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ABSTRACT
We employ user activity data from three highly popular gift-
ing applications on Facebook to study the evolution of user
activity on applications through the most commonly-used
growth mechanism, namely Application Requests. We find
user activity graphs differ from friendship graphs in large
part due to the inherent directionality of user activity, and
node transience. Our results show that, unlike degree distri-
butions in friendship graphs, activity graphs exhibit strong
asymmetry in in- and out-degree distributions, and that out-
degrees are not accurately described by currently known
parametric distributions. As such, user activity graphs can-
not be simulated through existing intent- and feature-driven
algorithms that can model friendship graphs.

We present a novel probabilistic growth model for user ac-
tivity on the gifting genre of social applications. Our model
decouples in- and out-degrees based on their distinct na-
ture exhibited by our empirical data. We use the insight
that regardless of increasing, declining or stable user activ-
ity, gifting application user activity exhibits the same graph
structure. Our model produces synthetic graphs that con-
sist of disconnected components with low clustering of nodes,
and exhibit degree structures very similar to our real activ-
ity data. We discuss the benefits and shortfalls of our model
and its applicability to other types of OSN-based applica-
tions, such as social games. To the best of our knowledge
this study is the first to explore and model user activity
growth processes on OSN-based applications.

Categories and Subject Descriptors: C.2.0 [Computer
- Communication Networks]: General; H.4.3 [Information
Systems Applications]: Communications Applications

General Terms: Measurement, Algorithms
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1. INTRODUCTION
Over the last five years, Facebook has become the most

widely used Online Social Network (OSN) with a user base
of over 950 million, and through its Developer Platform,
Facebook supports a rich social application eco-system that
has become a $6+ billion industry as of 2012. This growing
importance of OSNs has spurred massive academic interest
in OSNs, resulting in research that has focused on studying
friendship graphs [15, 2, 23, 1]. Meanwhile, considerably
less is known about user activity on social networks, even
though researchers have argued the greater importance of
studying user activity over simple friendship formation [22,
7, 29, 24, 25, 21]. This lack of research on user activity
is due to privacy issues related to sharing of user activity
data [12], which have resulted in lack of availability of such
data for research purposes.

OSN friendship graphs differ significantly from user activ-
ity graphs (UAGs). We know that while friendship graphs
consist of static friendship relations that rarely change be-
tween user pairs, UAGs are dynamic in nature due to the
constant activity. Also, user activity on OSNs may or may
not be reciprocal, whereas OSN friendships always are.1

This means OSN friendship graphs are undirected, whereas
UAGs are directed in nature. Furthermore, user activity
on OSNs is not always based on the underlying friendship
graph,2 and UAGs exhibit temporal variance in graph prop-
erties that do not exist for OSN friendship graphs [16]. Due
to these differences, existing work on friendship graphs is
inapplicable to UAGs.

A number of questions regarding UAGs from social ap-
plications remain unanswered, including whether or not it
is possible to model UAGs from social applications, just as
researchers have modeled OSN friendship graphs. Our in-
tent is to explore the possibility of modeling UAGs from
all social applications on the largest OSN, Facebook. These

1Relationships on Twitter do not qualify as friendships, but
rather as user-follower relations.
2For example, adaptations of board games such as Scrab-
ble to Facebook applications have mostly been played with
random application users rather than one’s OSN friends.



applications utilize one or all four growth mechanisms avail-
able on Facebook to achieve growth in user base. These
growth mechanisms are Application Requests (ARs), News-
feed Stories, Emails, and Paid Advertising (see Section 3.1).
Among these, only ARs are used by all Facebook applica-
tions. Based on this last observation, this paper focuses on
understanding the growth of UAGs through ARs by study-
ing, and modeling, UAGs from one genre of Facebook ap-
plications, namely, gifting applications. We say a social ap-
plication is in the gifting genre if it consists of only one
feature, and that this feature enables inter-user sharing of
virtual gifts through ARs.

Our survey of the top 250 Facebook applications shows
that gifting is the second-most popular genre of Facebook
applications behind gaming, and that all Facebook gaming
applications use gifting as a feature to increase growth. Fur-
thermore, since gifting applications use only the AR mech-
anism, their UAGs are simpler to model than applications
that use more than just the AR growth mechanism. As a
starting point to model UAGs from social applications, we
investigate modeling UAGs from only gifting applications in
this paper. We use static snapshots of empirical UAGs from
three popular gifting applications on Facebook to study the
growth of UAGs. This approach of studying evolution of a
graph by studying its static snapshots has been advocated
previously ([10]), and it enables us to address the following
questions regarding UAGs:

(1) How do UAGs from social applications differ
from friendship graphs obtained from OSNs?

Unlike creation and deletion of friendships on OSNs, we
have previously observed year-round dynamic patterns in
the UAGs obtained from one gaming and three gifting ap-
plications [16]. In addition to daily and weekly variations in
user activity, reliably high user activity is observed during
special occasions and holidays (Valentine’s Day, New Year,
Christmas, etc.). Also unlike friendship graphs where friend-
ships are almost always mutual, user activity is not always
reciprocal. The lack of reciprocity in user activity gives rise
to distinct in- and out-degree distributions. Furthermore, in
our gifting UAGs, there is an explicit cost associated with
initiation of activities (outgoing edges); i.e., the total num-
ber of activities that can be initiated by a user is capped
at a limit. This is due to a throttling mechanism used by
Facebook to limit spam in the network, which amplifies the
distinction between in- and out-degree distributions.

(2) Existing graph models generate ‘acceptable’
synthetic friendship graphs [19, 13]. Do these mod-
els suffice when modeling user activity from social
gifting applications?

We evaluate intent- and feature-driven algorithms (such
as Nearest Neighbor and Forest Fire) reported to gener-
ate graphs that are statistically similar to OSN friendship
graphs. We find the procedures employed in the original
as well as existing hybrid versions of these algorithms are
too simplistic to generate gifting UAGs. For instance, our
results show that our gifting UAGs exhibit degree struc-
tures that are more complex than for friendship graphs. In
particular, out-degree distributions in our UAGs cannot be
explained simply by power-laws, and are not summarized
by any known parameterized distribution. In contrast, OSN
friendship graphs exhibit degree structures that are often
explained by single power-laws [3].

(3) What key features should be considered to
model UAGs from gifting applications? How do
these features change with time?

Research on friendship graph modeling suggests a small
number of metrics that are sufficient to summarize friend-
ship graphs, i.e., clustering coefficients, degree distributions,
and number/size of connected components [19]. We explore
these metrics in conjunction with more focused user behavior
metrics from our applications i.e., likelihoods of interacting
with inactive users and targeting new users, and distribu-
tions of user lifetimes and number of daily interactions.

