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Anomalous critical and supercritical phenomena
in explosive percolation
Raissa M. D’Souza1 and Jan Nagler2

The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a
profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the
percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such
control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results
from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated
and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging
from social networks to nanotubes.

The percolation transition, named for the prototypical
mathematical problem of pouring liquid through a porous
material, describes the onset of large-scale connectivity on

an underlying network or lattice. At times, ensuring large-scale
connectivity is essential: a transportation network (such as the
world-wide airline network) or a communication system (such the
Internet) is useful only if a large fraction of the nodes are connected.
Yet, in other contexts, large-scale connectivity is a liability: under
certain conditions, a virus spreading on a well-connected social or
computer network can reach enough nodes to cause an epidemic.
Thus, percolation theory is a theoretical underpinning across a
range of fields1,2 and the desire to enhance or delay the onset of
percolation has been of interest for many years. The consequences
of delaying the transition have only recently been established and
here we review explosive percolation (EP), the phenomenon that
usually results from repeated, small interventions designed to delay
the percolation transition. The onset can indeed be significantly
delayed, but once the percolation transition is inevitably reached,
large-scale connectivity emerges suddenly.

The traditional approach for constructing a random graph, the
Erdős–Rényi model, considers a collection of N isolated nodes,
with each possible edge between two distinct nodes added to the
graph with probability p (refs 3–5). This is a static formulation
with no dependence on the history of how edges have been added
to the graph. A mathematically equivalent kinetic formulation
is initialized with N originally isolated nodes with a randomly
sampled edge added at each discrete time step6. Letting T denote
the number of steps, the process is parameterized by the relative
number of introduced edges t = T/N , and typically analysed in
the thermodynamic limit of infinite size N . Below some critical
t = tc the resulting graph is disjoint, consisting of small isolated
clusters (or components) of connected nodes. (See Fig. 1c for
an illustration of distinct components.) Let C denote the largest
component and |C| its size. For the Erdős–Rényi model, the order
parameter |C| undergoes a second-order transition at tc = 1/2
where, below tc , |C| is logarithmic in N and, above tc , there is
a unique largest component with size that grows linearly with
N (ref. 7).

The impact of choice
At a Fields Institute workshop in 2000, Dimitris Achlioptas
introduced an extension to this standard process, designed to
enhance or delay the percolation transition based on the ‘power
of two choices’ as used in randomized algorithms8–11. Starting with
N isolated nodes, rather than choosing one edge in each discrete
time step, choose two candidate edges, denoted {e1,e2}, and examine
the consequence of adding each one individually to the graph. The
edge that best satisfies a set of pre-determined selection criteria is
added to the graph and the second candidate edge is discarded for
this time step. Selection criteria can include keeping components
small (delaying percolation), or growing a large component as
quickly as possible (enhancing percolation). The process can also be
generalized to consider m≥2 candidate edges at each time, where
m is kept constant. Such an ‘m-edge’ competitive graph-evolution
algorithm has come to be known as an Achlioptas process.

Achlioptas processes were first analysed by Tom Bohman and
Alan Frieze12 in the context of ‘bounded-size’ rules, where all
components of size K or greater are treated equivalently. For the
Bohman and Frieze (BF) process, e1 is accepted if it joins two
isolated nodes (and e2 rejected), otherwise e2 is accepted (and
e1 rejected). Thus, only components of size one (isolated nodes)
are distinguished, and all components of size K ≥ 2 are treated
equivalently. A rigorous proof shows that BF delays the percolation
transition when compared to ER, but the nature of the transition has
not been investigated12.

