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Abstract— We define metrics to characterize the performance
of ad hoc networks based on timescales for information flow,
power consumption and interference. The statistical distribution
of timescales has not been previously considered. Yet, it is
important for understanding the feasibility of communicating
over such networks, for comparing different algorithms for
building up network topology and for distinguishing regimes of
routing. We quantify the longest timescale for information flow
and estimate its distribution. We also introduce a decentralized
adaptive power algorithm, that uses only information local to
each device, for building ad hoc networks. This algorithm is
shown to perform significantly better by all our metrics when
compared with a standard, constant power, algorithm.

I. INTRODUCTION

Understanding how a collection of wireless devices that
know only of their local environment, can organize into a
communications network with no central control is an impor-
tant open problem. Such ad hoc networks are both dynamic
and temporary since the network topology changes as devices
move in space, as new devices join the region and others
leave, and as devices turn on and off. By sending out queries
and listening for replies, devices can learn the identity of
other devices in their transmission range and hence the local
network connectivity. Knowledge of the topology beyond the
immediate transmission range is conveyed along a sequence of
intermediary devices. In this manner devices build up knowl-
edge of their connectivity, potentially storing the information
in address books and routing tables. Communication with
distant regions relies fundamentally on devices cooperating
in relaying one another’s data. Thus a message may “hop”
from device to device when following a path from source to
destination. Such networks operate entirely through peer-to-
peer interactions and could be of use in a variety of situations
from mobile military units to a collection of moving cars
transmitting information about upcoming road hazards. For
an overview of some outstanding research issues and potential
applications, see for instance [1].

What kinds of algorithms would individual mobile com-
munication devices use to build up such a network amongst
themselves? How do we compare the relative performance
of such algorithms? Performance can be measured primarily
by the maximum achievable throughput given a constrained
set of resources. We measure this indirectly in terms of three
performance metrics: the power consumption, the interference
from other users and the time to transmit messages. All three

quantities are statistical in nature and their respective distri-
bution functions rely upon the properties of the underlying
network, characterized by the user density, usage patterns,
routing strategies, network topology, etc. Thus to measure
performance, one must first carefully quantify each of the
performance metrics and determine techniques to estimate
their statistical distributions. Then the statistical advantages of
different network building algorithms can be compared. While
the power usage and interference are easier to quantify[2],
more care is needed in determining the statistics of a char-
acteristic time to transmit messages, defined herein by the
estimated time needed to diffuse information throughout the
network. Aside from being a performance metric, the statistical
distribution of this characteristic time tells us the feasibility of
building such networks and furthermore gives insight into what
size to build routing tables and how often to refresh them.

Conventional networks are for the most part static. Thus
complete routing tables can be built and used to efficiently
direct packets. In dynamic ad hoc networks, routing tables
expire after a period of time since the network topology
changes with time. If routing tables are to be used with
such mobile networks, how often should one refresh them
to update changes in network topology? It is known that if
nodes are “fast” moving, data in routing tables will quickly
become obsolete; the spatial location of the nodes will change
significantly in the time it takes for a message to hop from
source to destination. In contrast, if the nodes are “slow”
moving, routing tables will persist for some amount of time. In
the extreme limit where the nodes are stationary, routing tables
will persist for all times. But “fast” and “slow” are not absolute
quantities. They are defined only relative to other timescales of
interest, such as the characteristic time for message delivery.
Thus on a network with a short characteristic time (i.e., in
which data exchanges occur rapidly), airplanes can appear
to be slow moving. On a network with a long characteristic
time, people can appear fast moving. To quantify the relations
amongst the various timescales for mobile, wireless, peer-
to-peer networks we need to understand: (1) the density of
nodes and of traffic in the network; (2) the relative speed of
the mobile devices; and (3) the relative speed of data flow
across the network. Quantifying the distinct timescales will be
especially important for networks with heterogeneous clients,
where different types of clients may move with greatly varying
velocities.
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The aim of this paper is to define and measure the afore-
mentioned performance metrics. These metrics are then used to
compare networks built by a well known constant power level
algorithm and those built by a decentralized adaptive power
algorithm. We consider ad hoc networks made of a collection
of identical nodes, distributed at random with density ρ,
in a two-dimensional space. We introduce a framework for
analyzing the timescales for flow of information, in a dense
traffic regime, in the limit where the nodes are stationary,
assuming that information diffuses on the network. Though,
in practice, an optimized scheme for exchanging data will
be used, this simplification of diffusion makes it possible to
easily estimate various timescales for information flow. We are
interested especially in the longest timescale associated with
diffusive flow, τ , as it gives an estimate of the time required to
learn the full network topology (i.e., build a complete routing
table) via a sequence of queries and replies which diffuse
along the network. This τ is the measure we use to define
the characteristic time for information to diffuse throughout
the network.

The distribution of τ is obtained by studying many in-
dependent realizations of networks with the same fixed user
density. The feasibility of building such networks hinges on
this distribution having a small enough variance. Past work
has assumed the diffusion of information over mobile ad
hoc networks to derive results on their capacity[3]. For such
models to be feasible, it must be shown that the characteristic
time to deliver messages does not fluctuate drastically if the
network topology changes. Yet this issue of feasibility and the
distribution of characteristic times, though extremely relevant,
has not been previously addressed.