Our analysis of gifting UAGs shows that degree distri-
butions as well as connected component size distributions
tend to stabilize over approximately one week of user activ-
ity. Clustering coefficients are too small to reliably stabilize
for our gifting applications, while the number of connected
components do not stabilize, but instead may increase or de-
crease given the phase of the application’s lifetime. We also
observe that all metrics vary from week to week, depending
on overall trends in application usage.

(4) Finally, is it possible to model user activity on
a class of social applications that utilize the same
underlying growth mechanism?

We use our understanding of the social application growth
process to provide an algorithm tailored to a class of ap-
plications, namely gifting, that uses one particular growth
mechanism, namely ARs. Unlike existing friendship models,
our algorithm decouples in- and out-degrees to provide syn-
thetic graph structures similar to our gifting UAGs. Our al-
gorithm uses application-specific metrics such as active user
duration, distribution of daily number of activities, etc. as
inputs to facilitate accuracy of the synthetic graph produced.
By varying inputs to this algorithm, we show its efficacy in
generating weekly synthetic graphs for all of the gifting ap-
plications we study. We also perform rigorous analysis of
the degree distributions produced by our algorithm. This
analysis provides a mathematical formula that describes the
expected distribution in activity level among users.

To the best of our knowledge, this is the first attempt to
model UAGs from OSN-based applications. Due to similar-
ity of structure and the pervasive use of ARs, we believe our
model is applicable to other Facebook gifting applications
as well. Our findings can be leveraged to forecast a gifting
application’s usage. The synthetic UAGs generated by our
model provide an alternative to sharing large data sets that
may violate user privacy.

We begin this paper with a discussion of related work
in Section 2, followed by a discussion of our methodology,
including the graph metrics we use to model gifting UAGs, in
Section 3. We analyze measurements for our selected graph
metrics in Section 4, and present our UAG growth model in
Section 5 with a discussion of its potential uses. We discuss
future work and conclude the paper in Section 6.

2. RELATED WORK
Spurred by the increasing relevance of OSNs to online user

activity, there has been an increase in analyses of OSNs over
the last few years [11]. While some researchers have ana-
lyzed usage patterns of popular OSNs, others have focused
on graph theoretic properties of OSNs such as YouTube [15].

Research into OSN network growth has resulted in multi-
ple algorithms that produce synthetic graphs to mimic OSN
friendship graph properties. These algorithms derive con-



cepts from earlier graph theory [18], including algorithms
for offline social network growth, such as Nearest Neighbor,
Random Walk, Barabasi-Albert, and so on [19]. Moreover,
some research marries preferential attachment with latent
node characteristics to study OSN network growth [9].

Researchers have also studied time-varying OSN graphs
[20, 8]. Gummadi et al. report on the strength of user inter-
actions on Facebook using indigenous OSN applications in
[25]. They find that communication decreases among users
from the point of friendship formation due to relationship fa-
tigue. Leskovec et al. propose that graphs over time do not
follow the same patterns or exhibit the same attributes as
they did when they were initially formed, and presents the
Forest Fire algorithm to model OSN network growth [13].
Other research has focused on information dissemination
patterns on OSNs [21, 2]. Li et al. have suggested that
in complex networks, relying on statistical methods cannot
provide an idea of which features are essential to the topol-
ogy’s formation [14]. Instead, they propose that knowledge
of the building blocks of network activity is essential to un-
derstand growth of networks. Furthermore, Holme et al.
propose studying static snapshots of graphs to study evolu-
tion of temporal networks [10].

The lack of availability of real data sets from OSNs has
slowed research into growth patterns on OSNs. This is
especially true for social applications on OSNs, for which
high-level statistical analyses exist ([5, 16, 17, 6]), yet whose
growth processes have not been studied.

Our social applications provide us a unique opportunity
to study the growth of OSN-based applications [16, 17]. We
believe the observation of Gummadi et al. on user fatigue
holds true for social applications as well, since application
novelty can explain early application growth and user fatigue
could account for its decline. We find that growing and aged
graphs exhibit different patterns ([13]) for UAGs as well. To
the best of our knowledge, this paper is the first to study
and model growth of user activity on social applications.

3. METHODOLOGY AND RATIONALE
Our end-goal is to study growth processes of all OSN-

based applications. However, due to limited access to OSN
application data, we use only applications on the largest
OSN, Facebook, as a case study.

3.1 Growth Mechanisms of OSN Applications
Facebook applications allow subscribed users to interact

with non-subscribing users to encourage application growth
on the OSN. We define a subscribing user on a Facebook
application as someone who has ‘logged in’ to the applica-
tion through an installation screen presented by Facebook
for that application. Moreover, online social applications
belong to different genres. While some of the more complex
applications (games) target audience that seek high engage-
ment in OSN applications,3 other simpler applications (gift-
ing) target casual users i.e., users that spend only a short
time on social applications.

Application statistics websites ([27], [26]) rank Facebook
applications according to Monthly Active Users (MAU) [16].
Our review of these rankings indicates that gaming and gift-
ing applications are the two largest sets of Facebook appli-

3Higher user engagement translates into higher average rev-
enue generated per subscriber.

cations. In particular, our review (using Developer Analyt-
ics [27]) in January 2012 showed that 74.4% of the top 250
Facebook applications by MAU were Flash or text-based
gaming applications, while 9.43% were gifting applications,
followed by other smaller genres of applications.4

We study growth processes for social applications using
the OSN-based application architecture (Figure 1(a)), dis-
cussed in [16]. These growth processes depend on the growth
mechanisms employed by social applications. Facebook pro-
vides the following growth mechanisms:

• Application Requests (ARs): Facebook users are
able to send ARs to their friends, allowing them to
recruit friends to applications free of cost. The AR
growth mechanism is illustrated by steps 1 and 5 in
Figure 1(a). If User A sends an AR to User B, the send-
ing user performs step 1 and the OSN (asynchronously)
performs step 5 for User B. When a user receives an
AR, she can either accept it or ignore it. Accepting an
AR presents non-subscribing users with an installation
page, and subscribed users are shown the reason(s)
they were sent an AR. An AR is sent by a subscribing
user to any friend on Facebook, whether subscribed to
the application or not. Facebook limits the number of
these outgoing requests on a given application through
an internal spam-control algorithm. For our applica-
tions, the daily per-user AR limit for an application
was typically 20, but could be as high as 60. There
are, however, no limits on ARs a user may receive.

• Newsfeed Stories: Newsfeed stories are personalized
posts on a user’s profile made through applications by
subscribed users. Facebook controls the visibility of
Newsfeed stories to users’ friends through an internal
algorithm that prioritizes a story’s importance to the
viewing user. A Newsfeed story can be posted by a
subscriber to any friend, whether subscribed to the ap-
plication or not. Our review shows 88% of the top 250
applications prompt users to share a Newsfeed story in
at least one sequence of actions. Note that due to the
algorithm Facebook uses to display Newsfeed stories to
users, as well as the passive nature of Newsfeed stories
compared to ARs, the latter have been more reliable
for application growth in our experience.

