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1 Software: A General Paradigm for Network Systems?

Our modern infrastructure relies increasingly on computation and computers.
Accompanying this is a rise in the prevalence and complexity of computer
programs. Current software systems (composed of an interacting collection
of programs, functions, classes, etc.) implement a tremendous range of func-
tionality, from simple mathematical operations to intricate control systems.
Software systems are inherently extendable and tend to gain new functionality
over time. Modern computers and programming languages are Turing com-
plete and, thus, capable of implementing any computable function no matter
how complex. The interdependencies between the elements of a software sys-
tem form a network, and, therefore, we believe software systems can provide
useful prototypic examples of how to build complex networked systems which
require minimal maintenance, are robust bugs to and yet are readily extend-
able. Thus we ask: What makes for good design in software systems?

We are particularly interested in open source software (OSS)—software
with source code that is freely available for download and modification. A
typical OSS project is a collaborative effort by volunteers, with no central
authority assigning development tasks. Instead individuals, or self-organized
teams of developers, fix bugs and maintain and extend the code. In OSS,
modularity is essential [1, 2], and remarkably, the software resulting from an
OSS process can rival or even surpass the quality of commercial software [3, 4].

Software systems are always evolving, responding to user demands for “bug
fixes” and new features. Invariably, systems grow in size and complexity, even-
tually becoming difficult to parse, maintain and extend further. In response
to this, developers refactor their systems [5], streamlining and restructuring
the entire code base. Thus there are several strong analogies between OSS
systems and biological systems. Both classes of systems are inherently modu-
lar, readily evolvable, must be robust to anomalies and experience periods of
punctuated equilibrium [6]. Yet high-confidence data on the structure of OSS,
unlike data on biological networks, is easily obtained for minimal cost.
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We analyze a series of fifty monthly snapshots of the function call graph of
the Apache 2.0 HTTP Server (called Apache herein). Apache is the most
popular web server on the Internet, and has been since 1996 [7]. It is a mature,
well-established OSS project managed by a group of volunteers world-wide; to
date, hundreds of users have contributed to the code base. Apache is written
in the C programming language, a procedural language. The basic elements
are functions that explicitly invoke one another through function calls which
express the command flow of the program/system. In object oriented systems,
in contrast, the software networks are made of edges representing abstract
relationships between objects, such as inherits, invokes, etc.

Motivated by advances in network science, we first analyze a collection of
measures on global properties of the Apache call graphs. Certain measures
behave consistently and we quantify their baselines. Moreover, we find that
punctuated changes in these global measures can signal when a more detailed,
fine-grained examination of code structure is required. Jumps in global prop-
erties can indicate major refactorings, but can also result from restructuring
just a few functions (and radically reduce interdependencies). We then turn
our focus to a bottom-up approach, studying how observable attributes of
the Apache call graph interact using exponential random graph models. Ulti-
mately, by coupling top-down and bottom-up approaches, we want to extract
how code is restructured over time to achieve better design. As a mature
project, Apache is more in “maintenance” than in growth mode, and the de-
tails of changes can be subtle. Yet, these changes may be especially important
given that a major expense associated with software is maintenance [8].

Interest in OSS spans multiple communities, from software engineering, to
network science, to economics and organizational behavior. Raymond’s semi-
nal work [1] is an excellent review of the latter, contrasting the “cathedral” or-
ganization of proprietary software to the open “bazaar” nature of open source.
Perhaps the first work to consider software systems as complex networks was
by Valverde, Ferrer Cancho and Solé [9], in which they show software col-
laboration graphs have “scale-free” properties which may result from optimal
design. Shortly thereafter, Myers conducted a detailed investigation of soft-
ware collaboration graphs [10], quantifying many features we discuss herein.
Both [9] and [10] focus primarily on object oriented software (unlike Apache,
which is procedural software), looking at one time snapshot of the collabora-
tion network between classes and objects for several different software systems.
Similar to MacCormack, Rusnak and Baldwin [11], we are interested in track-
ing the evolution of a software system, focusing on the function call graph.
In [11], their interest is understanding the impact of managerial organization
on resulting software structure (primarily the modularity).

