
Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,
Vladimir Filkov and Premkumar Devanbu

Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-Month [13],

noted the scaling issues that arise in large software teams:
the number of potential interactions grows quadratically with
team size, thus quadrupling when the team size is doubled.
Clearly, without organization of some kind, both within the
software and the community that develops it, there is a limit
to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

able teams which are then assigned to those components.
With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [17],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [31]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [31] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

In this paper, we perform an empirical study of the la-
tent social structure of open-source projects, and discuss just
these issues. In the next section, we discuss the background,
and present our hypotheses.

2. BACKGROUND
Despite the perceived lack of mandated organization, there

are OSS projects with large developer pools that produce
software of complexity and quality that rivals their commer-
cial counterparts [54, 40]. How do these projects cope with
the organizational hurdles that hinder all large engineering
efforts?

1By latent, we mean not explicitly stated, but observable.



Finding and evaluating community structure in networks

M. E. J. Newman1,2 and M. Girvan2,3
1Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

!Received 19 August 2003; published 26 February 2004"

We propose and study a set of algorithms for discovering community structure in networks—natural divi-

sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:

first, they involve iterative removal of edges from the network to split it into communities, the edges removed

being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures

are, crucially, recalculated after each removal. We also propose a measure for the strength of the community

structure found by our algorithms, which gives us an objective metric for choosing the number of communities

into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering

community structure in both computer-generated and real-world network data, and show how they can be used

to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number!s": 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.!a

I. INTRODUCTION

Empirical studies and theoretical modeling of networks

have been the subject of a large body of recent research in

statistical physics and applied mathematics #1–4$. Network
ideas have been applied with success to topics as diverse as
the Internet and the world wide web #5–7$, epidemiology
#8–11$, scientific citation and collaboration #12,13$, metabo-
lism #14,15$, and ecosystems #16,17$, to name but a few. A
property that seems to be common to many networks is com-
munity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to find
and analyze such groups can provide invaluable help in un-
derstanding and visualizing the structure of networks. In this
paper, we show how this can be achieved.
The study of community structure in networks has a long

history. It is closely related to the ideas of graph partitioning
in graph theory and computer science, and hierarchical clus-
tering in sociology #18,19$. Before presenting our own find-
ings, it is worth reviewing some of this preceding work to
understand its achievements and shortcomings.
Graph partitioning is a problem that arises in, for ex-

ample, parallel computing. Suppose we have a number n of
intercommunicating computer processes, which we wish to
distribute over a number g of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication !which is normally slow" is minimized. In
general, finding an exact solution to a partitioning task of this
kind is believed to be an NP-hard problem, making it pro-
hibitively difficult to solve exactly for large graphs, but a
wide variety of heuristic algorithms have been developed

that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algorithm #20$,
which runs in time O(n3) on sparse graphs.
A solution to the graph partitioning problem is, however,

not particularly helpful for analyzing and understanding net-
works in general. If we merely want to find if and how a
given network breaks down into communities, we probably
do not know how many such communities there are going to
be, and there is no reason why they should be roughly the
same size. Furthermore, the number of intercommunity
edges need not be strictly minimized either, since more such
edges are admissible between large communities than be-
tween small ones.
As far as our goals in this paper are concerned, a more

useful approach is that taken by social network analysis with
the set of techniques known as hierarchical clustering. These
techniques are aimed at discovering natural divisions of !so-
cial" networks into groups, based on various metrics of simi-
larity or strength of connection between vertices. They fall
into two broad classes, agglomerative and divisive #19$, de-
pending on whether they focus on the addition or removal of
edges to or from the network. In an agglomerative method,
similarities are calculated by one method or another between
vertex pairs, and edges are then added to an initially empty

FIG. 1. A small network with community structure of the type

considered in this paper. In this case there are three communities,

denoted by the dashed circles, which have dense internal links but

between which there is only a lower density of external links.

PHYSICAL REVIEW E 69, 026113 !2004"

1063-651X/2004/69!2"/026113!15"/$22.50 ©2004 The American Physical Society69 026113-1

Figure 1: A network with strong community structure.

Modularity, the measure of strength of community structure,

which ranges from 0 to 1, has a value of 0.493 for the given

division of nodes in this graph.

We have empirically studied the social organization of the
community of participants on the developer mailing lists for
the Apache Webserver (hereafter referred to as Apache),
Apache Ant (referred to as Ant), Python, Perl, and Post-
greSQL projects. Each of these projects is mature and sta-
ble, has a large and complex code base comprised of multiple
subsystems, and has a recorded history of many years. They
all also have sizeable teams, ranging in size from 25 devel-
opers to nearly 1002. There are of course much larger num-
bers of participants on the developer mailing lists [23], some-
times numbering in the thousands. The developer mailing
lists are highly task focused; by community norms, all sub-
stantive discussions related to the system and development
tasks occur on these lists. All correspondence is archived.
The source code authorship history is also available from
versioned source code repositories. The size and extensively
archived history of these projects makes them good can-
didates for the study of emergent social structure and its
relationship to technical activities.

We expect that any latent organizational structure will
be mirrored in the communication patterns of participants
in these OSS projects. The email discussions span a range
of topics. Topics include, certainly the source code (and
specific entities such as functions and methods that occur
in source code), the build system, documentation, and high
level architecture. But, even in OSS, few, if any developers
work on the entire system; most specialize. Consequently,
just as development teams are split up and modularized in
a software company, we believe that within the entire co-
hort of developer mailing list participants, there are self-
organizing subcommunities that form as people organically
tend to focus towards specific topics, subsystems, or tasks.
We can use archives of the developer mailing lists to de-
termine which individuals were in communication with each
other and construct a social network of the participants. But
how can organizational structure be discovered in this social
network?

In 2002, Newman and Girvan introduced a quantitative
notion of the community structure of a network, as “the di-
vision of network nodes into groups within which the net-
work connections are dense, but between which they are
sparser” [25]. Fig 1 is an example of a network with strong
community structure. They quantify the “strength” of the

2By developer, we refer to contributors that have write ac-
cess to the source code repository.

subcommunities in a network with a formal measure that
they call modularity, a value which ranges from 0 to 1. Note
that while the terms community structure and modularity
have been used in prior literature to mean many things,
in the context of this paper, their use refers distinctly to
these definitions. While the precise mathematical defini-
tion of modularity is presented in section 4.3, intuitively it
can be thought of as measuring how well a network can be
divided into clearly delineated “modules” of nodes. Com-
munity structure has been studied in various settings [3, 39,
27, 4, 58] due to advances in methods of identifying these
structures [64, 65, 51, 15, 50]. We hypothesize that this kind
of structure exists within the development communities of
these large OSS projects. Mailing list participants sponta-
neously form subcommunities, and communicate more in-
tensively with people within subgroups than outside them.
This leads us to our first testable hypothesis:
Hypothesis 1 (H1) – Subcommunities of participants will
form in the email social networks of large open source projects
and the levels of modularity will be statistically significant.

By “statistically significant”, we mean that the observed
modularity in open-source software is an emergent conse-
quence of the deliberate choice of associates made by par-
ticipants. In other words, if they had been just as social,
but chosen associates at random, it is unlikely that such
modularity would have emerged.