• Emails: Pending a subscribed user’s approval, Face-
book allows applications to send e-mail notifications to
their personal e-mail addresses when an event occurs.
Since users often perceive allowing e-mail access to so-
cial applications as a security risk, developers do not
use this communication channel often. We found only
36% of the top 250 applications at least ask users for
their email addresses, but it is not practical to measure
how often this mechanism is utilized due to the com-
plex nature of user flows in most gaming applications.

• Paid Advertising: Application developers on Face-
book may purchase advertisements to boost subscrip-
tion growth. However, we are unable to discern how
widely this mechanism is used by analyzing the appli-
cations alone. Anecdotally, most social games tend to
use advertisements to increase subscription growth.

Our review of the top 250 Facebook applications sug-
gests applications may use one or all growth mechanisms.
4Since the genre listings of applications can be inaccurate,
we categorized the top 250 applications manually.



However, all applications use ARs. Our data allows us to
study specifically the growth process arising from use of ARs
through UAGs from Facebook-based gifting applications. We
define a gifting application as an application that 1) uses
only ARs for growth and inter-user communication, and 2)
only allows users to share themed images (gifts) through
ARs with their Facebook friends.

3.2 Measuring Gifting Application UAGs
We employ UAGs from three Facebook gifting applica-

tions to study application growth through the AR growth
mechanism. The architecture of the Platform used is shown
in Figure 1(a). We say a single user activity occurs on a
gifting application when steps 1 and 5 are performed by the
sending user A, and the OSN, respectively. The third-party
application servers record the sending and receiving users’
Facebook UIDs with the time at which the activity was gen-
erated. We only studied anonymized data for our research.

Each node in the UAG represents a Facebook user, and
each directed edge from User A to User B represents an AR
sent from User A to User B. Note that our UAGs are multi-
graphs, i.e., User A may have multiple directed edges to User
B. Our UAGs were obtained through server-side measure-
ments of the following Facebook-based gifting applications,
which were owned and operated by Manakki, LLC:

• iHeart: Launched in June 2009, iHeart grew to 30
million monthly active users by December 2009, and
was installed by 76 million users on Facebook by Au-
gust 2010. Our user activity traces capture 2.2 billion
activities. Users share decorative heart-shaped graph-
ics with their Facebook friends.

• iSmile: Launched in August 2008, iSmile was installed
by 43 million users on Facebook by August 2010. Our
user activity traces for iSmile capture 1.5 billion user
activities. Users share graphics of smiling characters
with their Facebook friends.

• Hugged: Launched in February 2008, Hugged was
installed by 28 million users on Facebook by August
2010. Our user activity traces for Hugged capture 1.6
billion user activities. Users share graphics of hugging
characters with their Facebook friends.

iHeart was a very popular application that ranked in the
top three applications on Facebook by MAU in December
2009. We use iHeart to drive and evaluate the development
of our UAG growth model, and employ UAGs from Hugged
and iSmile to test this model’s applicability to other gift-
ing applications. Figure 1(b) shows user activity on iHeart
for 13 months after its launch, and indicates three distinct
periods of activity on iHeart: the ramp-up user activity pe-
riod (until week 49, 2009), the short-lived peak user activity
period (weeks 50-51, 2009), and the declining user activity
period. The sharp fluctuations in user activity in all three
phases indicate real-world events/holidays, where user activ-
ity usually spikes before the occasion and then falls during
the event, with exceptions such as Mother’s Day (week 19,
2010). This three-phase lifetime user activity is evident on
all of our social applications, is attributed to application
novelty and eventual user fatigue, and is less prominent on
longer-lasting applications such as Farmville [28].

In order to perform analysis that is representative of all
three phases of our applications’ user activity and lower pro-
cessing times for our analysis, we use the periods of activ-

(a) The Facebook Platform architecture.
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(b) The total number of hearts sent per week on iHeart
across 13 months. We see three user activity peri-
ods for iHeart: increasing activity (upto 50-2009), peak
activity (50-2009) and declining activity (01-2010 on-
wards). Sharp dips/spikes in user activity are due to
holidays and special real-world events. From left to
right, these dips are due to: Halloween, Thanksgiving,
Christmas/New Year, and Valentine’s Day.

Figure 1: The Platform architecture used by our
applications, and user activity for iHeart.

ity for iHeart shown in Table 1. This sample of user ac-
tivity periods captures all variations in application lifetime
phases, stable/increasing/declining user activity and special
real-world events. We use the same 10 weeks’ data from
Hugged and iSmile to test our UAG growth model, but only
list week 34-2009 in Table 1 for brevity.

In our traces, a week’s user activity starts at 12:00:01AM
Pacific Time on Sunday, and ends on the following Sunday at
12:00:00AM. We discuss the reason for selecting weekly user
activity periods over shorter and longer choices in Section 4.
We performed analysis and simulations for all listed weekly
activity periods. However, due to the similarity in results
from a given phase’s weekly periods, we only present results
for one week from each phase: we use week 34-2009 as a
representative week for the pre-peak phase, week 50-2009 for
the peak phase, and week 26-2010 for the post-peak phase.

We discuss the metrics we use to model our UAGs next.

3.3 Understanding Social Application Growth
Existing friendship models generate synthetic graphs that

reproduce the following key graph properties:

• Clustering Coefficient (CC): The CC of a node v ∈ V
is the ratio of number of edges between neighbors x
of v (such that ∃(x, v) ∈ E) and the total number of



Table 1: Relevant measurements for weekly UAGs from iHeart, Hugged and iSmile. Our weekly activity
periods belong to all three phases of an application’s lifetime: pre-peak (P-), peak (P) and post-peak (P+).
Section 3.3 defines α, β, γd, γm, M and N0.

App. Week Phase Users Activities α β γd γm M N0

iHeart

34-2009 P-, Stable 9.85M 11.8M 0.541 0.875 1.75 0.77 20 0.52M
38-2009 P-, Increasing 14.7M 18.4M 1.82 0.74 0.512 0.867 20 0.80M
45-2009 P-, Spiky 22.3M 29.6M 0.477 0.863 1.71 0.80 20 1.17M
50-2009 P, Stable 44.7M 110M 0.414 0.899 1.75 1.09 60 1.37M
01-2010 P+, Declining 31.4M 43.8M 0.459 0.879 1.72 0.87 24 1.57M
06-2010 P+, Spiky 30.95M 47.59M 0.452 0.869 1.57 0.85 24 1.61M
14-2010 P+, Declining 19.0M 23.7M 0.516 0.878 1.80 1.09 20, 24 1.12M
19-2010 P+, Spiky 11.59M 13.0M 0.592 0.889 2.14 0.99 26 0.83M
26-2010 P+, Stable 9.89M 11.1M 0.629 0.904 1.95 0.93 26 0.62M
30-2010 P+, Declining 6.51M 6.86M 0.644 0.899 2.05 1.07 20, 26 0.52M

iSmile 34-2009 P-, Stable 5.28M 7.17M 0.697 0.901 2.67 0.69 20 0.28M
Hugged 34-2009 P-, Stable 2.72M 3.55M 0.727 0.899 2.79 1.06 20 0.14M

edges possible between those neighbors. The CC of a
graph is the average of individual nodes’ CCs.

