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The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function
of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated
nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order
transition, which is much smoother than the traditional second-order transition. More recently, it was shown that
adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely
abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that
combines both node arrival and edge competition. If started from a small collection of seed nodes, we show
that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of
infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic
of explosive percolation transitions. This realization may inspire new design rules where network growth can
temper the effects of delay, creating opportunities for network intervention and control.
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I. INTRODUCTION

Real-world networks are not static but instead have
structures that evolve in time [1–5]. This dynamical aspect
can have implications for important network properties such
as the extent of connectivity among nodes, nodal degree
distributions, and degree-degree correlations [6–11]. The
onset of large-scale connectivity is typically modeled as a
percolation phase transition [12–14]. Despite the dynamic
nature of a network, most models of percolation analyze the
connectivity among a fixed collection of N initially isolated
nodes, similar to the seminal Erdős-Rényi model [15]. Edges
chosen uniformly at random from all possible edges are then
added to the graph. From a different perspective, node arrival
is also a natural consideration, as captured by seminal network
growth models such as preferential attachment [6], growth by
copying [16], and duplication-mutation mechanisms [17].

Several years ago, a variant of the Erdős-Rényi percolation
model that includes node arrival was introduced by Callaway
et al. [7]. The model, which we call the CHKNS model after the
initials of the authors, showed that the percolation transition is
much smoother with node arrival, where the number of nodes
increases as the expected edge density remains fixed [7,18].
In this case, we have a randomly grown graph as opposed
to a random graph. The process starts from a collection of
one or two isolated nodes. At each discrete time step, a node
is added to the graph and then with probability δ an edge is
added between two nodes chosen uniformly at random. All
nodes connected together by following a path of edges form
a component, and as δ increases, so too does the expected
size of components. The percolation transition corresponds
to the emergence of a “giant component” (i.e., a component
that contains a finite fraction of all the nodes), and the critical
value for this transition in the CHKNS model was shown to be
δc = 1/8 [7].

Rather than the second-order phase transition that charac-
terizes typical percolation transitions [12–14], the CHKNS
transition is much smoother (it is of infinite order) [19].
Furthermore, when a node is picked at random, the average
size of the component to which that node belongs (traditionally
referred to as the susceptibility) exhibits a discrete jump at
the critical point but remains finite. Introducing the idea that
growth in a system can lead to a very different behavior
and showing that these effects stem from high degree-degree
correlations between nodes that arrive early during the pro-
cess are two significant contributions made by the CHKNS
model.

More recently, the notion of competition among arriving
edges was shown to alter the location and nature of the
percolation phase transition [20]. Starting from a collection
of N isolated nodes, at each time step a set of m candidate
edges are chosen uniformly at random, where m is a fixed
constant. The consequences of adding each edge is examined
and only the single edge that minimizes or maximizes a
predefined criteria is actually added to the graph; the other
candidate edges are discarded. Criteria that delay the onset of
percolation can also alter the nature of the transition, leading
to an extremely abrupt change in large scale connectivity that
appears discontinuous for any finite system [21–24]. Such
abrupt transitions are referred to as “explosive percolation.”

In this paper, we combine the two approaches: node
arrival, which is known to lead to a smoother transition, and
competition between edges, which is known to lead to an
abrupt “explosive” transition. The process analyzed begins
with two isolated nodes. At each discrete time step a new
node arrives and, with probability δ, we add an edge to the
graph via a competitive process called the “adjacent edge”
(AE) rule [25] (defined explicitly in Sec. II). We call this
model the AE-CHKNS model, as it combines the AE rule
with the CHKNS model. As expected, we find that the critical
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point of the AE-CHKNS model is significantly delayed when
compared to that for the original CHKNS model. Surprisingly,
we find that the AE-CHKNS model results in a smooth,
infinite-order phase transition with scaling behavior similar to
the CHKNS model. However, the average size of a component
when a node is picked at random (the susceptibility) diverges
at the critical point, whereas in the original CHKNS model
susceptibility remains finite with a discrete jump at the critical
point.