While we believe that subcommunities of participants do
organically form, such groupings are not meaningful un-
less the grouping specifically relates somehow to community
goals. The discussions on the development mailing lists gen-
erally have one of two goals. The common purpose appears
to be discussion of actual development activity (function
interfaces, APIs, bug fixes, feature implementation, etc.).
Other topics include policy decisions, high-level architec-
tural changes, release plans, licensing issues, and admission
of newcomers. Broadly (if not entirely accurately) we call
the former product topics, and the rest process topics. While
the process topics are clearly vital to the success and con-
tinued life of the projects, they are less directly related to
coding activities than product topics; as such, the division
of knowledge issues that arise with large, intricate software
system is not as critical in process topic discussions; barri-
ers to entry are lower. In fact, since everyone is affected by
process issues, all should participate. Therefore, the social
networks of participants in process discussions should not be
fragmented or modularized. This leads to the assertion that
the social network fragmentation into subcommunities will
be more strongly evident in product-related discussions.

Hypothesis 2 (H2) – Social networks constructed from
product-related discussions will be more modular than those
relating to non-product related discussions or all discussions.

We posit that if there is strong community structure within
the projects, the subcommunities should be related to the
software engineering activities in a meaningful way. We ex-
amine this using two methods.

First, we claim that a portion of the communication the
goes on in the mailing lists is actually coordination between
developers as they work together on the software directly.
We believe that developers within the same subcommunities
are more likely to collaborate directly, i.e, work in the same
areas of the code. Thus, our third hypothesis is:



Hypothesis 3 (H3) – Pairs of developers within the same
subcommunity will have more files in common than pairs of
developers from different subcommunties.

Second, we ask whether the subcommuntiess are somehow
allied with coherent tasks. If they form in order to tackle
specific hurdles or accomplish common goals, then we expect
their discussion and development to be focused in some way.
For example, the cumulative engineering effort of the people
within a subcommunity may be confined to one part of the
system. Our final hypothesis is:

Hypothesis 4 (H4) – The average directory distance be-
tween files committed to by developers in the same subcom-
munity will be less than similar sized groups of developers
drawn different subcommunities.

We present our methods and processes for answering these
questions, give the results of our analysis, and discuss these
results in this paper. The rest of the paper is organized
as follows. In section 3 we discuss other research that has
examined the organization of OSS communities and include
the differences and similarities to our work. Our datamining
and analysis methods are presented in section 4 and include
a discussions of the results in section 5. We examine the
strengths and weaknesses of our approach in section 6. A
synopsis and further areas of study appear in section 7.
Relevance to software engineers The questions above do
relate to organizational science issues concerning the nature
of open-source social structures. But they are also of deep
concern to software engineers, for several reasons. First, all
the projects we studied are both complex and highly success-
ful. Strong evidence of subcommunity formation in these
projects is arguably prescriptive for any new and growing
project; open source project leaders might do well to en-
courage subcommunity formation. Second, strong evidence
of subcommunities forming around product-related activi-
ties (H2) suggests that newcomers aspiring to gain devel-
oper privileges [22, 9] may be aided by finding and connect-
ing with the right community; likewise, H2 may also suggest
that the broadest possible participation is good for process-
related issues. Finally, H3 and H4 might help inspire rec-
ommender systems [55] that find technically relevant people
that one should connect with, in a large team. It should be
noted that all these also have implications for the organiza-
tional and social structure of commercial software projects.
Consequently, many software engineering researchers have
studied related socio-technical issues [45, 33, 48, 63]. In
fact, a recent invited talk at ICSE describes the importance
of issues facing socio-technical coordination in a global en-
vironment (a key facet of OSS)[32].

3. RELATED WORK
Prior work related to this study can be divided into three

categories: first, on social networks; second on the effect
of organizational structure on effectiveness; and finally, on
discovering community structure in networks. We survey
these areas in this section.

Social Networking among developers has been well stud-
ied. Xu et al [62] consider two developers socially related if
they participate in the same project, and argue that the re-
sulting network has small-world properties. They don’t con-
sider modularity or non-developer participants. Wagstrom,
Herbsleb and Carley [60] gathered empirical social network

data from several sources, including blogs, email lists and
networking web sites, and built models of their social be-
havior; these models were then used to simulate how users
joined and left projects. They report that simulations closely
mirror actual observations. Crowston and Howison [18] use
co-occurrence of developers on bug reports as indicators of
a social link. They present evidence that the social net-
works of smaller projects are more central than those of
larger projects. Presumably larger projects decentralize, to
simplify communication and coordination activities. This
observation is one of the key motivators behind this work
as we hypothesize that subcommunities form naturally in
larger, more complex and longer-lived projects.

Commit behavior in versioned repositories has been used
as an indicator of social linkage. Lopez-Fernandez et al [42]
consider two developers to be linked if they collaborate, viz.,
they commit to the same module. The resulting social net-
works are similar in structure to ours, and are argued to be
small-world networks. The work of De Souza et al [16] is sim-
ilar, except that they study files instead of modules. Devel-
opers become more“central” in the social network over time.
They found that code ownership in some parts of the system
was more stable than in others. Finally, we note that these
papers study collaboration networks, whereas our focus is
more on communication networks. The question naturally
arises, How does commit behavior relate to direct (email)
social interaction? The relationship between the two is a
subject of our current research.

In previous work [7, 8] we examined social networks cre-
ated from mailing list archives and looked at the differences
between developers and non-developers from a social net-
work metrics standpoint. We also examined the correlation
between development activity and social network status of
developers. In this work our goal is to extract the subcom-
munity structure from the same social networks and examine
how it changes over time.
Organizational Structure and Effectiveness

Communication and Co-ordination behaviour in distributed
teams has been studied. Ehrlich et al [24] used social net-
work analyss to study how individuals in global software de-
velopment teams locate and acquire expertise. They found
that members of the teams were more likely to to seek spe-
cific technical information and help from people outside their
own team. Members used others on their team to exploit
preexisting knowledge, but went to people they knew uniquely
outside the team for innovative ideas. Layman et al [41]
studied how a globally distributed team overcomes commu-
nication challenges to become agile. They identified four key
factors for communication in globally-distributed XP teams.
Examples of these factors included assigning a manager to
act as a “bridgehead” between distributed teams and using
short asynchronous communication loops as a surrogate for
synchronous communication.

Hossain et al. [37] used the enron email corpus to cre-
ate social networks and examined degree, closeness, and be-
tweenness centrality scores on a per actor basis. They also
used text mining techniques to code email messages into
categories such as resource allocation, constraints, and pro-
ducer relationships. They found that high centrality values
correlated well with the ability of an actor to coordinate the
actions of others in a project or group.

Hinds and McGrath [35] used questionnaires and follow
up interviews to construct social networks in 33 research and



development teams that were both collocated and geograph-
ically distributed. They measured “coordiation ease” based
on answers to questions dealing with coordination challenges
in the developers teams. They found that dense networks are
no better for distributed than they are for colocated work. In
collocated teams, high interdependence eased coordination
while the opposite was true for distributed teams. Interest-
ingly, dense communication between members actually may
interfere with coordination. In some ways, this corroborates
with the communication overhead alluded to in Brooks’ law
and motivates our search for specialized teams of developers
in OSS projects.

