
[8] L. Donetti and M. A. Munoz, in Modeling Cooperative Behavior

in the Social Sciences, edited by P. L. Garrido, J. Marro, and
M. A. Muñoz (AIP, 2005), Vol. 779, pp. 104–107.

[9] J. Duch and A. Arenas, Phys. Rev. E 72, 027104 (2005).

[10] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[11] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature (London)
435, 814 (2005).

[12] S. Gregory, in Proceedings of the 11th European Conference on
Principles and Practice of Knowledge Discovery in Databases,
edited by J. N. Kok, J. Koronacki, R. López de Mántaras,
S. Matwin, D. Mladenic, and A. Skowron (Springer, Berlin,
2007), pp. 91–102.

[13] N. Du, B. Wang, and B. Wu, in Proceedings of the 17th
ACM Conference on Information and Knowledge Management
(ACM Press, New York, NY, 2008), pp. 1371–1372.

[14] H.-W. Shen, X. Cheng, K. Cai, and M.-B. Hu, Physica A 388,
1706 (2009).

016114-7

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1209/0295-5075/86/28004
http://dx.doi.org/10.1209/0295-5075/86/28004
http://dx.doi.org/10.1088/1742-5468/2004/10/P10012
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1016/j.physa.2008.12.021
http://dx.doi.org/10.1016/j.physa.2008.12.021


HAORAN WEN, E. A. LEICHT, AND RAISSA M. D’SOUZA PHYSICAL REVIEW E 83, 016114 (2011)

[15] D. Fiumicello, A. Longheu, and G. Mangioni, Studies in
Computational Intelligence (Springer, Berlin, 2009).

[16] H.-W. Shen, X.-Q. Cheng, and J.-F. Guo, e-print
arXiv:0905.2666 (2009).

[17] T. S. Evans and R. Lambiotte, Phys. Rev. E 80, 016105 (2009).
[18] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Nature (London) 466,

761 (2010).
[19] C. Bird, D. Pattison, R. M. D’Souza, V. Filkov, and P. T.

Devanbu, in Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(ACM Press, 2008), pp. 24–35.

[20] M. Huss and P. Holme, IET Sys. Biol. 1, 280 (2007).
[21] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, J. Stat.

Mech. (2005) P09008.
[22] M. A. Porter, J.-P. Onnela, and P. J. Mucha, Notices Am. Math.

Soc. 56, 1082–1097, 1164–1166 (2009).
[23] S. Fortunato, Phys. Rep. 486, 75 (2010).
[24] M. E. J. Newman, Phys. Rev. E 70, 056131 (2004).
[25] E. A. Leicht and M. E. J. Newman, Phys. Rev. Lett. 100, 118703

(2008).
[26] A. Arenas, J. Duch, A. Fernández, and S. Gómez, New J. Phys.

9, 176 (2007).
[27] C. R. Myers, Phys. Rev. E 68, 046116 (2003).
[28] S. Valverde and R. V. Solé, Phys. Rev. E 76, 046118

(2007).
[29] S. Valverde and R. V. Solé, Dynamics of Continuous Discrete

and Impulsive Systems: Series B; Applications and Algorithms
14, 111 (2007).

[30] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and
A. Swaminathan, in Proceedings of the 2006 International
Workshop on Mining Software Repositories (ACM Press,
New York, NY, 2006), pp. 137–143.

[31] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and
A. Swaminathan, in Proceedings of the 2006 International
Workshop on Mining Software Repositories (ACM Press, New
York, NY, 2006), pp. 185–186.

[32] C. Bird, A. Gourley, P. T. Devanbu, A. Swaminathan, and
G. Hsu, in Fourth International Workshop on Mining Software
Repositories, ICSE Workshops MSR’07 (IEEE Computer Soci-
ety, Minneapolis, MN, 2007).

[33] Z. M. Saul, V. Filkov, P. T. Devanbu, and C. Bird, in Proceedings
of the 6th ESEC/SIGSOFT Foundations of Software Engineering
(ACM Press, New york, NY, 2007), pp. 15–24.

[34] H. Wen, R. M. D’Souza, Z. M. Saul, and V. Filkov,
in Dynamics on and of Complex Networks, pp. 199–215
(Birkhäuser/Springer, Berlin, 2009).

[35] R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, Phys. Rev. E
70, 025101 (2004).

[36] J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110 (2006).
[37] J. Reichardt and S. Bornholdt, Phys. Rev. E 76, 015102 (2007).
[38] B. Bollobás, Eur. J. Combinatorics 1, 311 (1980).
[39] M. Molloy and B. Reed, Random Structures and Algorithms 6,

161 (1995).
[40] J. Bai and P. Perron, J. Appl. Econometrics 18, 111 (2003).
[41] R. Bellman, Dynamic Programming (Princeton University Press,

Princeton, 1957).
[42] A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber, J. Stat. Software

7, 1 (2002).
[43] U. Alon, [http://www.weizmann.ac.il/mcb/UriAlon/groupNet

worksData.html].
[44] [http://www.thebiogrid.org].
[45] B. Karrer, E. Levina, and M. E. J. Newman, Phys. Rev. E 77,

046119 (2008).
[46] G. Palla et al. [http://cfinder.org/].

016114-8

http://arXiv.org/abs/arXiv:0905.2666
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1049/iet-syb:20060077
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1088/1367-2630/9/6/176
http://dx.doi.org/10.1088/1367-2630/9/6/176
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1103/PhysRevE.76.046118
http://dx.doi.org/10.1103/PhysRevE.76.046118
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1103/PhysRevE.76.015102
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/jae.659
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html
http://www.thebiogrid.org
http://dx.doi.org/10.1103/PhysRevE.77.046119
http://dx.doi.org/10.1103/PhysRevE.77.046119
http://cfinder.org/