Hence, edge competition in a graph with node arrival is fun-
damentally different from edge competition in a system where
the number of nodes is static. In the latter, competition leads
to an extremely abrupt percolation transition [20,22,23,25]
and in the former the transition can be infinitely smooth.
This suggests that introducing node arrival into models of
percolation with edge competition provides opportunities to
effectively delay the onset of large-scale connectivity, but
without the accompanying abruptness of “explosive perco-
lation” transitions. This may be a desirable feature in many
circumstances. For instance, in an abrupt transition, the instant
the system transitions to the supercritical regime, a large
fraction of the network is already connected together. In
contrast, in an infinitely smooth transition, only a small fraction
of the nodes are in the largest component as we enter the
supercritical regime, allowing ample time for detection of
large-scale connectivity and for network interventions.

II. MODELS OF NETWORK GROWTH

Here we combine two prominent ideas in the study of
complex networks: growth and choice. In Secs. II A and II B,
we explicitly define the existing models, which form the basis
for the hybrid model that we then introduce in Sec. II C.
In Sec. III, we analyze the hybrid model focusing on the
emergence of a giant component as we increase the control
parameter δ. The parameter δ denotes the expected edge
density, becoming exact in the limit of number nodes going to
infinity.

A. CHKNS process

CHKNS is a model of network growth with node and edge
arrival. Starting from a small collection of seed nodes, at each
time step a node is added, and with probability δ a random edge
is added between any two existing nodes chosen uniformly at
random. Formally, the CHKNS model is defined as follows.
Starting with one isolated node at time t = 1, at each discrete
time step:

(1) A node is added to the graph.
(2) With probability δ, an edge is added to the graph between

two nodes chosen uniformly at random from the set of all
nodes, including the node just added.

(3) If t < N , set t → t + 1 and return to step 1. Stop when
t = N .

In the limit N → ∞, the model has an infinite-order phase
transition at δ = 1/8 [7]. We note that the critical value of
δ is much smaller when compared to standard Erdős-Rényi
percolation, which has δc = 1/2 [15]. Moreover, the nature
of the resulting phase transition is extremely smooth when
compared to the phase transition in the Erdős-Rényi model.

In Ref. [7] it was established that the primary reason for
the difference in behaviors is due to the high degree-degree
correlations that arise due to the time-ordered arrival of nodes.
The simplicity and tractable nature of the model has inspired
rigorous analysis [18,19] and the model has been applied in a
variety of different settings such as modeling email networks
and the spread of computer viruses [26], modeling the spread
of epidemics [27], and analyzing social networks [28] and
protein interaction networks [29,30].

B. AE percolation

The adjacent edge (AE) percolation model starts from a
collection of N -isolated nodes, and edges are then added in
a competitive manner. First, a node is chosen uniformly at
random. Then two other nodes are chosen, again uniformly
at random, and the edge connecting the first node to the
second node and the edge connecting the first node to the third
node are examined (i.e., both potential edges are adjacent,
sharing the first vertex in common). The edge that leads to a
smaller component is added and the other is discarded. (If both
candidate edges would result in the same size component, one
of them is chosen at random and added to the graph.) Thus,
starting with N -isolated nodes at time t = 0, the process can
be stated formally as follows [31]. At each discrete time step:

(1) With probability δ, an edge is added to the graph
according to the rule defined above.

(2) If t < N , set t → t + 1 and return to step 1. We stop
when t = N .

In the limit of N → ∞, the phase transition occurs at
approximately δ ≈ 0.796 [25]. This value is larger than for
the Erdős-Rényi model (which has δc = 1/2), showing that
the addition of choice delays the phase transition. Although
the phase transition looks discontinuous for finite-system sizes
[25], it has been shown via analytic arguments [21–24,32,33]
and rigorously proven [34] that the transition is continuous
in the thermodynamic limit. Yet, the phase transition belongs
to a universality class that is different from that of standard
second-order phase transitions [22,33].

The AE model is a “local” process, in that with each link
addition a node is first selected and that node then needs to
make a choice between two options made available to it. Each
step of the AE model involves three nodes (the initial node and
the nodes at the end of each candidate edge) and thus involves
at most three distinct components, enabling a probabilistic
analysis of the evolution of component sizes [25].