An important issue is the relationship of social connec-
tions or communities and technical connections or commu-
nities. There is a great deal of current interest in socio-
technical congruence (STC). The idea is that great alignment
between communication patterns and task dependencies (ei-
ther goal-precondition relationships of tasks, or data/control
dependencies between artifacts) leads to better outcomes.
Cataldo [14] studies the connection between task dependen-
cies and coordination efforts by engineers. Valetto et al [59]
suggest a formal, general, graph-based technique to mea-
sure congruence. We wish to study if subcommunities form
within OSS projects, and whether STC appears to be a fac-
tor in their formation.
Identifying Community Structure

A number of researchers have used recently developed
methods to find community structure in existing networks.
Guimera et al [29] mined email logs from a company to cre-
ate a social network and identified the community structure
contained in it. They discussed the results as the informal
networks behind the formal chart of an organization and it’s
benefit as a management tool.

González-Barahona, López and Robles have examined the
community structure of modules within the Apache project [28].
In their analysis, they created a network with the vertices
representing modules. Edges between vertices represented
work on both modules by a common author and were weighted
based on the number of commits the common authors had
contributed. They examined the community structure of
these networks over time and were able to see how the mod-
ules evolved with respect to each other.

Modularity, especially as it results from evolution and be-
stows benefits to an organism, is very important to the study
of biological networks. In the areas of systems biology and
bioinformatics authors have used Newman and Girvan’s [36]
as well as related [64] and other [65] algorithms to resolve
modules in biological networks of different types. Using such
algorithms, recent studies [36, 39] have shown that despite
having evolved through random processes, biological net-
works exhibit design patterns, most notably high modular-
ity. And although modular designs are not the most efficient
when it comes to performing the day-to-day business in the
cell [3], modularity apparently endows the networks, and
hence the organisms, with systemic properties like robust-
ness and evolvability [36, 39], which are essential for their
long-term survival and fitness optimization [36].

4. METHODS AND ANALYSIS
Our experiment involved several steps. We first identified

the projects of interest and mined the developer mailing list
archives and source code repositories of each of the projects.
Next, we filtered the mailing list messages and created a so-

cial network of the participants over 3-month intervals. We
then calculated the community structure of each social net-
work. Following that, the relevance of the divisions of par-
ticipants was evaluated quantitatively using mined source
code development data and qualitatively by manual meth-
ods. The following subsections contain the pertinent details
of each phase.

4.1 Project Selection
Our study includes the Apache webserver, Ant, Python,

Perl, and PostgreSQL. These are all well known and stable
projects. Each has undergone a number of major release
cycles and is still under active development. Each has a de-
veloper mailing list with thousands of participants. All have
large and complex codebases with several subsystems, mak-
ing it difficult for any one person to be an expert on all parts
of the system. This leads to a need for “division of labour”,
which we believe instigates the formation of subcommunities
within these projects. In addition, email and source code re-
vision archives, dating back several years, are publicly avail-
able. Table 1 shows the date ranges for the data gathered
from each project as well as the numbers of messages sent,
participants on the mailing list, files in the repository, de-
velopers with repository access, and source code repository
commits.

We have selected projects that vary in their governance
structure. Some of these projects have been described by
Berkus [6] as archetypes of very different governance styles.
Both Apache projects (the webserver and Ant) are founda-
tions with well-organized, hierarchical governance structure
and formalized policies. PostgreSQL is a community, which
is more informal and has a consensual group decision mak-
ing process. Python and Perl are both monarchist with a
project leader (Guido Van Rossum in the case of Python
and Larry Wall for Perl) at the helm making informed im-
portant decisions. With this variety, we hope to ameliorate
some of the threats to external validity.

4.2 Mining the Raw Data
The public email archives were downloaded and parsed

into relational tables. For email, we extracted the date,
the body, the name and email address of the sender, the
message-id header, and the in-reply-to header. The last
two are used to reconstruct threads of conversation. If the
message-id of message A appears in the in-reply-to header of
message B, then B was sent in response to A which indicates
that the sender of B found message A“interesting”. This“in-
terest”may be a suggestion, rant, praise, disagreement, etc.;
regardless, it is indicative of communication between the two
parties. We thus create a link between the sender of A and
the sender of B in the social network. Unfortunately, the
accuracy of this network is compromised by the practice of
email aliasing, whereby one mailing list participant uses sev-
eral email addresses. To resolve the aliases, and identify and
group email aliases, we use a range of techniques, including
fuzzy string similarity, domain name matching, clustering,
heuristics, and manual post-processing [7].

Once email aliasing is handled we analyze a time-series
of the social networks, at 3 month intervals. For further
processing, we use an adjacency-matrix representation of the
social network at each time interval.

In addition, we also extracted code information: the au-
thor, time of commit, the filename, and the contents of each



Name Apache Ant Python Perl PostgreSQL
Begin Date 1995-02-27 2000-01-12 1999-04-21 1999-03-01 1998-01-03
End Date 2005-07-13 2006-08-31 2006-07-27 2007-06-20 2007-03-01
Messages 101250 73157 66541 112514 132698
List Participants 2017 1960 1329 3621 3607
Files 1092 7682 4290 13308 6083
Developers 57 40 92 25 29
Commits 28517 58254 48318 92502 111847

Table 1: Information on the data gathered for the projects studied.

file from the project source code repositories. The email
addresses that corresponded to each repository author were
also heuristically determined and hand verified in order to
match the development activity and communication behav-
ior of project developers. By using this commit information,
we can see which developers were collaborating and on which
files. Further details of the email and repository mining pro-
cesses can be found in our prior work [7].

4.3 Finding Community Structure
To find and quantify the latent community structure that

exists in the OSS networks, we have created a variant of the
Newman algorithm3 [50].

The goal is to partition the network into groups of nodes,
so the connections within groups are dense and the connec-
tions between the groups are sparse. Newman and Girvan
defined a measure of modularity, which quantifies commu-
nity structure strength, using the denseness and sparsity of
the groups’ intra and interconnections [51]. Consider a par-
tition of a network into k communities. Let us define a k×k
symmetric matrix e whose element eij is the fraction of all
edges in the network that link vertices in group i to vertices
in group j. Let us also define the row sums ai =

P
j eij .

The modularity measure is then defined by

Q =
X

i

(eii − a2
i ) (1)

Essentially, this measures the fraction of the edges in the
network that connect vertices within the same group minus
the expected value of the same quantity in a network with
the same community divisions, but random connections be-
tween the vertices (that is, the same division on a random
network with the same degree distribution). Values for Q
range from 0 (with networks of essentially random struc-
ture) to 1 (networks with cliques that are disconnected from
each other). Some naturally ocurring networks are known
to be strongly modular; in such modular networks, New-
man’s modularity measure takes on values ranging from 0.3
to 0.7 [51]. The algorithm also has been shown to correctly
find modules known a priori. In our case, partitioning the
social networks, we want to find the partition that yields
the highest modularity for the network. Finding the parti-
tion that maximizes the modularity for a given network is
an NP-complete problem [12]. Newman & Girvan’s method
is approximate, but empirically effective. See [30] and [11]
for examples.