As mentioned, we also use the distribution of τ as one of
the performance metrics for quantitatively comparing different
schemes for building up an ad hoc network from a collection
of initially isolated devices. The well-studied common power
(CP) level model for constructing an ad hoc network[4],
[5] assumes all devices transmit at the same power level.
We introduce a an adaptive power (AP) level construction,
which uses directional information, similar to [6]. This is an
iterative scheme where each device sets its power individually
and adaptively, using only local information. We directly
compare the performance metrics of the CP and the AP
schemes. For each instance, the AP construction has a more
efficient topology (and hence a smaller value for τ ), smaller
overall power consumption for both the typical and extremal
integrated power, and reduced interference. In addition, since
each device sets its operating power level individually based on
the local environment, the overall network can quickly adapt
to changes. Furthermore, by optimizing based on geometric
connectivity, rather than minimizing power at each node,
some nodes operate at higher power than by the CP scheme.
However such nodes introduce “shortcut” paths through the
network. The latter two issues, of adaptation and shortcuts,
make the AP scheme especially well suited for use along
with routing algorithms, such as ad hoc on demand distance
vector routing[7], which require continual execution of route

discovery algorithms.
This manuscript is organized as follows. Section II, is

largely an extension of past work, included to clarify the
problem formulation. We first describe the CP approach,
then determine the minimum power requirements for full
connectivity for an ensemble of independent realizations of
networks, and extract the scaling behavior as the number of
nodes is increased yet their spatial density, ρ, held constant.
Section III introduces the issue of timescales and the matrix
formalism used throughout the remainder. A connectivity
matrix that specifies which nodes are directly connected to
which others is constructed. Those direct connections define a
static graph and we study a diffusive dynamics on that graph.
The dynamics can be described by a state transition matrix P .
We are in particular interested in the eigen-spectrum of P . The
eigenvalues determine the timescales for information flow, and
the corresponding eigenvectors can be used to identify simple
bottlenecks. In Sec. IV we introduce our AP construction,
and compare it to the CP construction using the performance
metrics discussed above.

II. CONNECTIVITY AND THE COMMON POWER LEVEL

CONSTRUCTION

We first determine the requirements for building a fully
connected network of stationary nodes, that all transmit at
a common power (CP) level. Consider N devices initially
distributed uniformly at random in a two-dimensional space
of area L×L (thus the spatial density of devices ρ = N/L2).
The coordinates of the ith device are denoted by �xi, and
the spatial distance between the ith and jth devices, dij =
||�xi − �xj ||. The power level of a transmission decreases on
average with distance from its source, so the magnitude at
the source determines the spatial range, R, over which the
signal strength will be distinguishable from noise. The CP
assumption has analytic and practical advantages as discussed
in [8]. In addition to reducing collisions of transmissions, it
ensures reciprocity—if transmissions from the ith device are
perceptible by the jth, those from the jth are perceptible by
the ith. Thus if dij ≤ R, the devices are two-way “connected”
and exchange messages directly. If dij > R, messages can be
relayed between the two nodes only if there is a connected
path of intermediaries.

Routing messages would be trivial if each node broadcast
at a large enough power to communicate directly with all
other nodes. Yet power is a limited resource. Furthermore, the
broadcast nature of wireless means a transmission interferes
with all other simultaneous transmissions, having the greatest
impact on those in its range R. The desire to minimize
interference and power consumption means we want the
transmission range to be the smallest possible while still
ensuring full connectivity. We denote the value of this “critical
range” by Rc. With the CP scheme, all nodes broadcast at
this corresponding power level. This model was introduced in
the context of multihop communication networks by Gilbert
in 1961, and loose bounds on Rc obtained[4]. Recently strict
bounds on Rc have been obtained in the asymptotic limit,
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Fig. 1. We illustrate a typical realization for a network consisting of N =
78 nodes at a spatial density ρ = 0.1 (hence L = 28). The nodes are
initially distributed uniformly at random and are illustrated by the various
symbols scattered in the plane. Nodes which are connected, for R = 3.75
as shown, form a cluster and are represented by the same symbol, with solid
lines illustrating the direct connections. For this value of R, the system has
c = 6 disconnected clusters.

where the density ρ approaches infinite (and hence N , the
number of devices, also approaches infinite)[5]. The proof
uses techniques similar to those for percolation theory and the
theory of coverage processes (i.e., covering a two-dimensional
unit circle with disks of fixed size). We are interested, however,
in the more physically realistic regime where N is small and
finite, and understanding how Rc scales with increasing N
for fixed ρ. We consider a range of finite values for N , for
each of two different densities, ρ = 0.1 and ρ = 0.2, and
generate n = 1000 independent realizations of networks for
each set of parameters. Each realization is distinguished by
the random locations of the nodes. We determine Rc for each
realization, as explained in detail in Sec. III-B; essentially we
iteratively construct a connectivity matrix for a given value
of R, and use the eigenvalues of the matrix to determine
connectivity. We also determine the distribution of Rc over
all these realizations for each {N, ρ}-pair studied. Fig. 1
illustrates a typical realization. Rc = 5.45 for this realization.