C. AE-CHKNS process

Here we formally define a model combining both the
CHKNS and the AE percolation processes. Starting with two
isolated nodes at t = 2, the AE-CHKNS model is defined as
follows. (See Fig. 1 for an illustration.) At each discrete time
step:

(1) A node is added to the graph.
(2) With probability δ, an edge is added to the graph

according to the AE rule.
(3) If t < N , set t → t + 1 and return to step 1.
We study the behavior of this system as the probability of

adding an edge, δ, is varied from 0 to 1. At any time t , the total
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(a) t = 11 (b) t = 12

FIG. 1. (Color online) Example of the AE-CHKNS process.
(a) At time t = 11 when a node (indicated by an arrow) is added
to the graph but no edge is added. (b) The next time step, i.e., t = 12,
when both a node and an edge (indicated by arrows) are added. To
add the edge, three nodes are chosen uniformly at random. The first
node (indicated with the dashed circle) must form an edge with one of
two other nodes (indicated by the dashed squares), always choosing to
connect to the node in the smaller component. Thus, for this example,
the edge indicated by the arrow is added.

number of nodes present in the network is equal to t and the
expected number of edges is δt . (Hence, edge density is δ.) We
are interested in the properties of the system in the asymptotic
limit N → ∞. We analyze the process via both mean-field
evolution equations and by Monte Carlo simulations of the
direct graph evolution process. While our mean-field evolution
equations are in the limit of N → ∞, simulations of the growth
process are always stopped at a finite N .

III. ANALYSIS

We begin by analyzing the average number of components
of size k at time t , Nk(t). Nk(t) can be used to calculate suscep-
tibility and the size of the largest component, two properties
that are commonly used to determine the critical point at which
the percolation transition occurs [14]. Our analysis is based on
differential equations used to model percolation as a cluster
aggregation process. See Refs. [35,36] for a general overview
of such analyses, Ref. [37] for such a model that yields a
discontinuous percolation transition, and Ref. [25] for a model
of cluster aggregation with a choice between two edges. These
are mean-field equations describing the ensemble of networks
obtained from the graph evolution process.

Note that the probability of selecting a node uniformly at
random from a component of size k is kNk(t)/t . Then, using
the notation of Ref. [25], we can define sk , the probability that
a randomly chosen node comes from a component of size k or
greater:

sk(t) = 1 −
k−1∑

j=1

jNj (t)/t. (1)

This quantity is related to the AE rule by the following
argument [25]. When two nodes are picked at random, s2

k is
the probability that both nodes come from a component of size
k or greater. Thus, the probability that both nodes come from a
component size k + 1 or greater is s2

k+1. Consider the quantity
s2
k − s2

k+1. It is the difference between probability of both
nodes coming from components of size k or greater and the
probability of both of them coming from size k + 1 or greater,
i.e., one of the nodes should come from a component of size k

and the other from a component of size k or greater. Therefore,

when two nodes are picked at random, the probability that
one of them comes from a component of size k and that
the other from a component of size k or greater is given by
s2
k − s2

k+1 = 2[kNk(t)/t]sk − [kNk(t)/t]2.
With this established, we can now describe the time

evolution of the isolated nodes, namely N1(t). At the next
discrete time step, the number of isolated nodes is initially
incremented by one with the addition of a new node. Yet,
when a link is added (which happens with probability δ), the
number of isolated nodes is decremented by one if the first
chosen node is isolated or if either the second or third node
is isolated. It is decremented by two if both the first node
and either the second or third node is isolated. Therefore, the
average number of components of size one can be obtained as

N1(t + 1) = N1(t) + 1 − δN1(t)/t − δ[s1(t)2 − s2(t)2]

=N1(t) + 1 − δN1(t)/t − 2δN1(t)/t + δ[N1(t)/t]2.