This manuscript is organized as follows. In Sec. 2 our data set is defined.
Section 3 presents the top-down approach, studying evolution of global mea-
sures. Section 4 presents the bottom-up approach to understanding the rel-
ative importance of measures of structure via statistical modeling. Section 5
contains discussion and conclusions.
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2 The Apache Call Graphs
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Fig. 1. The “5-core” of Apache on
November 2005. Each node is a function,
with size indicating its relative length in
lines of code. Each directed edge is a func-
tion call.

We analyze the evolution of Apache
for a fifty-month period using call
graph snapshots taken at one month
intervals from October, 2001 to
November, 2005. Each monthly call-
graph was created via a two step
process (see [12] for more details).
First, the source was checked out
from the Apache CVS repository (for
that month) along with matching ver-
sions of both the compiler (and as-
sociated tools) and the libraries used
by Apache (e.g., the Apache Portable
Runtime). Then, the callgraph was
extracted using CodeSurfer [13], a
proprietary source code analysis tool.
The resulting call graphs are directed
graphs where the nodes are functions,
and each edge represents an explicit
call from its source node to its target
node. The CodeSurfer tools extract
all explicit function calls, including
those to functions in libraries.

The resulting call graphs are ex-
tremely interconnected. In November
2005, there are 2909 nodes and 8284 edges (average node degree of 5.7).
The largest connected component contains all but 72 nodes, while the sec-
ond largest component has only 12 nodes. Figure 1 is a subgraph showing the
k-core [14, 15] at k = 5 for Apache functions (excluding library calls).

3 Evolution of Apache: Global measures

3.1 Nodes and edges

The most basic constituents of the Apache call graph network are the func-
tions (i.e., nodes) and function calls (i.e., edges). We denote the number of
functions and calls at a given time by, respectively, N(t) and E(t). Figure 2(a)
shows their evolution over the entire 50 month period. Our first evidence for
a restructuring of the code is observed during the 4th to the 5th months,
when there is a dramatic decrease in N , of approximately 250 functions, ac-
companied by a much smaller decrease in E, of approximately 75 function
calls. Thus the average degree (N/E) increases dramatically in this period.
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Fig. 2. (a) Evolution of the number of functions N (left-hand axis) and the number
of function calls E (right-hand axis) during the 50 month period. (b) E as a function
of N since the first stable release of Apache 2.0 in May 2002 through Nov 2005
(months 8-50). Dots are individual data points. The line is the best fit, E ∼ N1.18.

Investigating the Apache release history [16], we find that this period (from
2002-1-1 to 2002-2-1) marks the transition from the second to the third beta
release of Apache 2.0. According to the release logs, approximately 130 changes
were made to the code, with ten of these changes being addition of new fea-
tures. The bulk of the remaining changes were bug fixes along with a few
performance improvements. Functionality of the system was enhanced during
a period where the number of functions decreased. We assume redundancy in
functions was eliminated, while “functionality” (perhaps more closely related
to number of edges) was preserved and enhanced.

The first stable (non-beta) releases of Apache 2.0 were issued shortly there-
after, in April and May 2002. From thereon, the relationship between E and
N is extremely consistent as shown in Fig. 2(b). We find that E ∼ N1.18. Re-
markably, Valverde and Solé find almost identical scaling, of E ∼ N1.17, for a
collection of 80 object oriented systems [17], where N is the number of classes
and E is the total number of edges, with each edge representing a relationship
between classes. This suggests some universal trend in software systems.