BF can be modelled as a cluster-aggregation process based on
the Smoluchowski coagulation equation13,14. This assumes that, at
each discrete time step, two independent components are merged,
and thus implies that the maximum number of edges possible is
N −1. The error introduced from the violation of this assumption
nearing the critical point can be rigorously analysed and, as a result,
it is conjectured that all bounded-size rules lead to a continuous
phase transition15. Cluster-aggregation analysis is a technique used
in many studies discussed throughout this review. Note that cluster-
aggregation processes necessarily end at t= (N −1)/N when only
one component remains, whereas on an undirected network the
maximum edge density attainable is t=(N −1)/2.
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Figure 1 | Schematic of explosive percolation. a, At each time step of the product rule (PR) process, two edges, e1 and e2, compete for addition. Here the
product of the components merged by e1 is 3× 16=48 and by e2 is 2×2=4, so e2 is accepted in and e1 rejected. b, Typical evolution of an Erdős–Rényi
(ER), Bohman Frieze (BF) and PR process on a system of size N= 106. Plotted is the fractional size of the largest component, |C|/N, as a function of edge
density t. c, A sample ER network in the supercritical regime, with the nodes in each distinct component rendered in the same colour. The largest
component, C, is indicated in red.

Novel critical properties
Analysis of unbounded-size rules is more challenging. The first sig-
nificant study appeared in 2009 (ref. 16) and focused on the product
rule (PR), an Achlioptas process defined as follows. Starting fromN
isolated nodes, two candidate edges {e1,e2} are chosen uniformly at
random at each discrete time step. For t< tc , the largest components
are logarithmic in N and thus, with high probability, the two edges
involve four distinct components with sizes respectively denoted
|Ca|, |Cb|, |Cc |, |Cd |. Let e1 denote the edge which joins the first two
components, and e2 the second two. If |Ca|×|Cb|< |Cc |×|Cd |, then
e1 is added to the graph. Otherwise, e2 is added. In other words, we
retain the edge that minimizes the product of the two components
that would be joined by that edge (see Fig. 1a).

A typical realization of a product rule process is shown in Fig. 1b,
together with realization of an Erdős–Rényi3,4 and a Bohman–
Frieze process12 on a system of size N = 106. Note that the onset
of large-scale connectivity is considerably delayed for the product
rule process, and that it emerges drastically, going from sublinear
to a level approximately equal to the corresponding Erdős–Rényi
and Bohman–Frieze processes during an almost imperceptible
change in edge density. Our numerical simulations make use of the
commonly used Newman–Ziff algorithm for efficient computation
of percolation17.

The 2009 study focused on direct simulation of the product rule
process16. To quantify the abruptness of the transition, the scaling
window as a function of system size N , denoted 1N (γ ,A), was
analysed. This measures the number of edges required for |C| to
transition from being smaller than N γ to being larger than AN ,
with typical choices of parameters being γ =A=1/2. Systems up to
size N ∼6×107 were studied and the results indicated a sublinear
scaling window, 1N (0.5, 0.5)∝N 2/3, and tc ≈ 0.888 (ref. 16). The
associated change in edge density,1N (0.5,0.5)/N ∝N−1/3, vanishes
in the limit of largeN—providing strong, yet ultimately misleading,
evidence that large-scale connectivity emerges in a discontinuous
phase transition.

Many further studies followed soon after ref. 16, including
analysis of the product rule on a lattice18 and on networks with
power-law degree distributions19,20. These studies provided similar
evidence for a discontinuous percolation transition. But they
also highlighted the existence of scaling behaviours characteristic
of second-order phase transitions21,22. Many other Achlioptas
processes have now been analysed, such as rules using the sum
rather than product and rules withm>2 choices23–26. Similar results

of sublinear scaling windows and critical scaling behaviours are
observed (see ref. 27 for a review of many of these processes).
Note that models exhibiting a discontinuous jump in the order
parameter, but diverging length scales characteristic of second-order
transitions, are well established for models of ‘jamming percolation’
on low-dimensional lattices28–31. These models incorporate spatial
correlations intended to capture glassy dynamics in materials.

Rather than the scaling window, the impact of a single edge32
provides amore crisp analysis. Soon after the early studies appeared,
it was shown that, for the product rule and similarm-edge processes,
the maximum change in the relative size of the largest component
from the addition of a single edge decays as a power law with system
size, 1Cmax∼N−β (refs 32,33). Thus the process is continuous as
N→∞. The rate of decay is typically fairly small (β=0.065 for the
product rule33), leading to large discrete jumps in systems that are
orders of magnitude larger than real-world networks. More details
are included later in this review with respect to applications of
explosive percolation.