(2)

For larger components (i.e., k > 1), when an edge is added
Nk decreases if the first node is in a component of size k. It also
decreases if the smaller of the second and third components
considered are of size k. In contrast, Nk increases when two
smaller components, one of size k − j and one of size j , merge
to form a component of size k. Therefore,

Nk(t + 1) = Nk(t) − δNk(t)/t − δ[sk(t)2 − sk+1(t)2]

+ δ

k−1∑

j=1

jNj (t)[sk−j (t)2 − sk−j+1(t)2]/t

= Nk(t) − δNk(t)/t − δ2kNk(t)sk(t)/t

+ δk2[Nk(t)/t]2

+ δ

k−1∑

j=1

jNj (t)[sk−j (t)2 − sk−j+1(t)2]/t. (3)

Following Ref. [7], we now pose the ansatz that, in the
limit t → ∞, the average number of components of size k

takes the form Nk(t) = akt , where ak is a constant independent
of time. We also define sk = limt→∞ sk(t). The fraction of
nodes that belong to components of size k is given by kak .
Substituting these variables into Eqs. (2) and (3) and taking
the limit provides, for k = 1,

a1 = 1 − δ
(
3a1 − a2

1

)
, 0 = δa2

1 − (3δ + 1)a1 + 1. (4)

Similarly, for k > 1, we obtain

ak = −δ
(
ak + 2kskak − k2a2

k

) + δ

k−1∑

j=1

jaj

(
s2
k−j − s2

k−j+1

)
.

Rearranging this equation, we arrive at the condition:

0 = δk2a2
k − [(1 + 2ksk)δ + 1]ak

+ δ

k−1∑

j=1

jaj

(
s2
k−j − s2

k−j+1

)
. (5)

Solving for a1, we obtain the two solutions a1 = 1
2δ

(3δ +
1 ± √

9δ2 + 2δ + 1). Since a1 is the ratio of isolated nodes
to the total number of nodes present in the network, we
require that a1 � 1 for all values of δ. Using the above
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constraint, we eliminate one of the two solutions to get
a1 = 1

2δ
(3δ − √

9δ2 + 2δ + 1). We note that the equation for
ak only depends on aj ’s where j < k. Thus, having solved for
a1 we can recursively solve for each ak with k > 1 starting with
a2. From our simulations we find that ak+1 < ak for all values
of δ. Using this as a condition, we are able to select a single
solution for each ak . We also note that, since we numerically
solve for the ak’s, we can only solve for a finite number of them.
The maximum value of k solved for via numerical iteration of
Eq. (5) is denoted km. For a given level of accuracy, we would
need to use larger values of km the closer we are to the critical
point. We also verify the ansatz that Nk(t)/t goes to a constant
ak in the limit of t → ∞ is indeed true for the AE-CHKNS
process.

IV. RESULTS

A. Fractional size of the largest component

We denote the fractional size of the largest component by
S. In other words, S is the ratio of the number of nodes in
the largest component to the total number of nodes in the
network. As the value of δ is increased, S increases from zero
to a nonzero value; it is the order parameter for this phase
transition. The fractional size of the largest component can be
obtained from the ak values as

S = 1 − lim
km→∞

km∑

k=1

kak. (6)

Figure 2 shows the fractional size of the largest component
obtained from Monte Carlo simulations of the graph evolution
process and from the values found for ak using Eqs. (4) and
(5). The critical point is the smallest value of δ for which S

becomes nonzero in the asymptotic limit. From Fig. 2 we can
see that the critical point (δc) for AE-CHKNS clearly lies in
the region 0.3 < δc < 0.4.

FIG. 2. (Color online) Fractional size of the largest component
as a function of δ for the CHKNS model, AE percolation, and AE-
CHKNS. Solid line: Analytic behavior predicted for AE-CHKNS via
Eq. (6) evaluated by numerically solving Eq. (5) up to km = 2 × 104.
Circles are obtained from Monte Carlo simulations of the network
with N = 105 nodes with each point averaged over 100 realizations.
Error bars are smaller than the size of the marker. The results for
AE percolation and CHKNS model are from Refs. [7] and [25],
respectively.

FIG. 3. (Color online) Plotted is ak versus k, the fraction of nodes
belonging to components of size k, for three different values of δ

for the AE-CHKNS process. Solid lines: theoretical results obtained
from solving Eqs. (4) and (5). Markers: simulation averaged over 105

realizations. The error bars are smaller than the size of the marker.

B. Average number of components of a given size

In the limit t → ∞, the kak values, which can be obtained
from Eqs. (4) and (5), correspond to the fraction of nodes in
the network that belong to components of size k. Figure 3
shows the distribution of ak for three different values of δ,
including results from the direct Monte Carlo simulations
(solid symbols) and from the numerical solution (solid lines)
obtained by iteratively solving Eqs. (4) and (5). The excellent
agreement between the simulations and the numerical solution
indicates that our analytic equations successfully estimate the
ak values for different values of δ.