• Degree Distribution: The degree distribution ∀k : P (k)
of a graph is the fraction of nodes with degree k. If
there are N nodes where nk have degree k, P (k) =
nk/N . We distinguish between in- and out-degrees.

• Connected Components: Two nodes x and y belong
to one connected component if an undirected path be-
tween x and y exists. A component’s nodes are only
connected with other nodes in the same component.
We look at number of components, as well as percent-
age of users in the largest components.

Existing research uses these properties to summarize the
static structure of OSN graphs [19]. We want a growth
model that reproduces the above properties, including dis-
tinct in- and out-degree distributions, for our UAGs. Our
findings show these graph metrics stabilize around a week’s
aggregate user activity for our applications (Section 4). We
use this finding to simulate only weekly user activity to sim-
plify our growth model. Our model differentiates between
active, and inactive users. Active users send at least one
AR in a week’s UAG, and inactive users only receive, and
do not send, ARs in a week’s UAG.

The social application growth processes are dependent on
use of different growth mechanisms. We believe the follow-
ing list of application-specific parameters must be used in a
growth model for gifting applications.

• Probability of Sending to New Targets (α): This is the
probability a user will target a previously unseen user
through ARs in our UAGs.

• Probability a User Remains Inactive (β): Inactive users
may or may not be subscribed to our applications. The
subscribed inactive users, even though they may visit
the application, do not send ARs. The parameter β
represents the probability a user will remain inactive
in a weekly UAG.

• Active User Duration (dx): Nodes in UAGs are more
transient in nature as compared to friendship graphs.
In order to capture this transience in our model, we
use the distribution of the number of days an active
user appears in a given week’s UAG as a parame-
ter. Our measurements suggest dx is power-law dis-
tributed, with exponent γd.

• Daily ARs Sent (mx): Even though our UAGs show
limits on ARs per day, users may not exhaust these
limits. Furthermore, some users may visit an appli-
cation but not send any ARs at all. This parameter
captures the distribution of number of ARs users send
on a given day, which is important for generating accu-
rate degree distributions. Our measurements suggest
mx is power-law distributed, with exponent γm.

Note that user activity on social applications is continu-
ous, i.e., users in one time period are responsible for incom-
ing users in the consecutive time period. We have previously
reported that almost 80% of all AR acceptees visit the ap-
plication within 48 hours of receiving the AR [16]. If we
consider weekly snapshots of user activity, a proportion of
users never receive ARs in the current week, yet appear in
the UAG regardless. These are the seeding users responsible
for continued activity on the application in the given week.
Along with the daily AR limit (M), we use the number of
seeding users (N0) as an external constraint in our model.

4. CASE STUDY: UAGS FROM IHEART
This section presents the defining features of UAGs ob-

served in our most popular application, iHeart. As men-
tioned in Section 3.1, iHeart shares structure and design
with other gifting applications on Facebook. We build our
algorithm to simulate iHeart’s UAGs first, and then test it
on our other gifting applications. We use the activity peri-
ods listed in Table 1 for this analysis.

Our findings suggest graph metrics do not stabilize in
hourly or daily activity traces. We measure convergence
times for the key graph metrics to gauge the minimum pe-
riod required for metric stability in our UAGs.

4.1 Convergence of Key Graph Metrics
We define the convergence time Z as the amount of time

it takes for metric values to stabilize for our UAGs. More
specifically, Z = min z such that f(z + 1)− f(z) ≈ 0, where
f(z) represents metric values measured from a UAG of the
first z days in a given time period.

Degree Distributions: We measured Z for in- and out-
degree distributions on iHeart by comparing aggregated user
activity (starting at Sunday) for the 10 time periods listed
in Table 1. The function f(z) represents the CDF of user
activity over z days for the in- or out-degree distribution.
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Figure 2: The number of connected components and clustering coefficients over 14 days of aggregated user
activity for iHeart, starting at Sunday for weeks 34-2009 (pre-peak), 50-2009 (peak) and 26-2010 (post-peak).

The resulting f(z +1)− f(z) values, or Euclidean Distances
(EDs) indicate a small distance between f(2) and f(1) (i.e.,
one and two days’ aggregate user activity) for both in- and
out-degrees, and that this difference decreases monotonically
as z increases. The in- and out-degree distributions stabilize
roughly at z = 7 days, with ED ≤ 2.5% for all 10 weekly
activity periods. An exception occurs when new content is
introduced during week days, where out-degree distribution
EDs spike to up to 34%. However, we observe ED ≤ 2.5%
as we approach the end of the week.

Connected Components: We look at two metrics with
regards to connected components in our UAGs: the number
of connected components and the percentage of users in the
largest connected component.

In general, we find that as more users interact through
ARs, the number of distinct connected components grows.
However, unlike degree distributions, in our applications the
number of connected components behaves differently for pre-
peak, peak and post-peak activity periods. In the peak
activity period the number stabilizes over the course of a
week, but it does not converge in either pre-peak or post-
peak activity periods. Figure 2(a) shows this behavior for
the representative periods on iHeart. More specifically, the
number of connected components declines when z increases
for pre-peak activity periods, indicating that increasing AR
activity between users merges the largest component with
smaller, fragmented components. In post-peak activity pe-
riods, in contrast, the number of connected components in-
creases as z increases. User fatigue is a possible explanation
for this phenomenon, i.e., users take longer to return to the
application leading to formation of small (up to 110 node)
components that do not connect with the largest component
as quickly as in the pre-peak periods.

The percentage of users in the largest component, how-
ever, does stabilize for our UAGs. If f(z) represents the
percentage of users in the largest connected component, we
find that f(z+1)−f(z) ≤ 0.5% where z ≥ 6 for all time pe-
riods considered (Table 1). For different time periods, how-
ever, f(7) varies between 90.17% and 94.89%. Note that
the second largest components for our weekly UAGs are of
negligible size (less than 20 nodes).

Clustering Coefficients (CC): Figure 2(b) shows the
CC for undirected iHeart UAGs for three representative pe-
riods 14 days of activity. We have previously discussed the
effect of user engagement on CCs in UAGs from social appli-

cations in [16], where we showed a highly engaging gaming
application exhibited high node clustering (CC = 0.8). In
contrast, Figure 2(b) shows the CC is very small for iHeart,
but that increasing z results in slightly higher CC. Note that
the aim of this study is to provide a growth model that ap-
proximates gifting UAGs as a first step. Therefore, we seek
to generate synthetic graphs with low or no clustering of
nodes rather than graphs with precisely the same number of
clusters as in our empirical UAGs.