Girvan and Newman’s original algorithm works well for bi-
nary networks, but doesn’t handle networks with weighted

3We gratefully acknowledge Mark Newman’s help in giving
us a source code implementation of his algorithm as a start-
ing point.

edges. Our social networks contain weighted edges, repre-
senting the number of emails exchanged between two par-
ticipants in each time period. A high number of messages
between a pair of participants should increase their likeli-
hood of being in the same group. Following a method for
adapting binary network algorithms to work on weighted
networks [49], we modified our social networks by introduc-
ing one edge between each pair of nodes per email sent be-
tween them (i.e. creating a multi-edge network) and mod-
ified Newman’s algorithm above to handle multi-edge net-
works.

4.4 Validating Community Structure
We need to determine if the levels of community struc-

ture in the social networks of the studied projects are sig-
nificantly higher than what we would expect to see in a
bazaar -like scenario. To do this, we borrow methods from
random graph theory [47, 52]. A standard method of deter-
mining the significance of measures of observed graphs is by
comparing them with measures on random graphs with the
same degree distribution as the observed graph. We want to
see if people associate into subcommunities in a statistically
significant way. Therefore we randomize networks by assum-
ing that people in the network remain equally active, i.e.,
send just as many messages, but send them to a randomly
chosen group of people, rather than deliberatively choosing
correspondents. This models a scenario where people talk
to others based on random encounters, rather than on work-
related needs.

We generated a large number4 of random graphs with the
same degree distribution as the observed networks using
a rewiring approach [21, 44, 26]. This technique works by
starting with the observed graph. Pairs of edges are selected
randomly and their endpoints are switched or “rewired” so
that a pair of edges (a, b) and (c, d) is replaced with (a, d) and
(c, b). It is plain to see that at each step, the degree of each
node is preserved. This method has been used to study topo-
logical characteristics of various large complex networks to
determine if they are significant [43]. For reasons explained
in section 4.5.1, as with the observed networks, we removed
the three highest betweenness nodes to make the compar-
isons fair. The modularity of these graphs with the same
degree distribution is compared with that of the observed
graph to produce a stastical significance level.

4.5 Filtering Messages
As we applied the community structure identification tech-

niques described above to the OSS projects, we manually
examined the activities of the various subcommunity mem-
bers to see if the identified partitions were meaningful. Two
key observations arose, which led us to refine our process.

4roughly 30,000 per observed network



4.5.1 Removing the Managers
First, although it is very hard to have an intimate knowl-

edge of all parts of a complex system, there do appear to
be a very small number of people in each project that actu-
ally do have at least a working knowledge of nearly all of its
parts. These people are usually project leaders, founders,
or early members. They are noteworthy for the quantity,
quality, and broad spectrum of commits to the repositories,
and extensive, wide-ranging discussions on the mailing lists.
Examples of these people include Tim Peters and Guido Van
Rossum in Python, Bruce Momjian and Tom Lane in Post-
gres, and William Rowe and Jeff Trawick in Apache. most
of these contributors have been members of the project for
a very long time, have high social status within the project,
are within the “inner circle” of elite developers, and often
comment in nearly every mailing list thread. Such people
act as “bounday spanners” and “gatekeepers” for informa-
tion flow and expertise within the community: essentially
they bridge different groups and promote information flow
between otherwise relatively isolated groups. Interestingly,
similar roles are fulfilled by key people in traditional software
development contexts as well. Their importance in various
organizational settings has been previously noted [19, 2].
Those who fill these roles are important to the success of re-
search and development teams [57]. Just as managers tend
to serve as a focal point for inter-group coordination and
communication, these OSS leaders coordinate the activities
of the OSS developers. Since these people fulfill the role of
“linking” and mediating teams, we therefore remove them in
order to expose the organizational substructures that they
would otherwise bridge, and thus obscure.

In previous work, ourselves and others have found that
betweenness centrality [61] is indicative of high levels of social
status, power, and managerial roles in both open source [7]
and commercial [1, 38] contexts.

We use this form of link analysis to determining these peo-
ple with high social status and source code contribution and
manually examining their activities. From a hand examina-
tion of the activities of participants, we found that on aver-
age about two to three people appear to fulfill these roles.
We never remove more than three of these participants per
project.

4.5.2 Product and Process Messages
We automatically classify each message as either product

and process based on a simple static analysis of the source
code for the project. We mine the source code repository for
names of files, packages, classes, functions using the static
analysis tool, Understand, from Scitools. We then remove
names that are dictionary words (such as console, string, or
connect) and common project terms (such as http or ant)
from this set. Messages that include these source code names
are classified as product and the rest are classified as process.
This is not a perfect automatic classification method; some
messages could be classified as falling into both categories,
some neither, and different people may even differ in their
classification of messages. Manual random sampling of the
classification of messages showed an accuracy of above 90%.

We examine the modularity of the social networks con-
structed from product messages, process messages, and all
messages to confirm or refute hypothesis 2. Since we ex-
pect the product based networks to have stronger commu-
nity structure, We use a one-tail paired Wilcoxon test (a

nonparametric test also known as a Mann-Whitney test)
with matched pairs of process and product networks for each
month to assess the difference in modularity.

4.6 Communication and Collaboration
Hypothesis 3 proposes that the developers from the same

email subcommunity will be more likely to collaborate than
developers from different subcommunities. We answer this
question by examining the average level of collaboration be-
tween developers within and between subcommunities in the
following quantitative manner.

Let D represent the set of developers that are active in a
given time period for a project. Let s(x) represent the sub-
community of developer x and let f(x) represent the set of
files modified by developer x for the same time period. Now
define two populations Psame and Pdiff in the following way.
For every pair of developers, x, y ∈ D, if s(x) = s(y), add
|f(x) ∩ f(y)| to Psame, and if s(x) %= s(y) add |f(x) ∩ f(y)|
to Pdiff . Psame represents collaboration between developers
in the same subcommunity and Pdiff represents collabora-
tion between different subcommunities. Since the majority
of pairs of developers don’t work on any files together, nei-
ther of these populations are normally distributed, making
a t-test inappropriate [10, 20]. We therefore use a two sam-
ple Wilcoxon test to test the difference in means between
the populations. If developers in the same subcommunity
are more likely to collaborate on files together, the mean of
Psame will be higher than Pdiff to a statistically significant
degree, validating hypothesis 3.

4.7 Task focus in Subcommunities
Hypothesis 4 proposes that developers within the same

subcommunity will be more likely to work within specific
areas or subsystems within the code base. In order to quan-
tify this“scope of activity”, we examine the average directory
tree distance between all pairs of files that are committed
to by developers within each subcommunity (weighted by
the number of commits). Smaller distances between pairs of
files for a given group of developers indicates smaller scope
and more focus. This methodology is based on the com-
mon (albeit not universal) practice of basing the directory
structure on the architecture of the system. An examina-
tion of the layout of files in each of the projects indicates
that this is true. The null hypothesis is that the weighted
average distance between all pairs of files committed to by
developers in the same group will be no different than for
randomly drawn sets of developers that are the same size
as the group. We expect that the directory tree distance
between committed files will be smaller for developers from
the same subcommunity. We compare the observed average
distances between all pairs of files committed to by devel-
opers in one subcommunity to a large number of randomly
chosen same-sized sets of developers.