3.2 Degree and degree distribution

The degree of a function conveys much information, and it is important to
distinguish in-degree (being called) from out-degree (calling another func-
tion). In-degree is a measure of code reuse, and functions with high in-degree
are information producers. Nodes of high out-degree are information con-
sumers/brokers, consolidating information from many external sources. In the
Apache call graphs the largest observed in-degree is approximately 200, while
the largest out-degree is approximately 30. Due to these differences, we ex-
amine in- and out-degree independently.
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Fig. 3. (a) In-degree distribution and (b) out-degree distribution for the first month
and final month. The dashed line is the best fit functional form for the final month:
(a) p(k) = 0.55·k−1.84, and (b) p(k) =

(
2πσ2k2

)−1/2
exp

[
−(ln k−µ)2

2σ2

]
, with µ = 0.75

and σ2 = 0.93.

One of the most investigated aspects of “complex networks” is their de-
gree distributions, found to exhibit extreme heterogeneity, with node degrees
spanning decades of range. Here too, we find such broad-scale features. Fig-
ures 3 (a) and (b) show respectively the in- and out-degree for the first and
the last of the 50 months investigated, where p(k) is the fraction of nodes
observed with degree k.

Following [18], we asses the best fit to the data between power law,
log-normal, and stretched-exponential distributions, using a weighted least
squares fit. The weight given to each data point reflects inversely how much
uncertainty there is in that point (more uncertainty in the tail where the val-
ues are much smaller). The quality of a fit between the set of data points {hi}
measured a values {xi} and a function f is quantified as:

Q =
k∑

i=1

1
hi

[hi − f(xi)]
2

with smaller Q better. We find that, for in-degree, a power law provides the
best fit for each of the fifty months with Q ≈ 0.04. Fitting a log-normal
distribution to in-degree gives Q ≈ 0.08, and stretched-exponential gives Q ≈
0.15. For out-degree, log-normal provides the best fit for all fifty months with
Q ≈ 0.02. A stretched-exponential gives the next best fit with Q ≈ 0.06, and
a power law fit is the worst, with Q ≈ 0.16.

There are small, almost indiscernible changes to the distributions over
the fifty months. For in-degree we find the exponent of the best fit power law
slowly decreases from γ ≈ 1.9 to γ ≈ 1.84, reflecting that the maximum values
of in-degree slowly increase with time. For out-degree, the mean out-degree of
the best fit log-normal distribution slowly increases from µ ≈ 0.64 to µ ≈ 0.75.
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  A B C D E F 

A 0 1 0 1 0 0 

B 0 0 1 0 0 0 

C 0 0 0 1 0 0 

D 0 0 0 0 1 0 

E 0 0 0 0 0 1 

F 0 0 0 0 0 0 

 

Fig. 4. (a) A simple call graph. (b) The equivalent dependency matrix.

However, the shapes of both the in- and out-degree distributions (power law
and lognormal respectively) are global properties which are established before
our data sampling begins and remain invariant throughout.

3.3 Dependencies, visibility and propagation cost

A simple call graph is shown in Fig. 4 (a). The corresponding dependency (or
adjacency) matrix, Fig. 4 (b), captures the complete call graph information.
Matrix element Mij = 1 if function i calls function j, and is zero otherwise.
As edges are directed, M is not symmetric about the diagonal.

Visibility Matrix with n=4 

  A B C D E F 

A 1 1 1 1 1 1 

B 0 1 1 1 1 1 

C 0 0 1 1 1 1 

D 0 0 0 1 1 1 

E 0 0 0 0 1 1 

F 0 0 0 0 0 1 

 

Fig. 5. V(4), the visibility ma-
trix up to path length d = 4 for
the simple call-graph in Fig. 4 (a).