Figure 2 is a histogram displaying the frequencies of the
different Rc values observed in the n = 1000 realizations
with N = 78 nodes and density ρ = 0.1. The results for ρ =
0.2 are similar, though rescaled, and thus not included here.
The dashed vertical lines mark respectively the mean (referred
to from here on as 〈Rc〉), the 90th percentile and the 95th
percentile. Note the finite support indicated by the upper tail
with rapidly decreasing density. This distribution in the non-
asymptotic regime had not been previously determined, yet it
is important. If ad hoc networks are to be built they will consist
of a finite number of nodes, initially starting with on the order
of tens of nodes. The information in such distributions could be
used as a starting point for building networks with processors
randomly distributed in space using the CP construction.

Moreover, having determined the distribution of Rc for a
range of finite N ’s and different ρ’s, we want to know if
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Fig. 2. A histogram of the frequency with which a given value of Rc

occurred for n = 1000 realizations of networks with N = 78 processors
at density ρ = 0.1. The vertical lines denote respectively the mean, 〈Rc〉,
the 90th percentile and the 95th percentile. This gives us a clear idea of the
distribution of Rc in the non-asymptotic regime.

this has predictive power: if it is possible to extract a scaling
function for how the average value for a given number of
nodes and density, 〈Rc(N, ρ)〉, varies as we vary N . Building
up connectivity is analogous to building the minimal spanning
tree of a collection of nodes: the minimum range for full
connectivity Rc is analogous to the length of the longest edge
necessary to complete a connected tree. It is well known that
the length of the longest edge decreases from the asymptotic
value as ln(N)/N , see for instance [9]. Assuming this form,
we do a one parameter fit of our data for 〈Rc(N, ρ)〉 to
the function 〈Rc(N, ρ)〉 = R∞(ρ) [1 − ln(N)/N ]. Here the
estimated parameter is R∞(ρ), the asymptotic value of Rc

as N approaches infinite for a given ρ. In Fig. 3 we plot
〈Rc(N, ρ)〉 /R∞(ρ) for various values of N , for ρ = 0.1 and
ρ = 0.2. The dotted line is the curve y = 1 − ln(N)/N ,
the theoretically expected behavior. It adequately describes the
empirical data, capturing the general trend in a simple way.

III. QUERY TRANSMISSION IN THE HIGH TRAFFIC LIMIT

In addition to spatial connectivity requirements, temporal
ones are also relevant. For instance, how long would it take
for the nodes to determine if they are fully connected? For
each realization studied above we first determine Rc (who’s
distribution is summarized in Fig. 2). Recall the nodes are sta-
tionary, hence the network topology fixed. Once connectivity is
established we consider a dynamics for the flow of information
on this static network. The largest timescale associated with
this flow estimates the time required to learn the full network
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Fig. 3. A scaling function for 〈Rc(N, ρ)〉 /R∞(ρ) versus N , for two values
of ρ. The error bars represent the standard error over all the independent
realizations, n. For the first five points n = 1000. For the largest two points
n = 100. We use this data to estimate the asymptotic value R∞(ρ), and
find R∞(ρ = 0.1) = 5.42 ± 0.04 and R∞(ρ = 0.2) = 3.85 ± 0.05.
The solid line is the theoretically expected behavior, 〈Rc(N, ρ)〉 /R∞(ρ) =
1 − ln(N)/N .

topology and thus build a complete routing table (i.e., the time
for the final message carrying new information of the topology
to be received). In addition, it sets a reference point. Processes
occurring during time intervals much longer than this can be
treated as approximately stationary during durations of time
less than or equal to this reference interval.

We make the simplest approximation for the dynamics:
a data packet located on a node may take a random walk
step from that current node to one of its directly connected
nodes. This assumption simplifies the model considerably
and allows us to quickly and easily estimate timescales. It
corresponds to a diffusion process on the graph. When making
this assumption we need to understand the connection between
random walks and broadcasts over wireless channels. Broad-
cast communication means a data packet could conceivably
be communicated to all neighbors during one transmission.
Yet our approximation assumes that at any time at most
only one neighbor is in a state of being ready to receive
the packet (the others being occupied exchanging messages
with other devices). And thus this corresponds to a regime
of dense network traffic. In addition, wireless transmission
means simultaneous broadcasts interfere with one another.
As discussed below, we weight the transition probabilities
for the random walk to reflect these additional effects of
interference, and thus more accurately capture the essence of
wireless data transmission. The assumption of packets taking
random hops to a connected neighbor is a worst case scenario

with regards to efficiently transmitting data. With an actual
ad hoc network, we would use some strategy for efficiently
exchanging messages. Thus we are establishing upper bounds
on the time to send data in a regime with dense network traffic.

A. State transition matrix

We can model the random walks of the data packets using
a matrix formalism, where the matrix specifies the transition
probabilities for the walkers. The eigen-spectrum of the that
matrix tells us modes of behavior and associated timescales.
As discussed below, we must first establish a connectivity
matrix, then adapt it to incorporate a simple model for in-
terference, to obtain the state transition matrix.