We also manually inspected the communication and de-
velopment activities of subcommunities of participants in
order to assess if there were cohesive or focused tasks being
addressed.

5. RESULTS
We now present our findings after performing the above

data gathering and analysis in order to confirm or refute
our hypotheses regarding the social structure of these open
source projects.



5.1 Community Structure Exists
We found strong levels of community structure in all of the

projects studied. The value of the modularity measure Q, as
defined in 4.3, ranges from 0.4 to 0.8. The range of values for
different projects, over the studied period, is shown in Fig-
ure 2. To concretize this scalar value, we show in Figure 3
an example of a network with a community structure value
of 0.76 that is taken from the Perl project for the months of
April to June of 2007. This example was chosen because of
its relatively small size in relation to the other time periods
and projects studied5. In Figure 3, an edge represents one
or more messages between participants; edge weights, albeit
used by the algorithm, are not depicted graphically. Sev-
eral distinct subcommunities can be seen; typically the edges
within subcommunities represent frequent communications.
Newman has found that in naturally occurring networks,
modularity values of 0.3 and above indicate strong commu-
nity structure [51]. As can be seen in Figure 5 we found
values in this range both before and after filtering messages.

●

Ant Apache Perl Postgres Python

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boxplots of Modularity in Projects

project

m
od
ul
ar
ity

Figure 2: Boxplots of the strength of community structure

for the various projects studied.

Significance of Observed Modularity: The question, arises,
are these values of modularity statistically significant? Do
the empirically observed modularity values reflect something
special and real about how people associate and communi-
cate on the observed email social networks, or are they just
values that would arise in any random network where the
same people were equally active, but had different associ-
ations? If the latter is true, that would suggest that who
people talk to doesn’t matter, only how much they talk.
Our claim, however, is that subcommunities form because
people deliberately choose who they communicate with.

A comparison of modularity values of the random net-
works with the same degree distributions with those from
the actual networks can reject the null hypothesis at far
below the .001 level. An example of a modularity distribu-
tion for Ant from April to June of 2006 is shown in Figure
4. The point on the right indicates the observed network
and the curve shown is the distribution of modularity val-
ues obtained from random networks with the same degree
distribution. Therefore we reject the null hypothesis that
the observed modularity values would occur in a bazaar-like
social network where individuals were just as socially ac-

5Graphs of the networks for each time period of each project
can be viewed at http://janus.cs.ucdavis.edu/~cabird/
cs-graphs.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Ant, April to June of 2006

Modularity

Pr
ob

ab
ilit

y 
De

ns
ity

●

Figure 4: The distribution of modularity values for 100,000

random graphs with the same degree distribution as the ob-

served network. The point represents the actual observed

value.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Date

M
od

ul
ar

ity

Modularity of PostgreSQL over time

1998−01 2000−01 2002−01 2004−01 2006−01

Product Topics
Process Topics

Figure 5: The difference in strength of community struc-

ture in the PostgreSQL project over time when filtering on

messages that include product-related terms.

tive as in the observed network. Therefore we conclude that
Hypothesis 1 is confirmed.

5.2 Effect of Product and Process Topics
While we identified strong community structure in the so-

cial networks prior to the filtering steps, more clearly delin-
eated subcommunities emerge when constraining the com-
munication that we use in our analysis to messages directly
mentioning product topics, viz., emails that specifically name
actual code artifacts.

As an example, figure 5 shows the modularity found in
the PostgreSQL project over time when using the process
messages on the developer mailing list and when using the
product messages (i.e., those that mention source code arti-
facts directly).

Table 2 shows the average increase in modularity when
we include only the product topic emails. We examined the
differences between the filtered and unfiltered values using
one-tailed paired Wilcoxon tests.

To asses the statistical significance of the results, since we
are testing multiple hypotheses (5 in this case), the individ-
ual p-values during testing were adjusted using Benjamini-

http://janus.cs.ucdavis.edu/~cabird/cs-graphs
http://janus.cs.ucdavis.edu/~cabird/cs-graphs


jim cromie

stew benedict

yitzchak scott-thoennes

steve peters

joshua ben jore

nick stoughton

andy armstrong

avarab@gmail.com

orton, yves

leon brocard

darren jones

david nicol

andy dougherty

brandon black

dr.ruud

andreas j. koenig

steven schubiger

evans, james els

jarkko hietaniemi

h.merijn brand

jerry d. hedden

jonathan stowe
pelle svensson

anno siegel

vadim konovalov

robin barker

rim yazigi

steve hay

jan dubois

bo lindbergh

david landgren

tim bunce

shlomi fish

chun bing ge

craig a. berry

david cantrell

dominic dunlop

benjamin franz

chia-liang kao

heiko jansen

arthur bergman

maddingue@free.fr

paul johnson

sadahiro tomoyuki

ivan heffner

paul marquess
xiao liang liu

Figure 3: The community structure of Perl from April to June 2007. Diamonds indicate actual developers. Edge weights are

not depicted.

Name Apache Ant Python Perl Postgres
Product 0.548 0.534 0.473 0.567 0.679
Process 0.337 0.485 0.312 0.423 0.425

All 0.325 0.459 0.293 0.400 0.420
P-val 0.001 0.033 0.001 0.001 0.001

%Product 27.6 64.3 50.0 29.9 26.4

Table 2: Means of the modularity when examining only

product emails, only process emails, or all emails. P-val repre-

sents the statistical significance of a paired Wilcoxon test of

product and process populations per project. The bottom row

is the proportion of messages (as a %) that relate to product

topics

Hochberg adjustment for multiple hypotheses [5]. This pro-
cedure maintains an overall false positive rate of below 0.05
(this is known as the False Discovery Rate). The results
were statistically significant with p-values below .05 in all
cases.

Note that an increase in modularity when filtering the
edges in a network is not a foregone conclusion. Rather, we
did not see an increase in modularity when examining only
the process emails relative to all emails. A comparison of
the modularity based on process and product topic emails in
addition to the entire network (labelled “All”) is shown in
Table 2. This indicates that the groupings into subcommuni-
ties is much stronger when discussions directly related to the
source code arise. Thus Hypothesis 2 is confirmed . This
affirmative answer to H2 suggests that successful projects
tend to focus into subcommunities for product-related work,
but discuss process-related issues more broadly. As we do
not have examples of unsuccessful projects, it is unclear if
this phenomenon is a differentiating characteristic of success.

5.3 Collaboration Within Subcommunities
We now turn to an examination of the levels of collabo-

ration between developers within and between subcommu-
nities. Specifically we measure the average number of files

that developers have in common (i.e. have both committed
to in the examined time period).