A weekly snapshot of user activity captures a full cycle of
low and high user activity for OSN-based applications [16].
Moreover, since gifting applications are non-recurrent (com-
pared to social gaming applications), less than 10% of users
return in a consecutive week. This high churn of users means
every week’s user activity can almost be treated indepen-
dently. Our results show both degree distributions and per-
centage of users in the largest connected components stabi-
lize within 7 days of user activity. Therefore, we focus only
on weekly time periods for our first UAG growth model.

4.2 Approximating Degree Distributions
Existing research indicates power laws may partially ex-

plain degree distributions in OSN graphs [15, 19]. However,
our measurements indicate that known parametrized distri-
butions do not accurately fit the full range of the degree dis-
tributions for gifting UAGs. Unfortunately, this means that
the simple growth mechanisms known to give rise to the pa-
rameterized distributions (such as preferential attachment
which leads to power laws, or multiplication of independent
random variables with leads to log-normal distributions) do
not suffice to explain growth of our UAGs. To demonstrate
the lack of fit, we attempt to fit the candidate distributions
shown in Table 2 to our real user activity data.

We perform Goodness of Fit (GoF) tests for potential can-
didate distributions (Table 2) for iHeart UAGs. We use the
Kolmogorov-Smirnov (KS) statistic between the data and
parametric fits to measure applicability of the distributions
to our UAGs. The KS statistic is suggested as a reliable GoF
measure for heavy-tailed distribution approximation [4]. We
do an exhaustive search of the parameter space to find the
best fit that minimizes the error for a given distribution.

First, consider in-degree distributions. The KS statistic
indicates that both PL and PLED provide fits with good
statistical accuracy, while LN, SE and EXP are orders of
magnitude higher for all weekly UAGs (see Table 3). Be-



Distribution P(x) Valid Range of Parameters
Power law (PL) or Algebraic Decay ax−γ 0 < a, γ <∞
Power law w/ Exp. Decay (PLED) ax−γ exp(−x/τ ) 0 < a, γ, τ <∞

Exponential (EXP) a exp(−x/τ ) 0 < a, τ <∞
Stretched Exp. (SE) a

b (x/b)a−1 exp(−(x/b)a) 0 < a, τ <∞
Log-normal (LN) 1

x
√

2πσ2 exp(−(log x− µ)2/2σ2) 0 < µ, σ <∞

Table 2: Candidate distributions to approximate our UAGs’ degree structures.

Week GoF
In-degree

PL PL-EXP SE LN EXP
34-2009 KS 1.16E-04 3.21E-05 0.1412 0.0806 0.0694
50-2009 KS 7.87E-04 2.85E-04 0.0695 0.1361 0.0548
26-2010 KS 3.49E-04 1.28E-04 0.1052 0.0623 0.0536

Table 3: GoF measures for in-degree distributions for weekly iHeart user activity.

Week GoF
Out-degree, Bulk

PL SE LN EXP PLED
34-2009 KS 3.99E-03 0.0914 0.0744 0.1857 9.69E-03
50-2009 KS 0.0163 0.3687 0.2886 0.4533 0.0571
26-2010 KS 5.04E-03 0.2375 0.1654 0.2886 0.0834

Table 4: GoF measures for out-degree (bulk) distributions for weekly iHeart user activity.

Week GoF
Out-degree, Tail

LN PL EXP SE PLED
34-2009 KS 5.39E-03 6.58E-03 5.77E-03 5.41E-03 5.49E-03
50-2009 KS 3.82E-04 3.34E-04 4.49E-04 4.38E-04 6.289E-03
26-2010 KS 7.32E-03 7.11E-03 7.75E-03 7.74E-03 0.0195

Table 5: GoF measures for out-degree (tail) distributions for weekly iHeart user activity.

Week
In-degree Fit Out-degree Fit

γi γo µ σ
34-2009 3.394 0.7443 1.661 1.135
50-2009 3.628 0.7436 2.145 1.296
26-2010 3.457 0.9202 1.9414 0.9143

Table 6: Parameters of the distributions that best fit
the data. In-degrees were fit using PL with exponent
γi, while out-degrees’ bulk were fit using algebraic
decay with exponent γo and tail with LN with mean
µ and standard deviation σ.

tween PL and PLED, the latter is more accurate for the
early portion of the distribution, yet PL captures tail events
better, is a simpler distribution, and achieves overall accu-
racy very close to the PLED fit. Figure 3 shows an example
PL fit (starting at k = 12) to the week 34-2009 UAG from
iHeart, and Table 6 shows the best-fit distribution parame-
ter values for the three representative weeks.

Now consider out-degree distributions. Figure 3 shows an
example out-degree distribution for week 34-2009. The alge-
braic ‘steps’ in weekly out-degree distributions occur at mul-
tiples of daily AR limits (shown as M in Table 1). Note that
more than 88% of AR senders in any week have out-degrees
less than the daily AR limit, i.e., only a small fraction of
users send 20 or more ARs in a given week.

We find that the out-degree distributions are best fit by
splitting the data into two parts at the daily AR limit: we

call the data up to the daily AR limit the bulk of the distri-
bution, while degrees above the daily AR limit are the tail of
the distribution. This is because the behavior exhibited by
the bulk differs significantly from the tail, highlighting the
fact that 1) most users do not exhaust the daily AR limit,
and 2) most users visit gifting applications once a week due
to low engagement [16]. The KS statistic indicates the out-
degree distributions for the bulk are explained best by an
algebraic decay (PL), followed by PLED, SE, EXP and LN,
in that order, whereas the tail can be reasonably fit using
either an LN or PL distribution, as shown in Tables 4 and
5. The KS statistic is not extremely sensitive to tail events,
and visual inspection confirms that LN provides a better fit
to the tail for all weeks studied. Figure 3 shows an example
best fit for out-degrees, and Table 6 shows the best-fit distri-
bution parameter values for the three representative weeks.
We performed these fits by removing all multiples of daily
AR limits to reduce distortion in KS values.

Thus a power law can reasonably fit the in-degree dis-
tribution, but no simple parametric distribution describes
the full out-degree distribution. Even when fitting the out-
degree with two different distributions, the values of the pa-
rameters for these distributions vary considerably as seen in
Table 6. As such, we cannot explain UAG growth via a sim-
ple mechanism like preferential attachment or multiplicative
growth. Our findings are valid for all other weekly periods
(Table 1) as well.
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Figure 3: In- and out-degrees for weeks 34-2009
along with parametric distributions that fit. In-
degrees were fit using PL (exponent 2.90), while out-
degrees’ bulk were fit using algebraic decay (expo-
nent 0.744) and tail with LN (mean µ = 1.66 and
standard deviation σ = 1.135).

4.3 Relevant Metrics for Modeling Growth
As discussed in Section 3.3, certain key metrics are needed

to model gifting UAGs. These metrics will serve as input
parameters for our modeling algorithm.