The direct connections between the nodes in the network
specify the elements of the connectivity matrix, M . If nodes
i and j are directly connected matrix element Mij = 1,
otherwise Mij = 0. Note the diagonal elements Mii = 1,
so nodes are connected to themselves. We are considering a
discrete time random walk process, executed synchronously
across the network. During each discrete update of the net-
work, each data packet will choose at random amongst one
of these direct connections (including the one to itself) and
accordingly hop to an adjacent node or remain stationary. For
instance if Mij = 1, a data packet on node i would have
some probability Pij to hop to node j during the next discrete
update. We can easily modify the connectivity matrix M to
obtain the state transition matrix, P , specifying these Pij’s.
In the simplest case, the probability to hop to any connected
neighbor is equally weighted, as is the probability to stay
stationary:

Pij = Mij/
∑

j

Mij = Mij/ki. (1)

Note, ki =
∑

j Mij , is the number of direct connections for
node i (i.e., the edge degree of node i, including the self link).
So for the equally weighted case, Pij = 1/ki if Mij = 1, and
Pij = 0 if Mij = 0.

We intentionally allowed for the random walkers to remain
stationary since this provides a mechanism for incorporating
interference. We make the simple assumption that if any node
in your neighborhood is transmitting, you cannot transmit.
Thus if a node is connected to ki others, it can only transmit
on average 1/ki of the time, at which point it would send out a
data packet. So, viewed in terms of packets, the probability for
a data packet located on a specific node to remain stationary
on that node,

Pii = (ki − 1)/ki. (2)

When the packet takes a step every 1/ki updates, it hops with
equal probability to any of the other (ki−1) directly connected
nodes;

Pij,i�=j = 1/ [ki(ki − 1)] . (3)

These transition probabilities are illustrated in Fig. 4, where
we show one node connected to k others and the probability
to hop along the various links.

1567



Fig. 4. Edge weighting to approximate the effects of interference. We show
a node of the network which is connected to k other nodes (including the self
link). A data packet located on this node would hop along one of the links
during the next discrete update of the space. The probabilities for following
each link are shown adjacent to the link. This uses the approximation that a
node connected to k other nodes only transmits 1/k of the time.

This simple approach of edge weighting approximates to
first order the effects of interference. But it neglects transmis-
sions that fail due to the hidden terminal problem[10], and
also the connectivity of the (ki − 1) adjacent nodes. We over-
estimate the interference caused by heavily connected adjacent
nodes, as they will transmit less often than the estimated rate
of 1/ki. And we underestimate the interference caused by
sparsely connected adjacent nodes, which will transit more
frequently than estimated. Recall this is in the regime with
dense traffic so nodes want to transmit as often as possible.
A second order approximation, taking into account longer
range interactions, should be more accurate. We should still
be able to use distance-based truncation of interference effects.
Evidence has been published elsewhere that such models with
simple truncation adequately reflect interference in wireless
communications systems[11]. We would like also to incorpo-
rate results for interference from multicasting on trees[12], and
multiple antennae noise cancellation schemes[13].

B. Timescales and modes

Given a set of node locations and a value for R, we can
compute the corresponding connectivity matrix M , and thus
also the transition matrix P . Once P is established for such
a realization, we study its eigenvalues and eigenvectors. We
are interested in the modes of behavior associated with the
dynamics described by P . By definition if �vi is an eigenvector
of P , with associated eigenvalue λi,

P�vi = λi�vi. (4)

And applying the state transition matrix t-times yields:

P t�vi = (λi)t�vi. (5)

Note, we obtained P by independently normalizing each row
of a symmetric matrix (so the dynamics described by P
conserves probability, meaning no random walker is created
or destroyed). So all the elements of P are real and less than
or equal to unity, likewise the eigenvalues are all real and less
than or equal to unity. Each eigenvalue λi has an associated
eigenvector vi. If the network were composed of N nodes, vi

would be a N -dimensional vector. The j-th component of vi

indicates the state of the j-th node with a real number that can
be positive or negative (which we call the amplitude of the j-
th node). An eigenvalue λ1 = 1, has an associated eigenvector
v1 which describes a steady-state solution to the dynamics. In
steady-state, the amplitude at each node no longer changes
with subsequent evolution under P . If the network of nodes is
fully connected, there is one unique steady-state solution, so
only one λi = 1. The remaining eigenvalues are all less than
unity, hence describe decaying modes (i.e., initialized in a state
described by such a mode, the amplitudes at each node decay).
If the network is not fully connected, and instead consists of
independent sub-clusters, there will be a steady-state solution
for each sub-cluster. Using this approach, we determine Rc; it
is the smallest spatial range, R, for which only one eigenvalue
is unity. For a discussion of state-transition matrices and their
eigen-spectrum see for instance [14].

We are interested in the timescales associated with the de-
caying modes, and in particular with the most slowly decaying
mode. We define the “relaxation time”, T , for a mode, as is
standard in the physics literature, as the time for the amplitude
of the mode to decay by a factor of 1/e. Thus PT�vi = �vi/e.
Hence the longest timescale in our system, τ , is the relaxation
time for the slowest decaying mode (denoted by �vp):

P τ�vp = (λp)τ�vp = �vp/e. (6)

Equivalently,

τ = − 1
ln(λp)

. (7)

This longest timescale is associated with the second largest
eigenvalue, λp, (i.e., the “penultimate” eigenvalue, which is the
one closest to yet less than one). We can interpret the positive
and negative amplitudes as corresponding to two different
types of viscous fluids, and the relaxation time as the time
required for the fluids to mix.