We found that in four of the five projects, (See Table 3)
developers worked together on the same file with people in
their own subcommunity much more often than people in
others on average. We show the p-values for a Wilcoxon
test which were adjusted for multiple hypotheses testing.
The results are generally statistically quite significant (same
subcommunity distribution was significantly higher than the
different subcommunity distribution).

Project Ant Apache Perl Postgres Python
Wilcoxon

P-val 0.000 0.052 0.502 0.000 0.000

Table 3: Probability values for non-parametric tests of dif-

ference in means and difference in distributions of co-commits

of developers between subcommunities and within subcom-

munities corrected for multiple hypothesis testing.

Note that in this case, we use the community structure
obtained from the product-related networks, since these are
product-related work activities.

Unfortunately, in the case of Perl, while we were able to
access repository logs, we were unable to obtain the actual
repository files and therefore could not run our static anal-
ysis tools on them to get names of functions or classes. The
key terms for Perl were limited only to the filenames in the
repository. Consequently, the division of participants into
subcommunities based on product messages may not be as
accurate as in the other projects. Therefore, the experiment
on Perl was incomplete, and our results are inconclusive.

We conclude that for the Ant, Apache, Postgres and Python
projects, since developers have higher collaboration levels
with other developers in their own subcommunity than with
developers outside of their subcommunity, the community
structure of the social networks does hold relevance to the
actual development effort. Thus Hypothesis 3 is confirmed .



This suggests that in successful projects, co-commit behaviour
is strongly linked with social interaction.

5.4 Activity Focus Within Subcommunities
After performing the directory distance analysis described

in section 4.7, we were unable to reject the null hypothesis
(no difference in directory distance) for any of the projects.
Hypothesis 4 is therefore not quantitatively confirmed.

Although there were cases where the average distance for
files from a subcommunity of developers was far smaller
than the average for all tests of random sets of develop-
ers, the trend was not consistent throughout. There are two
possible reasons for this inconclusive result; either the hy-
pothesis is incorrect and the groups did not have a specific
task focus, or our directory tree distance measure for “task
focus” lacks construct validity and does not adequately cap-
ture what we’re trying to measure. In order to shed light on
the matter, we mounted a case study to try understand the
topics of discussion and the commit behaviour, of developers
in subcommunities.

Case Studies We carefully studied the emails on developer
lists and commits to files in source code repositories. This
information represents the actual work that goes on in the
projects on a daily basis. We therefore examine this data
for the groups of participants identified by the community
structure algorithms. Our goal was to determine if there
were common tasks, topics, or particular subsystems in the
activities of participants in subcommunities. We have iden-
tified time periods and subcommunities where these indica-
tors have emerged and discuss examples of these here. We
found that the subcommunities can be categorized into three
types, which we characterize with examples in the case stud-
ies below.

We also examined the development and communication
activities of people in the groups identified to see if they
were in fact working together on common tasks. Due to
the sheer number of groups identified over the life of all
five projects, a comprehensive manual inspection was not
possible. We therefore studied a few cases where the work of
groups seemed strongly focused on one part of the directory
structure, and cases where it seemed strongly unfocused.
These cases were quite instructive.

A subcommunity in Apache The first category of community
is that in which the discussion and development is focused
on one are of the codebase. In the Apache webserver project,
from May to July of 2003, one subcommunity consisted of
Rowe and Thorpe (developers) as well as Deaves, Adkins,
and Chandran. They discussed some bug fixes to mod_ssl,
the apache interface to the Secure Sockets Layer (SSL). Top-
ics included issues with incorrect input/output code, mod-
ule loading, unloading and initialization, and integration of
mod_ssl with the server. Nearly all the discussion is about
the SSL code, and virtually all of the files modified by peo-
ple in this group during this time period are in the mod-

ules/ssl directory. Clearly, this is a subcommunity within
the Apache project that is focused on a particular task. In
other cases, groups of participants were not focused on one
single topic or task. Often this would occur when one or
two developers worked on two or more disparate areas of the
code base, thus drawing two communities together. There
were also a smaller number of cases where no clear topics

were distinguishable from the changes to files or the email
messages. Many of these occurred relatively close to release
dates.

A subcommunity in Python The second type of subcommu-
nity had a clear focus in both discussion and content of
development behaviour, but the locations of the modified
files cross-cut the directory structure. From April to June
of 2003, the Python developer mailing lists provides an in-
structive illustration of this phenomenon. The key partici-
pants in one identified group of the python community are
Hylton, Cannon, and Fulton. During this time Hylton was
diagnosing memory leaks in Zope, an object oriented web
application server written in python6. Using unit tests, Hyl-
ton tracked down problems in the garbage collection code.
There are several related messages on the mailing list. Ful-
ton, Paul Prescod, and Hylton discuss the use, semantics,
and expected behavior of the garbage collection API’s on
both the C and Python parts of the code base, with ex-
ample code of their use posted. The discussion results in
several changes in the files relating to garbage collection.
Extensive changes are made to /Modules/gcmodule.c and
in other areas of the python interpreter such as function ob-
jects in /Object/funcobject and handling of pickled objects
in /Modules/cPickle.c. The tracing and inspection mod-
ules of the python interpreter are also modified to enhance
future debugging of the GC code. In addition, while testing
this code, a few of the unit tests fail and discussions ensue
between Hylton and Cannon, resulting in diagnosis and re-
mediation of bugs in the unit test code per se. Changes were
made to urllib2.py, httplib.py and strptime.py, inter
alia. Figure 6 is a snapshot of this group of contributors
along with the directories that they committed to. Dia-
monds indicate developers, ovals are participants, and rect-
angles are directories. Clearly, this group is operating as a
team to accomplish a common goal: improving the quality
of the garbage collector. However, the issue dealt with has
parts scattered across the code base. The the garbage col-
lection code is a concern that cuts across the module and
directory structure, i.e. it is an aspect. This leads to the in-
teresting observation that even if a feature is cross-cutting,
affects a broad swath of files, the discussion surrounding it
may be cohesive, and involves a well-defined subcommunity
of developers. This suggests in fact, an alternative approach
to aspect-mining, based on finding apparently unrelated files
that consistently are worked on by groups of developers with
strong social ties.

Sub-communities in other projects We studied several sub-
communities in each of the projects studied, and generally
found good evidence for task focus.

For example, from 11/2002 to 12/2002 in postgres, one
subcommunity works solely on embedded SQL in C, and an-
other focuses on updating the SGML documentation source.
In the following time period, a group emerges whose activity
and discussion concerns the development and testing of the
postrges JDBC driver (with source code and test code span-
ning the code base within the JDBC subtree) and another
much smaller group works on Unicode support.