Probability of Sending to New Targets (α): Table 1 shows
the probability of sending hearts to a new user ranges from
0.41 to 0.73 in weekly UAGs. Also, users are more likely to
target new users in lower activity periods.

Probability a User Remains Inactive (β): Our measure-
ments show (Table 1) the probability a randomly selected
user is inactive throughout a week is in a very narrow range
between 0.85 and 0.91 for iHeart, i.e., it is more or less stable
throughout iHeart’s lifetime.

Active User Duration (dx): Our measurements show be-
tween 70% to 75% of active users in a given week are only
active for a day, and this percentage decays approximately as
a power law with number of days active (e.g., only between
1.5% and 2% users are active for all seven days). Table 1
shows the weekly PL exponent of this distribution (γd).

Daily ARs Sent (mx): Our measurements show that the
distribution of ARs generated per day follows a power law
for iHeart. Our algorithm uses the exponent, γm, of this PL
distribution, and its values are shown in Table 1.

Additionally, Table 1 shows measurements for our exter-
nal constraint on the seeding users (N0) for a given week.
We observe the lowest proportion of seeding users at peak
activity, and highest proportion during lowest user activity.
Week 45-2009 (Thanksgiving) is an exception since only four
days of the week see high user activity, followed by three days
of very low user activity (Figure 1(b)) as the Thanksgiving
weekend kicked in.

4.4 Fitting Graph Models to iHeart UAGs
Existing research on growth processes on OSNs has yielded

viable candidate models for friendship graphs [19]. We tested
some of the more promising algorithms for our applications,
in particular the original versions of the Nearest Neighbor,
Watts-Strogatz, Barabasi-Albert and Forest Fire algorithms.
All of these algorithms rely mainly on preferential attach-
ment, and do not distinguish between behaviors of different
types of nodes resulting in out-degree structures that are not

Period Model KSin Lin KSout Lout

34-2009 FF 0.2117 7.81 0.6671 70.3
34-2009 NN 0.1768 7.65 0.7839 183.01

Table 7: Error measurements for in- and out-degrees
for the weekly iHeart data using directed Forest Fire
(FF) and Nearest Neighbor (NN) models.

representative of our UAGs. However, these algorithms do
provide decent approximations of in-degrees for our UAGs.
This is evident from the KS statistic values measured using
synthetic graphs from these models against all weekly de-
gree distributions from iHeart. Example KS statistic values
for the Nearest Neighbor and Forest Fire algorithms against
the week 34-2009 UAG from iHeart are shown in Table 7.5

Figure 4 shows the degree structures that resulted in the
lowest average KS values from these models against those
from the week 34-2009 UAG for iHeart.

5. MODELING GIFTING APPLICATIONS
The algorithm described in this section produces synthetic

graphs with degree structures similar to UAGs for our gift-
ing applications while preserving low clustering of nodes. We
will show how our algorithm succeeds in capturing the dif-
ference in in- and out-degree distributions, which were not
reproduced by previous models. We also provide steady-
state equations (Section 5.4) for the synthetic distributions
as a means to gauge user activity levels on gifting applica-
tions without running possibly time-consuming simulations.

5.1 Our UAG Growth Model
We have shown our UAGs exhibit similar structure across

different weekly periods in terms of low clustering of nodes,
and class of distribution functions that approximate the real
degree distributions. However, the parameter values for
these distributions that best fit the data differ significantly
from week to week. This variability in UAGs must be cap-
tured by our algorithmic model. The basics of our growth
model are as follows:

Our UAG growth model operates at discrete timesteps t,
where each timestep represents a day of user activity. Let
Gt denote the graph at the beginning of timestep t. The
graph G0 is a set of N0 isolated nodes, which correspond
to initial seeding users. Seeding users send ARs in each
turn they are active. They send ARs to new users (i.e., ‘re-
cruit’ them) with probability α, and to existing users cho-
sen preferentially by in-degrees otherwise. When a user is
recruited, with probability β she will choose to remain in-
active throughout the process, and otherwise will be active
at the beginning of the next timestep. Each user is assigned
a fixed duration and daily output of ARs. The duration dx

of user x corresponds to the number of timesteps x is ac-
tive, and the per-timestep output mx of x corresponds to
the number of ARs sent by x daily. After 7 timesteps, the
resulting synthetic graph G7 is produced. The structure of
G7 should be comparable to our UAGs.

Algorithm 1 shows the pseudocode for our UAG growth
model. This algorithm uses four input parameters (α, β, γd

and γm as described in Section 3.3), as well as two exter-
nal constraints M and N0. In the pseudocode, IPL(γ,t) and

5The L metric is defined in Section 5.2.
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(a) In-degree distribution comparison.
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(b) Out-degree distribution comparison.

Figure 4: Visual comparison of degree structures for Nearest Neighbor, Forest Fire algorithms with the week
34-2009 UAG from iHeart.

RPL(γ,t) are integer- and real-valued PL distributed ran-
dom variables (respectively) of exponent γ with a cut-off at
t. Moreover, the variable actx is the number of timesteps a
user has previously been active, and diffx is the difference
between )mx*dx and the ultimate out-degree )mydy* of x.

5.2 Synthetic vs. Empirical UAGs
We implemented Algorithm 1 in Python and tested it on

all 10 weeks of iHeart, iSmile and Hugged user activity. How-
ever, for brevity’s sake, we only present results of simula-
tions using UAGs from weeks 34-2009, 50-2009, 26-2010 for
iHeart, and week 34-2009 for iSmile and Hugged.

We evaluate our simulated graphs’ degree structures us-
ing two goodness of fit measures. In Section 4.2 we used the
KS statistic to evaluate our degree distribution fits. How-
ever, the KS metric does not capture variance in tails as
accurately as, say, the chi-squared metric. Therefore, we
use an additional quantity we call L, which is analogous to
chi-square on a log scale. Given two positive, integer-valued
random variables X and Y , we define:

L(X, Y ) =
∞X

k=1

[log Pr(X = k)− log Pr(Y = k)]2 log(
k + 1

k
)

Note that log( k+1
k ) = log(k + 1) − log(k). Hence L can be

viewed as a discrete equivalent of the L2 measure d(f, g) =R
((f(x)− g(x))2dx) on a log-log scale.
Table 8 shows the KS and L values for our simulations

using the 4-parameter model that is Algorithm 1, and Fig-
ure 5 shows the plots for the same. The KS and L values
suggest the empirical degree structure is reasonably well-
modeled in the ‘typical’ week represented by week 34-2009.
For comparison, note the significantly larger Lout values in
Table 7 for out-degree distributions generated by the For-
est Fire and Nearest Neighbor models for week 34-2009 on
iHeart. The larger Lout values demonstrate that Algorithm
1 performs significantly better than either Forest Fire or
Nearest Neighbor in modeling out-degree distributions for
our applications. Furthermore, Lin values in Tables 8 and 7
show that Algorithm 1 significantly outperforms both For-
est Fire and Nearest Neighbor algorithms for in-degrees as
well. Given the simplicity of the attachment rule used in our
model, the fact that the in-degree distributions are captured
so well is surprising. This is evidence that the dynamics of
the real system may be similar to the ‘Preferential Attach-
ment with recruitment’ dynamics in our model.