C. Simulation Environment

Applying this framework involves extensive numerical sim-
ulation and statistical analysis of results. We wanted a software
environment that would allow for rapid high-level prototyping,
accessibility to a rich collection of statistical tools, good
visualization of results, and flexibility to easily extend the
model in the future. The R language and environment[15],
an Open Source implementation of the S language developed
at Bell Laboratories, is a natural environment for this type of
simulation. It provides not only a high-level, interpreted pro-
gramming language, but a rich collection of modern statistical
and graphical methodology, and amongst other features, the
facility to interactively monitor simulations as they progress.
Beyond the specifics of the model discussed herein, we have
developed a computational framework which can be readily
extended to more complex and realistic models with little
effort, and into which we can embed conventional network
traffic simulators.
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Fig. 5. Of the n = 1000 realizations of networks with N = 78 nodes distributed with spatial density ρ = 0.1, we illustrate the realizations with the
minimum, the median, and the maximum relaxation times. These examples are representative of the common topology amongst realizations with short, average,
and long relaxation times. Superimposed on the networks are markers indicating the initial condition with the longest relaxation time on that network, �vp (the
eigenvector corresponding to λp). Nodes with a positive component in �vp are marked with pluses. Those with negative component are marked with circles.

D. Extremal and median behavior

As mentioned in Sec. II, we generated n = 1000 realizations
of networks for various values of ρ and N . We focus on
the realizations with N = 78 nodes uniformly distributed
at random with spatial density ρ = 0.1, and those with
N = 80 nodes and ρ = 0.2. Results for both densities
are very similar, so only those for the former are shown
explicitly. The connectivity requirement, Rc, for the ρ = 0.1
realizations constitute the histogram shown in Fig. 2. Our
approach involves solving for the eigenvalues of a N × N
matrix, so we focus on these realizations as they are for the
largest values of N for which we could conveniently gather
extensive statistics.

Once Rc is known we determine the penultimate eigenvalue
λp for each realization, and hence the associated timescale
τ = −1/ ln(λp). In Fig. 5 we single out three of the 1000
realizations for ρ = 0.1: the one with the shortest, the median,
and the longest relaxation times. The significance of the plus
signs and circles is explained in the subsequent section. The
values of τ and of Rc are included above each realization.
Note that we write the time in units of the discrete time in-
crement to. In our simulations to corresponds to one complete
synchronous update of the network (i.e., each random walker
is updated once). In an actual wireless network to is roughly
the characteristic distance, Rc, divided by the data link speed.

The realizations shown in Fig. 5 are typical. Most of the
networks with short relaxation times have a relatively large
value for Rc, and hence are highly interconnected. Topologi-
cally, they tend to have a densely connected central region, and
one or two nodes located at a large distance from any other
node. Accommodating these outliers means Rc is larger than
average and that nodes in locally dense regions broadcast at
much higher power than necessary for minimal connectivity.

Networks with long relaxation times are not directly cor-
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Fig. 6. Higher order modes for the realization with the maximum relaxation
time, Fig. 5(c). Again the signs of the components in the corresponding
eigenvalue are shown by the circles and pluses.

related with either large or small Rc, having instead a range
of values. However, most of them have a topology similar to
that shown in Fig. 5(c): two main connected sub-clusters with
little cross-connectivity between them.

E. Simple bottlenecks and higher order modes

The eigenvalue, λp, determines the longest timescale. We
can also gain information from �vp, the associated eigenvector.
The eigenvector �vp describes the initial condition for the
amplitudes at each node with the longest relaxation time,
typically having two distinct regions, one of positive and the
other of negative components. In Fig. 5 we overlay on each
node a marker indicating whether its amplitude given in �vp

is negative or positive. Nodes with negative amplitude are
shown by the circles. Those with positive amplitude are shown
by the plus signs. As mentioned earlier, we can think of the
circles and pluses as corresponding to two different viscous
fluids diffusing on the network, and the relaxation time as
the time required for the fluids to mix. The nodes located
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at the transition between the regions of positive and negative
correspond roughly to the bottlenecks for diffusion.

We consider also higher order modes (those with shorter
relaxation times). For illustrative purposes we single out the
realization shown in Fig. 5(c), and show, in Fig. 6, the mode
associated with the next two largest eigenvalues. We label the
timescale associated with each of these modes respectively as
τ2 and τ3, and indicate the value above the corresponding
figure. For each timescale, the network divides into sub-
clusters. Nodes within each sub-cluster would be able to
communicate within a time bounded by the corresponding
timescale. This gives some indication of the range of com-
munication accessible within that timescale and the size with
which to build a routing table for that particular realization.

F. Distribution of timescales

By looking at individual instances we can gain insight into
routing on particular networks. But we are more interested in
general principles for routing on ad hoc networks with time-
varying topologies, and ultimately in ad hoc networks made of
mobile nodes. Here we are trying to establish limits in which
we can treat the nodes as stationary, and moreover understand
if behaviors of individual networks are similar to the average
behavior.

We want to connect our study to one of networks with
topologies that change in time. An important question to ask
is to what extent does the longest timescale for diffusion of
information vary over different realizations of networks? If
the variance is large, and we find several instances with τ
approaching infinite, building ad hoc networks of mobile ele-
ments will not be very feasible: as the nodes move, the longest
timescale may jump from finite to near infinite, meaning we
may have to wait close to an infinite amount of time to receive
our data! One of the few previous studies of mobility in ad hoc
networks also relies on the diffusion of data[3]. They show
that the throughput of a network increases if the nodes are
mobile, yet they do not address this issue of timescales or
the distribution of timescales, both of which are critical for
determining the feasibility of their scheme.