Mounting numerical evidence and heuristic arguments indicated
that Achlioptas processes lead, in fact, to a continuous phase
transition34–37, but with a universality class distinct from any
previously observed35,37. See ref. 27 for a review of the critical
exponents found. Finally, in 2011 a rigorous proof byOliver Riordan
and Lutz Warnke showed that any Achlioptas process leads to a
continuous percolation transition38. They proved, in essence, that
the number of subcritical components that join together to form
the emergent macroscopic-sized component is not sub-extensive in
system size. In the words of Eric Friedman and Adam Landsberg,
Achlioptas processes do not lead to the build-up of a ‘powder
keg’23,39, which is a collection of components that contain cN nodes
in total where the sizes of the components diverge to infinity as
N →∞ for some constant c. Merging the components of such a
powder keg would lead to a discontinuous percolation transition.

Yet, Riordan and Warnke showed that, for a random graph,
if the number of random choices m is allowed to increase
in any way with system size N , so that m→∞ as N →∞
(for example, m∼ log(log N )), then this is sufficient to allow a
discontinuous transition. For rules not based on randomly chosen
m node pairs, however, a discontinuous transition is not guaranteed
to occur. Many explosive percolation processes with alternative
mechanisms that lead to genuinely discontinuous percolation
transitions have now been discovered, as will be discussed later in
this review.
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Figure 2 | Classes of explosive percolation. a, The product rule (PR), minimal cluster rule (MC) and a model named after its creators (dCDGM) are
examples of explosive percolation processes that are continuous in the thermodynamic limit but nevertheless exhibit substantial jumps in the order
parameter for any finite system. For m-edge rules, m links compete for addition. For k-vertex rules, all possible k(k− 1)/2 node pairs compete. b, Models
that exhibit a single genuine jump in the order parameter |C|/N well in advance of the end of the process. The hierarchical model results from the
construction of n generations of long-range bonds, in the limit of n→∞. c, Models that exhibit a single discontinuous jump in the order parameter |C|/N at
the end of the process, resulting in a ‘global’ jump encompassing the full system. All rules in a–c delay the onset of percolation and avoid mergers of large
clusters. d, Non-convergent, non-self-averaging models that exhibit a staircase with genuinely discontinuous steps, including the devil’s staircase (DS),
Nagler–Gutch (NG) and modified Erdős–Rényi (mER) models. Even in the thermodynamic limit the staircases are stochastic (both the size of the steps and
their location). For those models, mergers of large components are not explicitly suppressed.

Stochastic staircases in the supercritical regime
Achlioptas processes (or m-edge rules) are continuous. Although
a finite realization may show large discrete jumps, in the limit
N→∞ the evolution converges to a smooth, continuous function,
as illustrated in Fig. 2a. But, remarkably, the more general class of
‘k-vertex rules’ (which consider a fixed number of candidate vertices
rather than edges) allows new possibilities.

To understand the distinction, first consider anm-edge rule. The
m vertex pairs are chosen uniformly at random. Hence, as long as
there are at least two components in the system, there is a non-
zero probability that all candidate edges chosen at a given step
have exactly one end-point (or vertex) in the largest component C .
Thus, independent of the rule, the probability, Pgr, that the largest
component merges with another smaller component is necessarily
non-zero (and even increases during the process as C grows).

This results in growth of the largest component being dominant,
preventing the build-up of a powder keg, and leading to continuous
growth of |C|/N in the thermodynamic limit32,40.