The dependency matrix captures direct
dependencies. However, indirect dependen-
cies are also important. For instance, as
shown in Fig. 4 (a), a change in function C
could potentially destroy or change the func-
tionality implemented by A. Changing func-
tion F also has indirect impact on A. Yet, it
is less direct, as the shortest path between
A and F is of length 3, whereas the short-
est path between A and C has length 2. We
can quantify these indirect dependencies as
a function of path length using the “reach-
ability matrix” [19] and the related “visibil-
ity matrix” [20]. The reachability matrix at
path length d, is denoted R(d). Matrix ele-
ment R(d)ij = 1 if there is a path of exactly
length d connecting function i to j. Note the
convenient relationship, R(d) = Md, where M is the direct dependency ma-
trix. The visibility matrix at distance d, denoted V(d), is the binary sum of
the reachability matrix, V(d) = R(1)∨R(2)∨· · ·∨R(d) = M1∨M2∨· · ·∨Md,
where the operator “∨” (logical or) is equivalent to binary sum. V(4) for our
simple call-graph example is shown in Fig. 5. Matrix element V(d)ij = 1 if
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there is a path of length less than or equal to d connecting function i to j.
Note we assume V(d)ii = 1, i.e., functions are visible to themselves.

Propagation cost

Propagation cost (PC) was introduced in [11] as a scalar value to quantify the
extent of indirect dependencies in a network. It is defined as the number of
1’s in V(4) divided by N2 (the total number of 1’s possible). In other words,
propagation cost is the number of pairs of functions connected by a path of
length less than or equal to 4, divided by the number of all possible pairs.
We find that changes in propagation cost (a global variable) can be useful
indicators of important small-scale changes in the code base. Note we do also
analyze PC for V(5), but get almost identical results.

Figure 6 shows the evolution of propagation cost, along with that of N ,
for the 50 months of Apache data. The baseline behavior indicates an inverse
relationship (as N increases PC decreases and vice versa). There is only one
region that violates this trend, encompassing months 24 to 33. Removing these
months from consideration, we see an extremely consistent relation between
PC and N , as shown in Fig. 6 (b), that PC ∼ N−0.70. The first anomalous
event which does not confirm to this scaling relationship is month 24 (Septem-
ber 2003), when N decreases slightly yet PC jumps disproportionately. The
second anomalous event is from months 33 to 34 (June 2004 to July 2004),
when PC drops dramatically while N remains essentially constant.

No other global property discussed herein shows marked changes in this
timeframe, not even during the second anomaly which is most dramatic. N and
E are both essentially invariant (see Fig. 2). Degree distribution is invariant.
Average clustering coefficient is invariant.

We attempt to isolate what changes in the details of Apache are respon-
sible for these two anomalous events. Motivated by findings in [10], which
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Fig. 6. (a) Propagation cost (left-hand axis) and size (right-hand axis) as functions
of time. (b) PC as a function of N since the first stable release of Apache 2.0, with
anomalous months (23 thru 34) removed. We find that PC ∼ N−0.70.
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Fig. 7. (a) Scatter plot of in-degree and out-degree in log-log scale only for functions
whose degree changed in this time period. (b) Propagation cost over time. Top line is
for the entire system. Bottom line is resulting PC if the the two functions indicated
in (a) are removed, denoted “w/o 2” in the legend.

suggest that functions with simultaneously high in- and high out-degree are
particularly problematic, we isolate functions whose in- or out-degree changed
during the timeframe of interest. Functions with simultaneously high in-degree
and out-degree have a tremendous amount of upstream and downstream de-
pendencies. They are simultaneously information consumers and information
producers. Figure 7 (a) is a scatterplot of in-degree versus out-degree on June
2002 (circles) and July 2002 (pluses), including only functions with changes
in these quantities.