In Sec. IV A, we were able to deduce that the critical point
lies in the region 0.3 < δc < 0.4. In the vicinity of the critical
point (e.g., δ = 0.32 on Fig. 3), ak versus k exhibits a power-
law. For smaller values of δ (e.g., δ = 0.10 on Fig. 3) and for
larger values (e.g., δ = 0.60 on Fig. 3), ak versus k falls faster
than a power-law (i.e., exponentially). In the next section we
take advantage of this behavior to refine our estimate of the
critical point.

C. Estimating the critical point

Traditional methods of determining the critical point in-
volve looking at the smallest value of δ where the fractional
size of the largest component S is nonzero or the point where
the susceptibility χ is nonanalytic. However, we were unable
to obtain a closed form expression for S and χ . Although we
can estimate these quantities with summations involving ak

[Eqs. (6) and (7)], we have to truncate these summations at a
finite value of k (i.e., km). Such truncated S and χ prove to be
ill-suited for estimating δc. This section presents an alternative
method founded on the assumption that, like other physical
quantities [38,39], ak versus k exhibits a power-law behavior
(ak ∼ k−C) at the critical point. This alternate method proves
much more appropriate for estimating δc in the presence of
truncation.

Our observations reveal that, for δ �= δc but sufficiently
close, ak versus k shows an algebraic decay for small values
of k followed by a sharper (exponential) decay when k is
large. Therefore, we fit the ak values to a power-law with
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FIG. 4. (Color online) Fitting ak = Ak−C exp(−Bk) for different
values of δ and km [the maximum value of k solved for in Eq. (5)].
Plotted are B values obtained from best fits and the associated error
E, with km values indicated in parentheses. Both B and E show
a sharp drop at δ = 0.3223, indicating the distribution is an exact
power-law in the vicinity of that point. While the point at which B

goes to zero with increasing δ does not change with km, the point at
which B again becomes nonzero shifts to the left as we increase the
value of km, indicating that in the truly infinite limit the exponential
cutoff parameter, B, will be zero only at the critical point.

an exponential decay [i.e., ak = Ak−C exp(−Bk)] for various
values of δ around the critical point. By our assumption that
ak should be exactly power-law distributed for δ = δc, we
expect this fitting function to exactly reproduce the data with
the parameter B = 0 at the critical point. The goodness of
fit is estimated by using the sum of squares of the difference
between the fit and ak values, which we refer to as the error
(E). Figure 4 shows how both the error and the value of the
parameter B, which controls the onset of exponential decay,
drop by several orders of magnitude at δ = 0.3223. (Note, if
B → 0, we recover a pure power law, ak = Ak−C .)

The parameter B and the error E are shown for three
different values of km in Fig. 4. (Recall km is the maximum
value of k up to which we solve for ak’s.) We note that as
δ increases, the B values for the three different values of km

drop at δ = 0.3223, but the point where B starts to increase
again differs for different values of km. From Fig. 4 we can see
that this point, where B starts to increase again, has the value
δ ≈ 0.328 for the smallest km shown and that it decreases with
increasing km. This suggests that as km → ∞, the point where
B becomes nonzero moves leftward and ultimately coincides
with the point where B becomes zero, i.e., B is zero at exactly
one point (δ � 0.3223). From Fig. 4 we can see that the
distribution of the ak’s follows a power-law in the vicinity
of δc � 0.3223 with an accuracy of ±2 × 10−4. At δ = δc, the
fitting routine gives the best fit value of the exponent C � 2.68.
For δ > δc, the errors E grow rapidly because the ak values no
longer fit a power-law with an exponential decay.