To understand the variance of timescales over indepen-
dent realizations of networks, for every realization discussed
thus far (those contributing to the histogram in Fig. 2), we
determine the longest relaxation time, τ = −1/ ln(λp). In
Fig. 7 we show the distribution for the 1000 samples with
ρ = 0.1. (Results for ρ = 0.2 are very similar). Note we are
recording the longest timescale for each network at the value
of Rc for that network, hence many different values of Rc

contribute to these plots. We are particularly interested in the
upper tail of this distribution, understanding how frequently
we should expect large outliers to occur. The density appears
to decay exponentially, and we overlay on it an exponential
density, p(x) = νe−νx, where we set ν = 〈τ〉 (i.e., we
use the empirically obtained value of the average time, 〈τ〉,
as the parameter for the exponential density). Alongside the
histogram, we show an exponential-quantile plot[16] compar-
ing the exponential density and the empirical density. The
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Fig. 7. Histogram of the empirical distribution of longest timescale, λp,
over the n = 1000 independent realizations, for ρ = 0.1. The dotted
line overlaying the histogram is the exponential density νe−νx, where ν
is determined by the empirical data, ν = 〈−1/ ln(λp)〉. The accuracy with
which the exponential distribution describes the empirical one is shown in the
inlayed exponential-quantile plot.

values of the quantiles for the exponential density are plotted
against the empirically determined quantiles. The dotted line
with slope of unity describes the situation of exact agreement.
This plot illustrates that the empirical distribution is accurately
described by the corresponding exponential one. The departure
in the tail (i.e., the highest values) is due to the difficulty in
estimating tail probabilities, and is well within the range of
sampling variation, and accounts for less than one-percent of
all the n = 1000 realizations studied.

Since the empirical distribution is well described by an
exponential one, the moments of the distribution are small and
finite. It would be extremely unlikely to observe an instance
of a network with a value of τ 	 〈τ〉. Furthermore this means
the notion of a timescale for a specified ρ is a well-defined
quantity, and as nodes move in space we do not expect major
changes in the value of τ provided that ρ, the user density,
does not change considerably.

IV. DISTRIBUTED ALGORITHM FOR NETWORK

CONSTRUCTION

Up to now, we have been considering a scenario where
all devices operate at the same power level and hence have
the same transmission range, Rc. Though this assumption
has advantages and approaches optimal in the asymptotic
limit[8], it is not necessarily an efficient model to implement
in practice. As is the case with sensor networks, optimizing
for power usage may be the most critical factor. For other
applications, it may be optimizing the topology to increase
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throughput. We ultimately want to build up network topology
in a distributed manner, using a local algorithm that, when
compared with the CP algorithm, reduces the average per
node power requirement, and increases the efficiency of the
topology.

For processors distributed at random, in practice the spatial
density of processors varies locally. Each realization has dense
patches of nodes and other patches with just one or two
nodes, as illustrated in Fig. 5. Note that nodes in dense
regions end up over-connected. They could operate at much
lower power, be connected more sparsely, and yet still be
connected to the entire remainder of the network. The sparser
connectivity would also result in less interference between
simultaneous transmissions. The adaptive power algorithm
discussed in [6] is a distributed construction for locally setting
power to be the minimum necessary at each node, while
still ensuring full network connectivity. However, instead of
optimizing with respect to power usage as in [6], we want to
optimize the efficiency of the topology with respect to τ , the
longest timescale. We actually want some nodes to broadcast at
higher power than necessary and hence have more connections
than the minimum necessary. If certain nodes on the edges
of the cluster broadcast at higher power, previously disjoint
sub-clusters would connect up, allowing new paths through
the network, which can introduce shortcuts and eliminate
bottlenecks, resulting in more efficient network topologies.

See [8] for a brief review of existing approaches for
topology control via distributed adaptive power constructions.
We describe our adaptive power algorithm, then evaluate its
performance relative to the common power level scheme using
the metrics defined thus far. We show that this adaptive
approach reduces interference and power consumption, and
generates networks with more efficient topologies. In addition
to these benefits, since the nodes set their power levels
using information of the local environment, they can adjust
these levels dynamically in response to changes in the local
environment. In contrast, the common power level is not as
robust to changes: if the nodes moved in space the value of
Rc would vary. Each new value of Rc would first have to be
determined and then broadcast across the system.

Building a fully connected network using only local infor-
mation requires more than just specifying a required number of
connections (as proposed in [17]), or using maximum nearest
neighbor distance. Our scheme relies upon directional infor-
mation, and is similar to [6]. It hinges upon the observation
that nodes in locally dense regions tend to have connections
distributed isotropically in all directions of space, yet nodes on
the perimeter of clusters tend to have connections emanating
from a small convex hull of connectivity, as can be seen in
the networks illustrated in Fig. 5.