A different mechanism underlies k-vertex rules. The devil’s
staircase rule is a three-vertex rule that preferentially merges
components of equal (or similar) size or adds an intra-cluster
edge41,42. Hence, regardless of howmany of the chosen vertices reside
in C , it is impossible that C merges with a smaller component,
meaning Pgr = 0. Instead, smaller components merge together—
sometimes becoming the new largest component (which can then
no longer grow directly). This condition necessarily implies one or
more discontinuous transitions during the process32. In particular,
the devil’s staircase rule exhibits a continuous percolation transition
at tc , yet exhibits infinitely many discontinuous jumps at t > tc ,
with the ‘first’ such jump within an arbitrary vicinity of the initial
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Figure 3 | Explosive percolation with stochastic staircases. a–c, Models of explosive percolation can be non-convergent and not self-averaging26. Shown
are realizations of devil’s staircases of genuinely discontinuous jumps with the relative size of the largest component |C|/N as a function of t for several
distinct realizations (black lines), together with ensemble average (green line), minimum (red line) and maximum (blue line). a, Devil’s staircase model
analysed in refs 41,42. b, Modified Erdős–Rényi model from ref. 26. c, Nagler–Gutch model analysed in ref. 26. The averages were obtained from 1,500
realizations for systems of size N=230.

percolation transition. Thus continuity at the first connectivity
transition and discontinuity of the percolation process can be
compatible. Moreover, the devil’s staircase (a Cantor function with
discrete jumps) is random, even in the thermodynamic limit,
meaning that the locations of the jumps are stochastic variables, as
illustrated in Fig. 3a.

Other rules where the order parameter |C|/N is ‘blurred’ in the
supercritical regime and does not converge to a function of t in
the thermodynamic limit were reported in ref. 26. These models
exhibit tremendous variation from one realization to another in the
supercritical regime26 (see Fig. 3b,c). This behaviour is called non-
self-averaging and is quantified by the relative variance of the order
parameter Rv(C) over an ensemble of realizations. For continuous
phase transitions it is well known that large fluctuations in Rv(C)
are observed only in the critical window and that they collapse to a
singular peak at tc in the thermodynamic limit. Figure 4 shows the
lack of self-averaging for the devil’s staircase model and a modified
Erdős–Rényi model as characterized by elevated values of Rv(C)
in the supercritical regime. Most remarkably, large fluctuations in
Rv(C) can be observed even in the early, subcritical evolution, as
shown in Fig. 4. These fluctuations can have predictive power, as
discussed later.We have illustrated this class of explosive percolation
phenomenon with genuine stochastic staircases in Fig. 2d.

Lattice models and global percolation phenomena. Unlike on a
random network, an m-edge Achlioptas process on a lattice can
yield a discontinuous percolation transition at tc . Percolation on a
lattice is often measured by the emergence of a spanning cluster—
a path of activated links that connect sites from one side of the
lattice to another. In the spanning cluster avoidance model, the
emergence of a spanning cluster is discontinuous for a lattice with
dimension d<dc=6 as long as m≥mc=d/(d−dBB), where dBB is
the fractal dimension of the ‘backbone’ (which has been calculated
analytically and measured numerically)43. When d=2, mc≈2.554,
so setting m= 3 is sufficient for a discontinuous transition. Yet,
an interesting distinction occurs for m=mc versus m>mc . For
m=mc , the discontinuous percolation transition occurs at some
intermediate tc during the process, as shown in Fig. 2b for other
models exhibiting this class of explosive percolation phenomenon.
In contrast, for m>mc the process acts globally, so when the
spanning cluster emerges, it encompasses the entire system. Such
‘global’ percolation also happens for an m-edge Achlioptas process
on a random graph in the limit m→∞. Instead of metric
or geometrical confinements, the rule has unrestricted access to
the entire collection of components. There, a giant percolating
component emerges only in the final step of the process when only
one component remains, as first discussed in ref. 44. This class of

explosive percolation phenomenon with global jumps is illustrated
in Fig. 2c.

Underlying mechanisms
Erdős–Rényi percolation can be considered a form of ‘multiplicative
coalescence’14. From the kinetic perspective, at each discrete time
step two vertices are chosen uniformly at random and linked by an
edge. The probability that a randomly chosen vertex is in a particular
component of size j is j/N . Thus, to first order, the probability that
a randomly selected edge merges a particular component of size j
with a particular one of size i is proportional to ij/N 2 (see ref. 14
for more rigorous details). As with gravitational attraction, the force
between two bodies is proportional to the product of their masses.
It suffices to say that, under Erdős–Rényi evolution, the largest
components quickly merge together to form one larger component,
hence amplifying the likelihood of that component being included
in subsequent edges. Such arguments provide the intuition for why
there is only one unique giant component in the supercritical regime
for Erdős–Rényi percolation.