Circled in Fig. 7 (a) are two suspicious functions. They have high in-degree
(of 33 and 34) and reasonably high out-degree (of 5 and 4) in June 2002. They
maintain the in-degree but drop, as indicated, to out-degree of one in July
2002. We remove these two functions (and their edges) from the call-graph
for each of the 50 months and plot the resulting evolution of PC as shown in
Fig. 7 (b). The top line is the same as Fig. 6 (a), PC for the entire system. The
bottom line is the resulting PC with the two functions removed. We no longer
see the anomalous behavior and recover the baseline behavior PC ∼ N−0.70

show in Fig. 6 (b).
These functions (apr thread mutex lock and apr thread mutex unlock)

are members of the Apache Portable Runtime layer that implement function-
ality related to multithreading. Investigating the detailed commit logs written
by developers [21], we find that on August 7, 2003 (between months 23 and
24) attempted bug fixes to these two functions were made, with accompanying
comments indicating a history of problems with these two functions. On June
4, 2004 (between months 33 and 34) these two “racy/broken” functions are
dropped from the code entirely and replaced with lower-level system library
calls.
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3.4 Path lengths, clustering coefficient and “small worlds”

A simple example call graph is given in Fig. 4 (a). There are directed paths
connecting various functions. For instance, function A is connected to function
F via two paths, one of length 3 and one of length 5, where length is mea-
sured by number of hops in the call graph. The path of length 3 is obviously
the shortest path connecting A and F . We consider all such pairs of func-
tions which are connected by a directed path and calculate the shortest path
between them. The fraction of shortest paths of a specified length (i.e., the
normalized distribution) is shown in Fig. 8 (a), for the first month (October
2001) and the final month (November 2005) of our study. Similar distributions
result for all 50 months, with the typical shortest path of length between 4
and 5, and the largest shortest path (i.e., the graph diameter) of length 14.

We compare this distribution of shortest paths to those resulting from two
different random graph growth processes. First we consider an ensemble of 20
realizations of Erdős-Rényi random graphs [22, 23] with N = 2909 nodes and
E = 4142 undirected edges (equivalent to the N = 2909 nodes and E = 8284
directed edges in the November 2005 Apache call graph). Here we find the
typical shortest path is of length 7 or 8, much larger than for the Apache call
graphs. However, the diameter is comparable, ranging from length 14 to 16.

The degree distributions of the Apache call graphs (see Fig. 3) are much
broader and more heterogeneous than the Poisson distribution which charac-
terizes Erdős-Rényi random graphs [22, 23]. Thus we next compare the Apache
graphs to random graphs constructed to match exactly the Apache degree dis-
tribution by extending the ideas in [24, 25] to directed graphs. We begin with
N = 2909 nodes and map each one to a distinct node in Apache. We assign to
each of these new nodes the in- and out-degree of their corresponding Apache
node. We do not yet specify the connectivity, only the final degree. In other
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Fig. 8. (a) Normalized shortest paths in Apache, first month and last month. (b)
Normalized shortest paths averaged over 20 realizations of random networks with
the exact in- and -out degree distributions of Apache on November 2005. The vertical
axis, “frequency”, means the fraction of shortest paths having that length.
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words, we assign unconnected half-edges. We next perform a random match-
ing and pair up each in-degree half-edge with a different out-degree half-edge
chosen at random. We construct an ensemble of 20 such random graphs. The
resulting normalized shortest path distribution, averaged over the full ensem-
ble, is shown in Fig. 8 (b). Note, the typical path length is much larger than
for Apache, peaking at length 10, and the maximum shortest path is around
30. Matching degree distribution alone is not enough to reproduce the shortest
path lengths observed for Apache.

“Small world” networks are characterized by small diameters and large
clustering. We have established the small diameter above. Throughout the
50 month period the average clustering coefficient, C, fluctuates in the range
0.09 < C < 0.099. Calculating C over an ensemble of corresponding Erdős-
Rényi random graphs yields C = 0.0018 and for the ensemble of random
graphs with the Apache degree distribution C = 0.023. The Apache call graphs
thus have the “small-world” characteristics of short average path length and
relatively large clustering coefficient when compared to a comparable random
graph. Note, to measure C we temporarily assume the edges are undirected. A
more thorough treatment is presented in the next section, where “transitive”
triads are distinguished from “cyclic” triads. (Cyclic triads are rarely seen in
software, though transitive ones occur frequently.)