There are other subcommunities whose focus is not as
localized within the system. During 10/2001 to 12/2001,

6For details, see http://www.python.org/~jeremy/weblog/
0304.html

http://www.python.org/~jeremy/weblog/0304.html
http://www.python.org/~jeremy/weblog/0304.html


brett cannon

neil schemenauer

jeremy hylton

itamar shtull-trauring

jeffery roberts /Lib/ /Lib/test/ /Modules/

/Objects/

jim fulton

simon michael/Doc/ext/

paul prescod

david bolen marcus mendenhall

/Python/ rick y logistix/Include//Lib/distutils/

Figure 6: One subcommunity of participants in the python community from April to June 2003. Diamonds are developers,

ovals are participants, and rectangles are directories committed to (in lieu of the large number of files committed to).

we find two subcommunities whose tasks broadly span the
Ant codebase. One large group, with 29 participants (in-
cluding 5 developers) focuses on tracing and debugging. Al-
though their code modifies files in many different places,
their changes broadly add logging calls, debugging output,
and assertions. Another group of 9 participants and 3 devel-
opers is working on ant build tasks, many specific to other
non-ANT and commercial software, including EJB, Visu-
alAge, Perforce, JUnit, and Sitraka products. The affected
files are scattered across different packages. In addition,
many test cases, in an entirely different part of the system’s
directory structure are also updated.

In the third type of subcommunity there was more than
one particular topic or task under discussion or development.
Often this would occur when one or two developers worked
on two or more disparate areas of the code base, thus draw-
ing two communities together. We also noted a few cases
where no clear topics were distinguishable from the changes
to files or the email messages (a number of these cases oc-
curred relatively close to release dates).

In conclusion, Hypothesis 4, concerning the focus of
subcommunities around cohesive tasks, is a complex matter.
Sub-communities sometimes relate to closely connected files
in the same module, and sometimes not. Our case study sug-
gests a possible explanation—perhaps, sometimes, the focal
task relates to cross-cutting concerns. We are currently ex-
ploring this issue, especially as it relates to the possibility
of automatically mining socially and conceptually coherent,
cross-cutting concerns; this might suggest either refactoring,
or introducing the use of Aspect-oriented programming.

6. THREATS TO VALIDITY
We detect social links between developers using just the

developer mailing list. While this is the prescribed venue for
engineering discussions (due to it’s broadcast nature) [7, 22,
34, 46], we miss other potential developer interactions, such
as private emails, irc channels, or discussions in bug reports.

While there appears to be a relationship between develop-
ment activity and community structure, it is important to
note that no causal link has been established. Further work
is required to determine if the social links drive collaboration
or vice versa, (or if they are both results of an unobserved
phenomenon).

The biggest threat is to external validity. As with most
studies of open source software, the projects for study were
chosen based on certain criteria as mentioned in section

4.1. This necessary bias in selection means that we are not
randomly sampling from the population of OSS projects.
Therefore, while these results may be similar to what occurs
in projects that don’t fit these criteria, we have no evidence
to support that assertion. In addition, as an examination
of just five projects, these results may not generalize even
to other projects that fit the same criteria. We believe that
they would, but some have argued otherwise [6].

7. CONCLUSION
We have mined the communication and development data

for five large open source projects and tailored an algorithm
to search their email social networks for evidence of sub-
groups, whose activities are directly related to the software
artifact. We found that in all cases, evidence of strong com-
munity structure existed within the communication patterns
of the participants, and that the structure was more modu-
lar when discussion focused directly on source code artifacts.
In addition, in all cases where our data was complete, the
division of the project into subcommunities was also repre-
sentative of the collaboration behavior of the developers. A
quantitative analysis of the task focus for the various sub-
communities was inconclusive, but some case studies indi-
cated that the task focus of subgroups does exist in many
cases, though it may be subtle and varied in nature. The
case study suggests some directions for future work, both in
socio-technical congruence, and in aspect-mining. The dy-
namics of these subcommunities such as turnover rate and
migration are topics that we plan to investigate as well.

8. ACKNOWLEDGEMENTS
We would like to thank SciTools7 for graciously allowing

us the use of their excellent static analysis tools for Java,
C, and C++. We also gratefully acknowledge support from
the National Science Foundation Science of Design program,
NSF-SoD-0613949

9. REFERENCES
[1] Ahuja, Manju K., Galletta, Dennis F., and Carley,

Kathleen M. Individual centrality and performance in
virtual r&d groups: An empirical study. Management
Science, 49(1):21–38, jan 2003.

7http://www.scitools.com

http://www.scitools.com


[2] T. Allen et al. Managing the flow of technology.
Cambridge: The MIT Pr., 1979.

[3] U. Alon. Biological Networks: The Tinkerer as an
Engineer. Science, 301(5641):1866–1867, 2003.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. Proceedings of the
12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 44–54,
2006.

[5] Y. Benjamini and Y. Hochberg. Controlling the False
Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300,
1995.

[6] J. Berkus. The 5 types of open source projects. March
20, 2007 http://www.powerpostgresql.com/5_types.

[7] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 3rd International Workshop on
Mining Software Repositories, 2006.

[8] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks in
postgres. In Proceedings of the 3rd International
Workshop on Mining Software Repositories, 2006.

[9] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan,
and G. Hsu. Open borders? immigration in open
source projects. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software
Repositories, page 6, Washington, DC, USA, 2007.
IEEE Computer Society.

[10] G. Box, W. Hunter, and J. Hunter. Statistics for
experimenters: an introductory to design data analysis
and model building. Wiley Series in Probability and
Mathematical Statistics)., 1978.

[11] P. Boykin and V. Roychowdhury. Personal Email
Networks: An Effective Anti-Spam Tool. Arxiv
preprint cond-mat/0402143, 2004.

[12] U. Brandes, D. Delling, M. Gaertler, R. Görke,
M. Hoefer, Z. Nikoloski, and D. Wagner. On finding
graph clusterings with maximum modularity. In
Proceedings of the 33rd International Workshop on
Graph-Theoretic Concepts in Computer Science.
Lecture Notes in Computer Science, Springer, 2007.

[13] F. Brooks. The mythical man-month. Addison-Wesley,
1995.

[14] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley.
Identification of coordination requirements:
implications for the Design of collaboration and
awareness tools. Proceedings of the 2006 20th
anniversary conference on Computer supported
cooperative work, pages 353–362, 2006.

[15] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 70(6):66111, 2004.

[16] J. F. P. D. Cleidson de Souza. Seeking the source:
Software source code as a social and technical artifact,
2005.
http://opensource.mit.edu/papers/desouza.pdf.

[17] M. Conway. How do committees invent. Datamation,
14(4):28–31, 1968.

[18] K. Crowston and J. Howison. The social structure of
free and open source software development. First
Monday, 10(2), 2005.

[19] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Commun. ACM, 31(11):1268–1287, 1988.

[20] P. Dalgaard. Introductory Statistics With R. Springer,
2002.

[21] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of
Networks: From Biological Nets to the Internet and
WWW. Oxford University Press, 2003.

[22] N. Ducheneaut. Socialization in an Open Source
Software Community: A Socio-Technical Analysis.
Computer Supported Cooperative Work (CSCW),
14(4):323–368, 2005.

[23] N. Ducheneaut and L. Watts. In search of coherence:
a review of e-mail research. Human-Computer
Interaction, 20(1-2):11–48, 2005.

[24] K. Ehrlich, K. Chang, I. Res, and M. Cambridge.
Leveraging expertise in global software teams: Going
outside boundaries. Global Software Engineering,
2006. ICGSE’06. International Conference on, pages
149–158, 2006.