The adaptive power construction proceeds for each node
independently. Each initially isolated node begins by transmit-
ting at low power, gradually ramping up until either satisfying
a geometric constraint on connectivity, as described below
and illustrated in Fig. 8, or reaching a prespecified maximum
allowed power level. As the node ramps up power it first

Fig. 8. The geometric constraint. If a node is connected to m neighbors, the
vectors from the central node to the m neighbors divide a unit circle around
the central node into m disjoint sectors. If the angle of each sector is less
than or equal to π, the constraint is satisfied.

establishes a link with its closest neighbor, then with its next
nearest neighbor (provided neither of these neighboring nodes
is located further away than the maximum allowed range).
With each new connection made, the geometric information is
assessed. In general, when a node is connected to m neighbors,
the vectors from the central node to the m neighbors divide a
unit circle around the central node into m disjoint sectors. If
the angle of each sector is less than or equal to π, the constraint
is satisfied and the node sets its operating power at the current
value. If any angle is greater than π the construction continues
until either the central node makes a new connection, at which
point the sector angles would be retabulated and the constraint
rechecked, or the maximum operating power level is reached
(in which case the power is lowered to the level where the last
connection was established). The construction in [6] is very
similar. However they use the value 2π/3, which we believe is
too conservative for our realizations. In addition, we explicitly
set the maximum allowed operating power to be higher than
the minimum necessary for connectivity.

As the construction progresses we build a connectivity ma-
trix, M , as defined in Sec. III-A. Since each node constructs its
connectivity independently of the other nodes, we occasionally
give up reciprocity and construct uni-directional links. Thus
the matrix M is not symmetric. For a discussion of the benefits
and tradeoffs involved with uni-directional links see [18], and
for a protocol level abstraction which deals with them see [19].
In the future we plan to compare current topologies to those
which result when only bidirectional links are accepted.

The maximum range for connectivity was set to be 1.35×Rc

(where Rc for each realization was the one determined by
the CP construction). This range was chosen as it was found
to be the smallest possible range for which every realization
resulted in a fully connected network. Note we needed to
ensure connectivity of all nodes for both transmission and
reception of messages. This was confirmed by defining two
connectivity matrices, one for transmission, MT and one for
reception MR as follows,

MT
i,j = Mi,j ∀i > j ; MT

i,j = Mj,i ∀i < j;

MR
i,j = Mj,i ∀i > j ; MR

i,j = Mi,j ∀i < j. (8)
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Fig. 9. Networks resulting from the AP construction. The node locations are identical to those for the realizations shown in Fig. 5. However the network
topology results from the AP instead of the CP construction. The darkly drawn links are bi-directional, the lightly drawn ones are unidirectional. Note the
more balanced load sharing, and the connections between sub-clusters that were almost disjoint with the CP construction. Such connections are “shortcut”
paths through the network.

In other words, MT is the lower triangular portion of the
matrix M , mirrored across the diagonal. MR is the upper
triangular portion of M mirrored across the diagonal. Using
these two connectivity matrices, we can define the state
transmission matrices, PT and PR, as before and check that
each of these have only a single eigenvalue that equals one,
ensuring the network is composed of one fully connected
cluster—thus we have a test for connectivity. Note, this test
requires global information (the full connectivity matrix).

In Fig. 9, we show the networks which resulted for nodes
with the same locations as shown in Fig 5, yet constructed
with the AP instead of the CP scheme. The darkly drawn links
are bi-directional, the lightly drawn ones are uni-directional.
Note the AP constructions in general have more balanced load
sharing, and many “shortcut” paths connecting together sub-
clusters that were almost disjoint with the CP construction.

We can quantitatively compare the alternate constructions
directly with two different performance metrics, the first
based on timescales, the second based on expected power
consumption. We do this for all n = 1000 instances with
ρ = 0.1 discussed thus far (note, as with all other results
presented, the comparisons for the instances with ρ = 0.2 are
extremely similar, so we choose not to reproduce them here).
Fig. 10 shows two different comparisons of the timescales.
Fig. 10(a) is a histogram of the values of τ which result using
the AP as opposed to the CP construction. The overlayed
dashed line is the same exponential density plotted in Fig. 7,
which accurately described the envelope of the histogram for
the CP construction. Note the significant shift toward shorter
timescales, which reflects not only the “shortcut” paths, but
also reduced interference. Fig. 10(b) is a scatterplot directly
comparing τ for each individual realization generated first by
the CP and then the AP construction. In almost every instance

except one, the AP timescale was considerably shorter. And
note that the extreme cases, with the largest values of τ under
the CP construction, have small values of τ with the AP. So
for these extreme instances the adaptive algorithm is especially
superior under this measure.

We also compare the relative power consumption of the net-
works generated with the alternate constructions. We assume
that all nodes are transmitting all the time. Furthermore, as
a rule of thumb, we assume that the power falls off with
distance R as, P ∝ 1/R2.5. Since we know the value of
the transmission range for each node, we can thus calculate
its power consumption. In Fig. 11 we show a scatterplot
comparing average power consumption for the 1000 instances
with ρ = 0.1. The horizontal axis denotes the power con-
sumption with the CP scheme. The vertical axis denotes power
consumption with the AP scheme. The slope, δ = 0.41. Thus
for each unit of power increase with the CP scheme, we expect
only a 0.41 unit increase with the AP scheme.

V. DISCUSSION AND CONCLUSIONS

In this manuscript we have attempted to accurately define
the performance metrics relevant to ad hoc networks. They
are power consumption, interference, and the characteristic
time for message delivery. We also discuss an adaptive power
algorithm for network construction, and using these metrics,
assess its performance relative to a more standard algorithm.