4 Evolution of Apache: Models of Network Structure

Above, we made a number of empirical observations about the Apache call
graph using complex network measures, effectively obtaining a multifaceted
characterization of the graph. One can ask, how do these, and possibly other,
measures combine together to tell the story of the whole Apache call graph?
And in general, to what extent is its structure determined by any given ob-
servations?

To answer these questions, here we present the statistical modeling ap-
proach of Exponential Random Graph Models (ERGMs), developed in recent
social network theory [26, 27] for understanding the relationships between a
large class of local network observations and the full network structure. This
bottom-up approach models the extent to which a set of specific observations
(e.g. counts of transitive triads) explain the global structure of a network
(e.g. the Apache call graph), and, in the process, determines which of the
observations best explain its structure. More specifically, given a set of ob-
servations, or explanatory variables, an ERGM models networks as random
samples from an exponential probabilistic space given by linear combinations
of those explanatory variables. Thus, given a network and fitted ERGM, one
can calculate the probability that the network is determined by those vari-
ables, via direct calculations. In practice, these models are very appealing as
there exist methods for both model fitting (observation available) and simu-
lations (observations unavailable).
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The advantage of the ERGM approach is that it is very general and scal-
able; the architecture of the graph is represented by the chosen set of ex-
planatory variables which can describe either local or global features of the
network, and the values of the model parameters can be quite instructive, in-
dicating the relative importance of the explanatory variables to the maximum
likelihood pdf. In addition, ERGMs have been well studied and theoretical
results exist which can offer some understanding of the model’s behavior in
practice [27].

4.1 ERGM Theory

Here, we describe formally the ERGM statistical framework for modeling
networks, in particular as it pertains to modeling software call graphs. Let
X be a random variable representing the adjacency matrix of a software
network. The probability distribution function (pdf) for this random vari-
able, P (X = x), tells us the probability that an observed graph, x, was
drawn from X. Unfortunately, the probability distribution function of X
is unknown and cannot be directly calculated. To estimate this pdf, let
z(x) = (z1(x), z2(x), . . . , zr(x)) be a vector of explanatory variables, where
each explanatory variable can be any function of the observed data. We pos-
tulate that there exists θ = (θ1, θ2, . . . , θr) such that:

log(P (X = x)) ∝ θ1z1(x) + θ2z2(x) + . . . + θrzr(x) ∝ θT z(x) (1)

If we exponentiate both sides and divide by a normalizing constant, κ(θ),
assuring that the probabilities will sum to one, we get the following model:

P (X = x) = eθT z(x)/κ(θ) (2)

This is the standard log linear probability model that is used in a wide range
of fields from the social sciences to biology [28, 29].

To create an ERGM, a set of explanatory variables (virtually any function
from the observed graph to the real numbers) is chosen by the modeler. The
choice of variables is based on the pertinent features of the graph under study,
or on a set of desired features, if the graphs are being simulated. An example,
non-exhaustive, set of explanatory variables is given in Table 1, most of which
are important for modeling the Apache call graph. The coefficients, θ, can be
interpreted as a preference of the observed network for a given explanatory
variable, if its coefficient is positive, and a preference against a variable, if it
is negative.

Estimating θ based on an observed network is referred to as fitting the
model, while using a predetermined θ to generate networks is referred to as
simulating with the model. Given a set of explanatory variables, the best fit
to the observed network is given by the parameter vector θ which maximizes
the likelihood that the observation is drawn from the probability distribu-
tion given in Eq. 2. In this case, though, the standard maximum likelihood
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Variable Description
istar(k) The number of k-tuples of edges that point to the same node in the

network.
ctriad The number of 3-cycles in the network.
ttriad The number of two edge paths for which there is a one edge shortcut

in the network.
triangle The sum of ctriad and ttriad for the network.
idegree(k) The number of nodes with exactly k incoming edges in the network.
odegree(k) The number of nodes with exactly k outgoing edges in the network.
gwidegree The sum of the counts of each in-degree, weighted by the geometric

sequence, (1− e−θk )i where θk is a decay parameter.
edges The number of edges in the graph.