The appearance of ref. 16 led to increased activity in the field and
to the discovery of several random graph percolation models that
exhibit truly discontinuous transitions. These models break multi-
plicative coalescence, allowing instead a multitude of components
with sizes similar to that of the largest component. This creates
the necessary powder keg23 in the subcritical regime, and can allow
multiple, coexisting giant components in the supercritical regime45.

The class of explosive percolation phenomenon with a
discontinuous, but non-global, jump is illustrated in Fig. 2b. Two
of the models shown45,46 work by suppressing the growth of the
largest component. In ref. 46 a regular lattice is the underlying
substrate and a single edge is examined at a time (m= 1). If a
randomly chosen edge would not increase the current size of the
largest component then it is accepted. Otherwise it is rejected with a
probability function that decays as a Gaussian distribution centred
on the average cluster size. Thus, components that are similar in
size to the average are favoured. Clear signatures of a first-order
transition are observed, such as bimodal peaks for the cluster size
distribution, indicating the coexistence of percolative and non-
percolative states in finite systems at tc . In contrast, the random
graph version of this Gaussian model47 exhibits a discontinuous
transition at the end of the process (as illustrated in Fig. 2c).

Another model introduced by Bohman, Frieze and Wormald
(BFW; ref. 48) is analysed in ref. 45. The model considers a single
edge at a time. The edge is added to the graph if the resulting
component would be smaller than some specified size k. Otherwise,
the edge is rejected provided that a stringent lower bound on edge
density is always satisfied. If the edge cannot be rejected, then the cap
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Figure 4 | Non-self-averaging in explosive percolation. a–c, Relative variance Rv of the largest component in dependence on the link density for the devil’s
staircase model (a), the modified Erdős–Rényi model (b) and the generalized BFW model (c). In the supercritical regime of the devil’s staircase model (a)
the system is non-self-averaging, characterized by extended regions of Rv 6=0, for N→∞. For the modified Erdős–Rényi model (b), remarkably, Rv as a
function of t follows intricate patterns, such as oscillations with amplitudes that seem to survive in the thermodynamic limit, both in the subcritical and
supercritical regime. The generalized BFW model (c) studied in ref. 73 exhibits peaks in Rv at well-defined intervals that exhibit a discrete scale invariance
and survive in the thermodynamic limit, and moreover predict the percolation point.

k is increased incrementally while the lower bound correspondingly
decreases as a function of k until reaching an asymptotic limiting
value, α. In the original model α= 1/2 (such that asymptotically
one-half of all edges must be accepted)48. Ref. 45 shows that this
process leads to a truly discontinuous transition in which multiple
giant components emerge simultaneously, as shown in Fig. 5a. In the
supercritical regime, any edge leading to an increase in the cap size
k can be simply rejected, and thus the multiple giant components
coexist without merging.

One can generalize the BFW model by allowing α to vary, pro-
viding a parameter for tuning the number of giant components that
emerge at tc (see inset to Fig. 5a). For some values of α the coex-
istence is unstable, leading to additional discontinuous jumps49,50.
The critical behaviour for α> 0.511 when only one giant emerges
is illustrated in Fig. 2b. That the maximum change in relative size
from the addition of a single edge 1Cmax is invariant with N for
BFW, but decays as N−0.065 for the product rule, is shown in Fig. 5b.
The evolution of the component size distribution as t increases is
shown in Fig. 5c, illustrating the build-up of the powder keg. Here
n(s) denotes the number of components of size s divided by N .

The BFW process gives rise to the simple underlying mechanism
of growth by overtaking51. The growth of the largest component is
severely limited, as it can merge only with isolated nodes. Instead,
all significant changes in |C| result from two smaller components
merging together and overtaking the previous largest component to
become the new largest component51.