The characteristic time, τ , required for a message to be
delivered via peer-to-peer communication in an ad hoc net-
work is a fundamental quantity. Not only does this timescale
potentially constrain the feasibility of building such networks,
it gives an estimate of the time required to build up a complete
routing table for the network. Furthermore it serves as a
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Fig. 10. (a) A histogram of the values for τ for the same n = 1000 realizations with ρ = 0.1 discussed thus far, however constructed with the AP instead
of CP schemes. The dashed line is the same exponential density plotted in Fig. 7. (b) A scatterplot comparing each of the 1000 instances. The horizontal axis
denotes the value of τ resulting from a CP construction, the vertical axis, from the AP construction. There is one obvious outlier where the value of τ was
not lowered by the AP construction. In all other case τ is lowered, which is especially significant for those realizations with the largest values of τ under the
CP construction.

performance metric for evaluating alternate network construc-
tion schemes. Yet, despite its relevance, no previous work
has quantitatively discussed the relevance nor attempted to
quantify the characteristic time. We introduce a framework
based on the assumption that messages diffuse along the
network. Diffusion means no strategy is used to efficiently
exchange data. If any strategy for routing messages were used
we would expect the value of τ to decrease. Thus the time
obtained by our method is an upper bound on the actual time.

We are also interested in the distribution of this time across
many independent realizations of networks with similar user
densities. This distribution gives insight into the feasibility of
communicating efficiently with ad hoc networks with time-
varying topologies. In particular, if the distribution has a large
variance, we would expect the time to exhibit large fluctuations
as the underlying network topology changes. Instead we find
the empirical distribution is well described by an exponential
distribution. Hence the fluctuations on average will not be large
and the timescale will not change drastically if the underlying
topology changes while the local user density remains fixed.

We also introduce a decentralized algorithm for network
construction, which is a variant of [6]. Instead of optimizing
with respect to minimal power, we optimize with respect to
minimizing τ , the largest timescale. Our adaptive power (AP)
algorithm lets each device set its power level individually
to optimize its own connectivity, using only information of
the current state of its local environment. When compared to
networks generated with the standard common power (CP)
algorithm the networks resulting from the AP construction
have more efficient network topologies and improved perfor-
mance by all three metrics (power consumption, interference,

and timescales). In addition, since the AP scheme uses only
information local to each device, the topology of the network
can change rapidly in response to environmental changes,
such as moving users or time-varying wireless channels; the
construction can be iterated locally as necessary. In fact
many routing algorithms rely upon continually executing route
discovery algorithms, such as ad hoc on demand distance
vector routing[7]. Using the AP construction for topology
and route discovery, “shortcut” paths through the network are
found which would not be found with the CP approach. Thus
the AP networks should have a higher throughput than the CP
ones.

With regards to the power consumption metric, we assumed
that all devices were transmitting at all times (i.e., a high
traffic density limit). More accurately we could instead es-
timate usage and use this to determine power consumption.
In addition, past algorithms for adaptive power during usage
can be overlayed onto the networks we constructed. Such
algorithms are based on devices transmitting at the minimum
power necessary to reach a specific neighbor, not the minimum
power for full network connectivity[20].

Much future work which fits naturally into our framework
involves quantifying distinct regimes for routing. For instance,
answering the question on how large to build routing tables
and how often to refresh them. We expect such answers to
depend on a combination of factors described herein, such
as the density of nodes and traffic, and the relative speed
of the devices with regards to the instantaneous value of
the characteristic time. We now have a way to quantify the
characteristic time. Also, depending on the distance between
the source and destination, we expect that different strategies
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Fig. 11. A scatterplot comparing average power consumption for the 1000
instances, where we assume all nodes are transmitting at all times, and that
the power decays as a function of distance R as P ∝ 1/R2.5. The horizontal
axis denotes the power consumption with the CP scheme. The vertical axis
denotes power consumption with the AP scheme. The slope, δ = 0.41. Thus
for each unit of power increase with the CP scheme, we expect only a 0.41
unit increase with the AP scheme.

for routing would be better. Consider the network show in
Fig. 5(c) and Fig. 6. We have illustrated the sub-clustering
that occurs for different timescales. Clearly, based on timescale
constraints, different routing strategies would be necessary for
efficient intra-cluster and inter-cluster communication.

There are many challenges still not addressed in ad hoc net-
working. As shown recently, the assumption intrinsic to almost
all existing models of wireless network topology, that received
power falls off monotonically with distance from the source, is
not necessarily valid[21]. We are currently developing simple
models to generate realistic wireless footprints which can then
be coupled to the CP and AP models. Routing strategies need
to be specifically tailored to the underlying network building
algorithm. Our adaptive power algorithm would require that
the devices have either directional antennae or other means
of directional sensing[22]. Design issues for such systems
need to be considered. Ad hoc networks also provide us with
opportunities for intelligent noise cancellation schemes, which
have yet to be introduced and studied. Furthermore, actual
ad hoc networks will experience noise and scattering from
the environment which need to be understood. Finally, recent
work has focused on hybrid networks with some ad hoc and
some base-station communication, along with heterogeneous
clients[23]. As mentioned in Sec. I, quantifying timescales
for ad hoc networks with heterogeneous clients is particularly
pertinent.
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