Our simulations using the 4-parameter model, however,
result in synthetic graphs with comparatively large L values
for the peak (week 50-2009) and post-peak (week 26-2010)
periods for iHeart. This is a result of our inability to measure
the degree of preference a user employs when sending ARs.
Occurrences such as this are due to the inability of simple
metrics to capture behavior of users in social graphs [19]. To
remedy this, we introduce two additional parameters and re-
fer to this as the 6-parameter version of the model shown
by Algorithm 1. The 6-parameter model is identical to the
4-parameter version in all aspects except the choice of the
Active User Duration dx and Daily ARs Sent mx. In the
6-parameter model, these are approximated by LN distribu-
tions rather than PL distributions. LN distributions require
two parameters whereas PL distributions only required one,
so that the total number of parameters becomes 6.

Table 8 shows the L and KS values for our UAGs using
the 6-parameter model. Our 6-parameter model simulations
show that in some cases the error measurements actually
grow larger compared to our 4-parameter model, but only
slightly so. On the other hand, some of the error in the
measurements can be dramatically reduced (out-degrees for
iHeart). In week 50-2009, Lout drops from 18.08 to 0.62
when the 6-parameter model is used, and in week 26-2010 it
drops from 7.75 to 1.44. An example resulting distribution
using the 6-parameter model is shown in Figure 6.

Furthermore, as mentioned in Section 4.1, our UAGs ex-
hibit very low clustering of nodes. Our UAG growth model’s
synthetic graphs similarly exhibit little or no clustering of
nodes with CCs less than 0.0005. Our synthetic graphs also
consist of connected components of size distributions similar
to our UAGs. That is, more than 90% of users belong to one
connected component, and the second largest component is
of negligible size. We provide proof of the disconnectedness
of our model’s synthetic UAGs in Section 5.4.

5.3 Observations for our Growth Model
By demonstrating our algorithm works well on three gift-

ing applications, we have shown it is possible to model UAGs
for a class of social applications. By decoupling in- and out-
degrees and recognizing different types of users, our model
provides a very close approximation of degree structures that
result from use of the AR growth mechanism. As in our em-
pirical UAGs our model produces disconnected graphs such
that most nodes belong to one connected component. Our
synthetic graphs also exhibit little to no clustering of nodes.
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(a) Week 34-2009 for iHeart.
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(b) Week 50-2009 for iHeart.
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(c) Week 26-2010 for iHeart.
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(d) Week 34-2009 for iSmile.
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(e) Week 34-2009 for Hugged.

Figure 5: Simulated degree structures with 4 parameters.

4 Parameter Model 6 Parameter Model
App. Period KSin Lin KSout Lout KSin Lin KSout Lout

iHeart
34-2009 0.002 0.77 0.002 2.07 0.004 1.5 0.004 0.69
50-2009 0.01 2.07 0.01 18.08 0.002 4.23 0.002 0.62
26-2010 0.0067 3.68 0.0067 7.75 0.0069 3.12 0.007 1.44

Hugged 34-2009 0.0001 0.27 0.0001 1.1 0.0003 0.56 0.0005 2.03
iSmile 34-2009 9.6e-005 0.38 9.6e-005 1.17 0.0002 0.63 0.0003 1.78

Table 8: Error measurements for in-degree and out-degree for the weekly UAGs.
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Figure 6: Simulated degree structures with 6 pa-
rameters for week 50-2009, iHeart.

Our 4-parameter model already works significantly better
than existing algorithms, and the 6-parameter model works
exceptionally well. We therefore do not require extensive
information to model UAGs for gifting applications.

Our model potentially provides an alternative to sharing
large data sets of application user activity, and since these
graphs are synthetic, it also alleviates the violation of user
privacy when sharing such data. Furthermore, given social
applications exhibit weekly and yearly temporal patterns in
user activity [16], our model is a step towards predicting user
activity on other classes of social applications as well. Such
a model is useful to application developers that wish to fore-

cast an application’s usage, and seek a reliable tool to help
optimize growth strategies and advertising budgets. For in-
stance, a developer might wish to buy N0 application users
from an advertising company to jumpstart (seed) their new
application. Our model can provide them an approximation
of user activity up to a week after application launch, which
also helps them predict resource usage to minimize problems
such as application downtime in the future.

5.4 Deriving Steady-State Results
Our UAG growth model allows us to run simulations given

some knowledge of target graphs. However, simulating ac-
tivity graphs for millions of users can be time consuming, for
e.g., some of our simulations with 10 million nodes required
over 5 hours to complete. We can lower our reliance on sim-
ulations through steady-state equations for degree distribu-
tions generated by our growth model. Using these equations,
we can gauge statistics that convey user activity levels (such
as the ratio of power to casual users) without running sim-
ulations. In this section, we probabilistically derive these
distributions. We also provide a theoretical proof that our
UAG growth model creates synthetic graphs with more than
a single connected component.

Asymptotic Degree Distributions
Mathematical analysis allows us to obtain steady-state prop-
erties which assume the graph is infinite. However, our in-
terest here is in producing a finite graph that captures 7
days of user activity. We find that the simulated degree
distributions converge to the steady-state mathematical re-



Algorithm 1 Produces a model for weekly UAGs.

Require: N0, M , α, β, γd, γm.
Initialize the network G0 as a set of N0 isolated nodes.
for all x ∈ G0 do

Activate x.
dx ← IPL(γd, 7)
mx ← RPL(γm, M)
diffx ← )mxdx* − )mx*dx

actx ← 0
end for
for i = 0→ 6 do

for all Active nodes x do
if diffx ≥ actx then

dailyOutput← )mx*
else

dailyOutput← )mx*+ 1
end if
for j = 1→ dailyOutput do

coinflip ← uniform(0, 1)
if i = 1 and j = 1 then

Add a self loop (x, x) to G1

else if coinflip ≤ α then
Add isolated node y to Gi+1

Add the edge (x, y) to Gi+1

coinflip ← uniform(0, 1)
if coinflip ≥ β then

Mark y for activation.
dy ← IPL(γd, 7)
my ← RPL(γm, M)
diffy ← )mydy* − )my*dy

acty ← 0
end if

else
Choose a random edge (y, z)
Add the edge (x, z) to Gi+1.

end if
end for
dx ← dx − 1
actx ← actx + 1
if dx = 0 then

Deactivate x.
end if

end for
for all Marked nodes m do

Activate m.
end for

end for
return G7.
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Figure 7: Simulated versus theoretical degree dis-
tributions for week 34-2009 from iHeart.