Models that have been shown to lead to a single discontinuous
percolation transition on randomgraphs include a restricted Erdős–
Rényi process, where one end-point of the edge is chosen uniformly
at random and the other is chosen randomly from a restricted set52.
Ordinary percolation on a hierarchical network can also yield a
discontinuous percolation transition at some intermediate tc during
the process53 (see Fig. 2b). Furthermore, there is a Hamiltonian
formulation that connects evolution via Achlioptas processes with
an equilibrium statistical mechanics process54, highlighting the role
of non-local information in discontinuous percolation. It was also
shown recently that modelling cascading failure on interacting net-
works via percolation typically involves a discontinuous transition
from global connectedness to disintegration of the network55.

Although percolation considers the evolution of the network
structure, explosive percolation has also motivated exploration of
dynamical processes taking place on a fixed network structure, such
as the ‘explosive Ising’ model56 and ‘explosive synchronization’57.
The latter was first shown in a network of oscillators when
the natural frequency of each oscillator is positively correlated
with its degree. A recent study revealed that suppressing the
formation of large clusters is the common mechanism underlying

all now-explored models of explosive synchronization58, linking the
mechanism with explosive percolation.

Notably, there have long been models of percolation known to
show discontinuous transitions, such as k-core percolation and
models of jamming on low-dimensional lattices28–31. Mechanisms
underlying these processes are primarily cooperative interactions59
and correlated percolation31. Refs 31,59 include interesting
discussions connecting these known models to the more recent
work on explosive percolation, highlighting lattice models,
generalized epidemic models and the statistical mechanics of
exponential random graphs.

Explosive percolation in real-world networks
Explosive percolation in finite systems. The rigorous proof
by Riordan and Warnke38 shows that in the limit N →∞
the scaling window is linear in system size N , but numerical
evidence on systems up to size N ∼ 107 indicates the window is
sublinear16. Thus, there must be a crossover length, N ∗, where
the system becomes large enough such that actual realizations
show convergence to the asymptotic limiting behaviour. A method
for estimating the crossover length is to model the expected
evolution of a network using cluster-aggregation equations, such
as the Smoluchowski coagulation equation13,14, which is a mean-
field analysis over the ensemble of all possible random graphs14.
Cluster-aggregation approaches to general percolation provide
useful analytical tools6,60, which have been useful for modelling
explosive percolation processes24,33,61.

Cluster-aggregation models related to the product rule
suggest that the largest component obeys a scaling relation
|C|/N ∼(t− tc)0.0555 for t just above tc (ref. 34). This indicates
unusually rapid, albeit continuous, growth. As discussed earlier,
the maximum impact from the addition of a single edge for
such processes obeys the relation 1Cmax ∼ N−β , which for
very small values of β coincides with the scaling of the largest
component |C|/N ∼ (1/N )β = (1t)β , as the addition of a single
edge corresponds to1t=1/N . For t< tc , by definition |C|/N→0.
As we pass into the critical regime |C|/N ∼ (1/N )β . This means
that, for a system of size N = 101/β , the addition of a single edge
causes the order parameter to exhibit a discrete jump equal to
ten per cent of the system size, 1|C|/N = 0.1. For a process with
β=0.0555≈1/18, the crossover length N ∗>1018.

The thermodynamic limit is extremely relevant when consider-
ing phase transitions in physical materials, where system sizes are
of the order of Avogadro’s number, N ∼ 1023. But real-world net-
works, such as the Internet, the world-wide airline network, online
social networks and gene interaction networks, are all considerably
smaller than 1018. Although fixed-choice Achlioptas processes yield
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Figure 5 | Multiple giant components and the ‘powder keg’. a, Multiple giant components, C1 and C2, arise simultaneously for the BFW process. The inset
shows the number of stable giant components, G, as a function of α, the asymptotic fraction of edges that must be accepted45. b, The maximum impact
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the BFW process with α= 1/2, showing the build-up of the powder keg, which merges to become two coexisting giant components at tc.

continuous transitions in the thermodynamic limit, such processes
yield significant discrete jumps in the realm of real-world networks.