D. Susceptibility

The susceptibility χ is defined to be the average size of
the component to which a randomly chosen node belongs
(excluding the giant component, if any). It can be expressed in

0.2 0.4 0.6 0.8

δ

2

4

6

8

10

12

14

16

χ

FIG. 5. (Color online) Susceptibility χ (average size of a com-
ponent to which a randomly chosen node belongs) as a function
of edge density, δ. Markers: numerical simulations averaged over
100 realizations for system sizes N = 104 (circles) and N = 105

(squares). Solid lines: analytical results obtained by truncating the
sums of Eq. (7) at km = 2 × 104.

terms of ak’s as

χ = lim
km→∞

∑km

k=1 k2ak∑km

k=1 kak

. (7)

Figure 5 shows, for both theory and simulations, how χ varies
as a function of δ. Note that if ak decays as a power law with
exponent γ , then the numerator of Eq. (7) (and thus χ ) diverges
when γ < 3. Recall from Sec. IV C that at the critical point
ak ∼ k−C with C � 2.68. This implies that, for AE-CHKNS,
χ diverges at the critical point, as corroborated in Fig. 5. In
contrast, the susceptibility in the CHKNS model exhibits a
discrete jump at the critical point but remains finite. Note that
in the CHKNS model, for δ = δc, ak ∼ 2k−3(log k)−1 [18],
which results in a χ that converges to a finite value for all
values of δ. The divergence in the average component size
indicates a broader component distribution for AE-CHKNS
when compared to the CHKNS model.

E. Critical scaling: Infinite-order phase transition

The nature of a phase transition is characterized by the
way the order parameter behaves close to the critical point.
This behavior governs how the system evolves from one phase
to another and has significant bearing on the dynamics of
the system close to the critical point. Traditionally studied
percolation transitions, such as the one exhibited by the
Erdős-Rényi model, are second order. For a second-order
phase transition, the parameter S scales as

S ∼ (δ − δc)γ , (8)

for δ > δc [38]. There also exist systems where the transition
has a much smoother behavior as observed in models such
as the CHKNS model. These transitions can typically be
characterized by the following scaling relationship

S ∼ eα(δ−δc)−β

, (9)
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FIG. 6. (Color online) The fractional size S of the largest com-
ponent close to the critical point. Eq. (6) was evaluated numerically
to obtain S for different values of km in order to show the effect of
truncation. (a) The absence of a linear segment in the plot of ln S

vs. ln(δ − δc) indicates that this phase transition is not second order.
(b) The presence of a linear segment, best fit by the dashed line in
the plot of ln(− ln S) vs. ln(δ − δc) is indicative of an infinite-order
phase transition.

for δ > δc. Since the order parameter has an exponential form,
it is infinitely differentiable and the resulting phase transition
is known to have infinite order.

Figure 6 shows the plot of S, the fractional size of the
largest component, as a function of δ − δc in two different
scales. Figure 6(a) is a plot with both axes on a log scale for
different choices of the maximum values of km (the maximum
k for which the ak’s are computed). If S were to scale as
(δ − δc)γ close to the critical point, we should see a straight
line on the left-hand side of the plot. The absence of a linear
segment shows that the phase transition is not of second order.
We also verify that slightly changing the value of δc does
not give us a straight line on this plot. Figure 6(b) shows
ln(− ln S) as function ln(δ − δc) for different choices of km.
For an infinite-order process, in the limit km → ∞ we should
see a straight line for small positive values of δ − δc (left-
hand side of the plot). In contrast to Fig. 6(a), in Fig. 6(b)
there is a linear segment, the length of which increases as we
increase the value of km. This indicates that the transition is of
infinite order [see Eq. (9)]. Using km = 5 × 105, we estimate
the slope of this segment to be −0.50 ± 0.01, which indicates
that, similar to the CHKNS model, the AE-CHKNS model also

exhibits scaling behavior with β = 0.50 ± 0.01. With respect
to the second scaling parameter, for AE-CHKNS we find that
α = −0.53 ± 0.03, which is higher than the value found for the
CHKNS model where α = −π/

√
8 � −1.1107 [19,40]. This

implies that although both AE-CHKNS and CHKNS share the
same functional form for the growth of the fractional size of
the largest component, AE-CHKNS has a faster rate.