Table 1. Exponential random graph models are extremely flexible. This table shows
several example explanatory variables, identifying the variables by their names in
the statnet package for R [30].

method to estimate the parameters is difficult because the function for the
normalizing constant κ(θ) is not known a priori. Instead, one typically uses
Markov chain Monte Carlo maximum likelihood estimation (MCMC MLE),
a family of methods based on the Newton-Raphson MLE algorithm [26]. The
maximum likelihood formula for the pdf obtained via fitting can be used with
Markov chain Monte Carlo (MCMC) sampling methods to simulate networks.
There are a number of software packages available for MCMC MLE fitting.
These include the “statnet” package [31] for R and the stand-alone SIENA
software [32].

In practice, one rarely knows which explanatory variables to chose to fully
describe a network using ERGMs. To compare if a particular set of explana-
tory variables models an observed network better than another, one can use
several different approaches. For example, the modeler can use the fitted model
to simulate a suite of networks and check how well the simulated networks
match the observed network on any measure of interest (e.g. the degree dis-
tribution). Along this line, the “statnet” statistical package has a built-in
goodness-of-fit function which compares simulated networks to the observed
network on a set of such measures. Another approach for comparing sets of
explanatory variable is to use information-theoretic measures, like the Akaike
Information Criterion (AIC), to assess how well a model fits the observed
data. In addition to providing information on the goodness of fit, the AIC
(which penalizes more complicated models to protect against overfitting [33])
can also be used to guide the search through the space of possible models,
helping to identify the best variables to include in the model as follows: If
the modeler suspects that a particular variable might be useful in modeling
an observed network, the AIC can be used to test this hypothesis by toggling
the variable in and out of the model, accepting the hypothesis if significant
improvement in the AIC is observed.
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4.2 Modeling Process and Results

As an exploratory first step to our modeling process, we fit models made from
many of the possible combinations of a diverse set of explanatory variables
that we expect to be important in explaining the Apache callgraph. We in-
clude the counts of connected triads (ctriad and ttriad, cf. Table 1) in many
of our exploratory models because these small connected graphs (graphlets)
may be important architecturally in many types of larger networks [34, 35].
However, we do not expect the ctriad graphlet to be helpful in modeling
software because it implies indirect recursion, an uncommon and difficult pro-
gramming technique, but we include it in our modeling process as a sanity
check. We also investigate various in- and out-degree counts because these
counts provide a local measure of the network’s topology. Further, the suc-
cess of in-degree count as an explanatory variable leads us to investigate the
related in-star variables. In previous modeling efforts [36], degeneracy in the
fitting algorithms was often observed for models using the variables above.
To circumvent such degeneracies it has become standard ERGM practice to
include the geometrically-weighted in-degree distribution and the simple edge
count, as variables in every model, and we do so here too.

Model AIC
edges+gwidegree 104090
edges+gwidegree+ctriad 104088
edges+gwidegree+ttriad 101473
edges+gwidegree+ttriad+odegree(2) 100065
edges+gwidegree+ttriad+istar(3) 97723
edges+gwidegree+ttriad+idegree(2) 97589
edges+gwidegree+ttriad+istar(2) 94383
edges+gwidegree+ttriad+idegree(2)+idegree(3)+istar(2) 91017
edges+gwidegree+ttriad+idegree(2)+idegree(3)+istar(2)+istar(3) 89491

Table 2. The Akaike Information Criterion for a sample of fitted models. Note: For
space and readability, the notation we use here to describe the models omits the θi

parameter coefficient from Eq. (1). Each term (seperated by ’+’) is a seperate model
predictor variable with its own coefficient.