sults quickly as the number of seeding nodes (N0) increases.
Figure 7 shows example theoretical steady-state, as well as
simulated, degree distributions for the week 34-2009 UAG
on iHeart. Figure 7 shows that this theoretical formulation
is indeed in agreement with our simulation results. The for-
mulation is as follows:

First, consider out-degrees. Define Nt as the number of
newly activated nodes at the tth timestep and N as the
total number of nodes. If we assume that x ∈ Nt, where
x is chosen uniformly at random, then the out-degree of x
is a random variable )mxdx,t* where dx,t = dx1dx≤7−t +
(7 − t)1dx>7−t. The indicator random variable 1A outputs
1 if the event A has occurred, and 0 otherwise. The general
formula for out-degree is as follows:

Pr(degout(x) = j) =
7X

k=0

Nk

N
Pr(mxdx,k ∈ (j, j + 1))

To calculate the in-degree, first define Nk,t as the number
of nodes of in-degree k after t edges have been added. If pk,t

is the probability of observing a node of in-degree k after t
edges have been added, then pk,t = t

n ak,t, where n is the
number of nodes in the graph after t edges have been added.
Dropping the t subscript in any of these variables denotes
the asymptotic limit as t→∞.

N1,t = N1,t−1 −N1,t−1(1− α)t− 1 + α

N2,t = N2,t−1[1−
2(1− α)

t− 1
− (1− α)

n
] +

+N1,t−1[
(1− α)
t− 1

]

...

Nk,t = Nk,t−1[1−
k(1− α)

t− 1
− (1− α)

n
] +

+Nk−1,t−1[
(k − 1)(1− α)

t− 1
]

Using these master equations, we derive a recursive for-
mula for pk shown as Equation (1), which can be used to cal-
culate pk in time linear in k, and can also be approximated
in closed form. This approximation is found by taking logs
of both sides of Equation (1) and by replacing the resultant



sum with an integral. This also shows that for large k, pk

decays as a PL with exponent 1 + 1
1−α . Note that Equation

(1) allows exponents strictly larger than 2.

p1 =
t
n

α
1 + (1− α)

=

=
t

N0 + (1− α) ∗ t
α

1 + (1− α)
=

pk =
t
n

(pk−1)
k − 1
1

(1−α) + k
=

=
t

N0 + (1− α) ∗ t
(pk−1)

k − 1
1

(1−α) + k

(1)

Connectivity
Although our model relies on a modified form of Preferen-
tial Attachment, unlike graphs with pure Preferential At-
tachment, our synthetic graphs are disconnected with some
very small components, as in our empirical UAGs. The the-
orem below shows that with high probability, the synthetic
graph produced is not entirely connected, and in fact for
sufficiently large N0 has a component of any fixed size.

Proposition 1. Given any fixed integer t∗, the graph Gt∗

has multiple weakly connected components.

Proof. First note that Nk ≤ (M+1)Nk−1, so that Nt∗ ≤
(M +1)t∗N0. It follows that N0

Nt∗
≥ 1

(M+1)t∗ > 0 and thus N0

is proportional to Nt∗ for any choice of parameters. Let x
be a node in Gt, and suppose y is a node that is sending out
a heart. Since all nodes in Gt have in-degree at least 1, the
probability that y sends the heart to x is at most 1

Nt
. Since

0 < N0
Nt∗
≤ Nt

Nt∗
it follows that the probability that a node x

of in-degree 1 receives a heart is O( 1
Nt∗

) at any given time

step. The out-degree of any node is bounded by the constant
Mt∗, and so the probability that x receives no hearts at all
throughout the process is (1−O( 1

Nt∗
))Mt∗Nt∗ = Ω(e−Mt∗).

It follows that some non-vanishing portion of nodes in Nt

receive no hearts after time t − 1, and some non-vanishing
portion of nodes in N0 receive no hearts from other users.

Moreover, there is some non-vanishing portion of nodes
in N0 which have out-degree 1 and are connected to a node
with out-degree 0. If both nodes receive no other hearts
throughout the process, which will occur with probability
Ω(e−2Mt∗ ), they form a component of size 2. Therefore,
with high probability a portion of the nodes in N0 will be
contained in a component of size 2. Similarly it can be shown
with high probability that for any k = o(log Nt∗) there is at
least on component of size k for sufficiently large n.

6. CONCLUSION AND FUTURE WORK
We have provided insight into user activity on Facebook-

based gifting applications, and have presented our method-
ology to create the first UAG growth model for a class of
social applications that use only ARs for growth. Our algo-
rithm requires little information to produce synthetic graphs
for gifting applications, and provides a feasible alternative
to sharing large data sets that may violate user privacy. To-
gether with our steady-state equations for the synthetic de-
gree structure, our algorithm may serve as an efficient user
activity prediction tool to application developers.

Our work is a first step towards modeling user activity
from social applications, and as such it does suffer from
some shortcomings. Specifically, our growth model does not
currently differentiate between male and female users, even
though we speculate there are differences in gender-wise user
behavior, and it only simulates weekly UAGs without tying
multiple weeks’ graphs into, say, a monthly or yearly UAG.
A further (albeit minor) issue is that the very low clustering
of nodes in our empirical UAGs is not accurately represented
in our synthetic graphs, where the clustering is in fact even
lower. It is important for future work to resolve these issues
to create a more flexible UAG growth model.

We wish to create an algorithm that simulates UAGs from
non-gifting social applications as well. While the gifting
genre of applications is the second largest on at least Face-
book, gaming applications are the largest and most lucra-
tive. This is due to the fact that social gaming itself is now
a 5+ billion dollar industry, and shows no signs of declin-
ing with the advent of mobile platforms such as iPhone and
Android. Modeling UAGs from gaming applications is, how-
ever, a highly challenging task due to use of growth mecha-
nisms in addition to ARs (Section 3.1), and the wide variety
of possible in-game activities that affect their growth.

A cursory glance at the top ten Facebook gaming appli-
cations reveals most, if not all, games incorporate a select
few mechanisms to drive growth and increase user engage-
ment. Social games differ from their counterparts in the
same genre due to the extent of importance a given mecha-
nism is afforded. Mechanics such as leader boards, periodic
item give-aways, holiday-themed in-game items and non-
friend interactions drive user engagement and subscriber-
ship growth, while pure growth mechanisms include gifting
in-game items to OSN-resident friends. The common use of
engagement and growth mechanisms in social games hints
at a possible general growth model for social games.

A successful model for gaming applications must incor-
porate characteristics of social gaming user activity such as
high clustering coefficients, presence of strong community
structures, high average time spent per user, and lower or-
ganic subscriber growth compared to gifting applications [16].
For now, quantitative measurements from non-gifting appli-
cations are lacking, and this prevents research into creating
a more elaborate model.

Our work is the first step towards modeling social appli-
cations that use a combination of growth mechanisms, and
it begins to alleviate the lack of availability of social appli-
cation data to the research community. We hope this work
will encourage research into activity models for non-gifting
social applications as well.
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