V. DISCUSSION AND CONCLUSION

In this manuscript we introduce and study (both analyti-
cally and numerically) a model of a growing network with
competition between edges. Starting from a small collection
of seed nodes, at each discrete time step a new node arrives and
with probability δ a new edge is added through a competitive
process according to the adjacent edge rule. Without edge
competition (i.e., the original CHNKS model), the critical
point is δc = 1/8. For our model (i.e., the AE-CHKNS model),
δc � 0.3223. Thus, the ability to choose between two random
edges can delay the emergence of large-scale connectivity by a
factor of more than two. We also provide strong evidence that,
despite the addition of edge-choice to the model, the phase
transition remains infinite order rather than becoming second
order. There is a difference, however, in the behavior of the
susceptibility. The susceptibility diverges at the critical point
in the AE-CHKNS model while it remains bounded in the
CHKNS model.

Delaying percolation through a competitive edge process
has been the focus of many studies in recent years, and
these studies indicate that delaying percolation leads to
an abrupt, “explosive” transition [20–25,37,41–45]. (The
transition appears discontinuous on any finite system and
in the thermodynamic limit has a universality class distinct
from standard second-order transitions.) Here we show that
node arrival can temper this effect of edge competition. The
interplay of node and edge arrival in the AE-CHKNS model
allows us to considerably delay the percolation transition but
achieve an infinitely smooth transition. This opens possibilities
for network design and control. For instance, a smooth
transition allows for the detection of large-scale connectivity
while it is still quite limited, allowing time to enact network
interventions. Thus, with node arrival, one might effectively
achieve the twofold goal of delaying large-scale connectivity
while enhancing opportunities for network interventions.

We should note the extremely different initial conditions
of the CHNKS and the AE models. CHKNS is initialized
with a small set of seed nodes, N0 = O(1). In contrast,
AE is initialized with a large collection of seed nodes, N0,
and analyzed in the limit N0 → ∞. The AE-CHKNS model
introduced here uses the initial conditions of CHKNS. Another
important fact to note is that in the AE-CHKNS model, since δ

is defined as the probability of adding an edge, the rate of edge
arrival can never exceed the rate of node arrival. We also note
that many real-world networks, from online social networks
to electric power grids, have edge density that increases over
time [46–48].

Future work could explore different regimes between the
AE-CHKNS and the AE model, especially if edges arrive more
frequently than nodes. Starting with N0 nodes and no edges
at time t = N0, a process similar to the following could be
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used to grow a graph of N nodes with edge density δ. At each
discrete time step:

(1) A node is added to the graph.
(2) A number is drawn from a Poisson distribution of

mean δ/(1 − N0/N ). That many edges are added to the graph
according to the AE rule.

(3) If t < N , set t → t + 1 and return to step 1.
In the limit N → ∞, different regimes could be studied

depending on how N0 depends on N . There are two extremes.
Using N0 = O(1) should result in a process very similar to
AE-CHKNS with a smooth transition. On the other hand, using
N0 = N − O(1) should result in an explosive transition similar
to the AE percolation. We leave it to future work to explore
the intermediate regimes, which may elucidate how much node
arrival is necessary to mitigate the abrupt nature of the delayed
phase transition.

Finally, it would also be interesting future work to in-
vestigate if growth is necessary to significantly delay the
transition while preserving its smoothness, or if the intricate
correlations introduced by the time ordering of the nodes could
be reproduced through different means.
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[3] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and

Z. Ghahramani, J. Mach. Learn. Res. 11, 985 (2010).
[5] V. Nicosia, G. Bianconi, V. Latora, and M. Barthelemy,

Phys. Rev. Lett. 111, 058701 (2013).
[6] A. Barabási and R. Albert, Science 286, 509 (1999).
[7] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E.

J. Newman, and S. H. Strogatz, Phys. Rev. E 64, 041902
(2001).

[8] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85,
4629 (2000).

[9] A. Vázquez, Phys. Rev. E 67, 056104 (2003).
[10] R. M. D’Souza and S. Roy, Phys. Rev. E 78, 045101(R) (2008).
[11] B. Karrer and M. E. J. Newman, Phys. Rev. Lett. 102, 128701

(2009).
[12] D. Stauffer and A. Aharony, Introduction to Percolation Theory

(CRC Press, LLC, Boca Raton, 1994).
[13] M. Sahimi, Applications of Percolation Theory (CRC Press,

LLC, Boca Raton, 1994).
[14] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Mod.

Phys. 80, 1275 (2008).
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