We toggle the variables described above in and out of several models, iden-
tifying variables that are important in fitting the Apache call graph to a single
representative month (June, 2003). The results for several representative mod-
els are given in Table 2, together with the AIC for the model. As expected, the
AIC changes very little when ctriad is added to the basic edges+gwidegree
model, indicating the lack of importance of ctriad, but the AIC improves sig-
nificantly when the ttriad variable is added, showing us that the tendancy
of Apache programmers to include layer-crossing function calls is important
in determining the global nature of the graph. Given these results, we further
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refine our search, looking at many more models that include the ttriad vari-
able, and we find that the outdegree and the higher indegree terms are less
important than others we consider.

Table 2 allows us to see the variables that are important to the AIC and,
hence, are better at predicting the topology of the apache callgraph. For ex-
ample, it is interesting that the out-degree of a function is less important to
the global topology than the in-degree, indicating that the emergent struc-
ture of the callgraph is more dependent on how many times each function is
called rather than how many dependencies they have, which is in line with
the findings in Sec. 3.

Next, we perform a longitudinal, 50-month study of the Apache callgraph
using a few of the best fitting models from the one-month study. This exper-
iment lets us see if the relative importance of explanatory variables changed
throughout the apache development process. The ranking by AIC of the mod-
els we fit remains constant across all 50 months, but the values of the param-
eters do not. Fig. 9 shows a plot of the coefficient values over time for ttriad,
idegree(2,3) and istar(2,3). These variables were chosen because they
were contained in our best fitting model (as determined by AIC) from Table 2,
and we chose not to study any variables (such as odegree) from other, less
well-fitting models. Our exploratory procedure eliminated the other variables
that we considered because they did not contribute as large an improvement
to the AIC as the variables from the final model.
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Fig. 9. Plots of several interesting coefficients across all fifty months. Top: ttriad.
Middle: idegree(2,3). Bottom: istar(2,3).

All of the variables that we’ve measured relating to in-degree (idegree(2,3),
istar(2,3) and gwidegree) are generally negative in this model. On the
other hand, the transitivity variable ttriad is consistently positive through-
out the development cycle. This indicates that there are functions in Apache
that call their callee’s callees (perhaps due to the standard library functions
being included in the apache callgraph).

Interestingly, over the 50 month period, indegree(2) is almost perfectly
anti-correlated with indegree(3) (as seen in Fig. 9). One explanation is that
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these two variables are measuring two aspects of the same phenomenon (how
many functions are called approximately twice), and, hence, the importance of
the two variables to the model is correlated. Similarly, edges and gwidegree
(not shown) are strongly anti-correlated, perhaps, because they both measure
aspects of network density.

5 Discussion and Conclusions

We study the evolution of the function call graph for the Apache 2.0 HTTP
server over a fifty moth period. Apache is a mature, open source software
project, written in a procedural programming language. We characterize
Apache first with several global measures, 1) nodes and edges, 2) degree
distribution, 3) dependency matrices and propagation cost, 4) path length
and clustering. We find these measure have certain baseline behaviors and
that deviations can indicate important structural changes in the code base.
In particular, we find that propagation cost (introduced in [11]) is a sensi-
tive measure that can signal when a detailed, fine-grained examination of the
code base may be required. Using ideas proposed in [10] (that functions with
simultaneously high in- and out-degrees are problematic), we are able to iso-
late that the large changes observed in propagation cost are attributable to
just two individual functions (out of approximately 2900 total functions). By
examining the detailed development logs we corroborate that indeed these
two functions have repeatedly troubled developers. The techniques presented
herein may be useful in general for code written in procedural programming
languages as they may allow developers to identify particular functions which,
when restructured, can reduce overall system dependencies.

Using exponential random graph modeling, we investigate the relationships
between the attributes that we empirically observe, and find that the most
important attribute for predicting the global structure of the Apache callgraph
is ttriad, the number of transitive triads in the graph. In future work we
intend to explore how the appearance of unexpected features might help to
identify bugs.
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