[25] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
PROC.NATL.ACAD.SCI.USA, 99:7821, 2002.

[26] C. Gkantsidis, M. Mihail, and E. Zegura. The markov
chain simulation method for generating connected
power law random graphs. In Proceedings of ALENEX
‘03, pages 16–25, 2003.

[27] P. Gleiser and L. Danon. Community structure in
jazz. Advances in Complex Systems, 6:565, 2003.

[28] J. González-Barahona, L. López, and G. Robles.
Community structure of modules in the apache
project. In MSR ’05: Proceedings of the 2005
international workshop on Mining software
repositories, 2005.

[29] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt,
and A. Arenas. Self-similar community structure in
organisations. Physical Review E, 68:065103, 2003.

[30] R. Guimerà, S. Mossa, A. Turtschi, and L. Amaral.
From the Cover: The worldwide air transportation
network: Anomalous centrality, community structure,
and cities’ global roles. Proc Natl Acad Sci US A,
102(22):7794–7799, 2005.

[31] R. M. Henderson and K. B. Clark. Architectural
innovation: The reconfiguration of existing product
technologies and the failure of established firms.
Administrative Science Quarterly, 35(1):9–30, 1990.

[32] J. Herbsleb. Global Software Engineering: The Future
of Socio-technical Coordination. International
Conference on Software Engineering, pages 188–198,
2007.

[33] J. D. Herbsleb and A. Mockus. Formulation and
preliminary test of an empirical theory of coordination
in software engineering. In ESEC / SIGSOFT FSE,
pages 138–137, 2003.

[34] G. Hertel, S. Niedner, and S. Herrmann. Motivation of
software developers in Open Source projects: an
Internet-based survey of contributors to the Linux
kernel. Research Policy, 32(7):1159–1177, 2003.

http://www.powerpostgresql.com/5_types
http://opensource.mit.edu/papers/desouza.pdf


[35] P. Hinds and C. McGrath. Structures that work:
social structure, work structure and coordination ease
in geographically distributed teams. In CSCW ’06:
Proceedings of the 20th conference on Computer
supported cooperative work, pages 343–352, New York,
NY, USA, 2006. ACM.

[36] A. Hintze and C. Adami. Evolution of complex
modular biological networks. PloS Computational
Biology, e23.eor, 2008.

[37] L. Hossain, A. Wu, and K. K. S. Chung. Actor
centrality correlates to project based coordination. In
CSCW ’06: Proceedings of the 20th conference on
Computer supported cooperative work, pages 363–372,
New York, NY, USA, 2006. ACM.

[38] H. Ibarra. Network centrality, power, and innovation
involvement: Determinants of technical and
administrative roles. The Academy of Management
Journal, 36(3):471–501, jun 1993.

[39] N. Kashtan and U. Alon. Spontaneous evolution of
modularity and network motifs. Proceedings of the
National Academy of Sciences, 102(39):13773–13778,
2005.

[40] K. Kuwabara. Linux: A bazaar at the edge of chaos.
First Monday, 5(3), March 2000.

[41] L. Layman, L. Williams, D. Damian, and H. Bures.
Essential communication practices for Extreme
Programming in a global software development team.
Information and Software Technology, 48(9):781–794,
2006.

[42] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
cvs repositories. In Proceedings of the International
Workshop on Mining Software Repositories, 2004.

[43] S. Maslov, K. Sneppen, and A. Zaliznyak. Pattern
detection in complex networks: Correlation profile of
the internet. Physica A, 333:529, 2004.

[44] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman,
and U. Alon. On the uniform generation of random
graphs with prescribed degree sequences. Arxiv
preprint cond-mat/0312028, 2003.

[45] A. Mockus, R. Fielding, and J. Herbsleb. A case study
of open source software development: The Apache
server. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000),
pages 263–272, Limerick, Ireland, 2000.

[46] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[47] M. Molloy and B. Reed. A critical point for random
graphs with a given degree sequence. Random Struct.
Algorithms, 6(2-3):161–179, 1995.

[48] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,
and Y. Ye. Evolution patterns of open-source software
systems and communities. Proceedings of the
International Workshop on Principles of Software
Evolution, pages 76–85, 2002.

[49] M. E. J. Newman. Analysis of weighted networks.
Physical Review E, 70:056131, 2004.

[50] M. E. J. Newman. Finding community structure in
networks using the eigenvectors of matrices. Physical
Review E, 74(3):36104, 2006.

[51] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Phys.
Rev. E, 69(2):026113, Feb 2004.

[52] M. E. J. Newman, S. H. Strogatz, and D. J. Watts.
Random graphs with arbitrary degree distributions
and their applications. Phys. Rev. E, 64(2):026118, Jul
2001.

[53] D. Parnas. The criteria to be used in decomposing
systems into modules. Communications of the ACM,
14(1):221–227, 1972.

[54] E. S. Raymond. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly and Associates, Sebastopol,
California, 1999.

[55] M. P. Robillard. Bellairs workshop on recommender
systems, 3 2008.

[56] M. Sosa, S. Eppinger, and C. Rowles. The
Misalignment of Product Architecture and
Organizational Structure in Complex Product
Development. Management Science, 50(12):1674–1689,
2004.

[57] M. L. Tushman and R. Katz. External communication
and project performance: An investigation into the
role of gatekeepers. Management Science,
26(11):1071–1085, 1980.

[58] J. Tyler, D. Wilkinson, and B. Huberman. E-Mail as
Spectroscopy: Automated Discovery of Community
Structure within Organizations. The Information
Society, 21(2):143–153, 2005.

[59] G. Valetto, M. Helander, K. Ehrlich, S. Chulani,
M. Wegman, and C. Williams. Using Software
Repositories to Investigate Socio-technical Congruence
in Development Projects. Proceedings of the Fourth
International Workshop on Mining Software
Repositories, 2007.

[60] P. Wagstrom, J. Herbsleb, and K. Carley. A Social
Network Approach To Free/Open Source Software
Simulation. Proceedings of the 1st International
Conference on Open Source Systems, Genova,
11th-15th July, 2005.

[61] S. Wasserman and K. Faust. Social network analysis:
Methods and applications. Cambridge University
Press, 1994.

[62] J. Xu, Y. Gao, S. Christley, and G. Madey. A
topological analysis of the open source software
development community. In HICSS ’05: Proceedings of
the Proceedings of the 38th Annual Hawaii
International Conference on System Sciences
(HICSS’05) - Track 7, 2005.

[63] Y. Ye, Y. Yamamoto, and K. Nakakoji. A
socio-technical framework for supporting
programmers. Proceedings of the 6th joint meeting of
the european software engineering conference and the
14th ACM SIGSOFT symposium on Foundations of
software engineering, pages 351–360, 2007.

[64] J. Yoon, A. Blumer, and K. Lee. An algorithm for
modularity analysis of directed and weighted
biological networks based on edge-betweenness
centrality. Bioinformatics, 22(24):3106, 2006.

[65] E. Ziv, M. Middendorf, and C. Wiggins.
Information-theoretic approach to network
modularity. Physical Review E, 71(4):46117, 2005.