Modular networks. Several studies show that the paradigm of
explosive percolation can be useful for understanding the evolution
of modular networks and community structure, including an
evolutionary process on the human protein homology network44.
The general belief is that proteins evolve via duplication–mutation
events from ancestral proteins, and it has been shown that more
similar (or homologous) proteins organize into network modules62.
Initializing an evolutionary process on the network with all the
proteins disconnected and with edges between the most similar
proteins added sequentially leads to the emergence of many large
isolated components of tightly connected nodes. These modules
eventually link together with the addition of just a few inter-
component edges so that global connectivity emerges in an explosive
manner. The emergent structure is similar to the dense connectivity
within a community and the weak links between communities
suggested by Grannoveter for social systems63.

Monitoring the evolution of an explosive percolation process
on a network can also reveal information about the underlying
structure, as is the case in a study of empirical data from two real-
world social networks—one a mobile-phone call network, the other
a co-authorship networks of scientists64. Initially, all the empirical
edges are considered ‘unoccupied’ and an Achlioptas process is
used to sequentially occupy edges. They show that, at tc , the
component structure reflects the underlying community structure
of the network. Thus, applying such graph-evolution processes to
data from real-world networks can provide a potential tool for
uncovering unknown, underlying structures.

Cluster-driven dynamics are also seen in the first-year growth of
many distinct language wikipedias65. Each wikipedia is a network
of articles connected via hyperlink edges. Most of the languages
exhibit the same general pattern of evolving a collection of large
disconnected components, with each component focused on a
distinct topic. Similar to the ‘powder keg’, these distinct components
quickly link together over the course of a few days, leading to large
discrete jumps in the size of the largest component.

Disordered media. Standard formulations of percolation have
been used to model many properties of materials and disordered
media, such as electrical and thermal conductivity, flow through
porous media, and polymerization. Explosive percolation offers
a novel ingredient, namely suppressing the growth of the largest
components and instead creatingmany components of uniform size.
This allows us to extend percolationmodels to systems that have not
been previously amenable to such treatment.

For example, consider the seminal model of diffusion-limited
cluster aggregation66. Here clusters move via Brownian motion so

that the velocity of a cluster is inversely proportional to the square
root of its size, and thus larger clusters move considerably more
slowly. Diffusion-limited cluster aggregation can be mapped onto
the framework of explosive percolation67. In this formulation, clus-
ters move on an underlying two-dimensional lattice via Brownian
motion and form larger clusters whenever two clusters become
nearest neighbours. Brownianmotion suppresses themobility of the
largest clusters, impeding their growth, and leading to the discon-
tinuous emergence of a giant cluster as a function of the number
of aggregation events. Generalized Brownian motion, for which the
velocity is inversely proportional to themass of the cluster to a power
η, gives rise to a tricritical point that separates discontinuous from
continuous emergence as a function of η (ref. 67).

A generalization of the devil’s staircase model, called ‘fractional
percolation’, involves systematically suppressing the merging of
components with substantially different sizes and preferentially
merging those whose size ratio is close to a fixed target ratio f
(ref. 42). For any target ratio f (no matter how small) this leads to a
series of multiple discontinuous jumps in the supercritical regime.
The sizes and locations of the jumps are randomly distributed,
similar to crackling noise observed in materials, such as when
a sheet of paper is crumpled. This framework links explosive
percolation with phenomena that exhibit crackling noise, are
non-self-averaging, and exhibit power-law fluctuations resembling
Barkhausen noise in ferromagnets.

Recently, the electric breakdown of substrates on which highly
conducting particles are adsorbed and desorbed has been identified
as a promising candidate for an experimental realization exhibiting
a truly discontinuous percolation transition68.

The behaviours of nanotubes are often modelled by means of
standard percolation, where the emergence of percolating paths in
bundles of nanotubes captures the transition from insulator to con-
ductor69. However, explosive percolation processes aremore realistic
models, as observations of real-world systems show that the sizes of
the bundles are uniform69. Similar to explosive percolation processes
(and unlike regular percolation), the growth of larger bundles is sup-
pressed and the transition becomes extremely abrupt. The transition
shows hysteresis, as is expected for first-order transitions69.

Recent developments. The cluster-aggregation approach that
informs much of the work reviewed here also allows us to study
competitive percolation processes on growing networks. Note that
in all the percolation models discussed thus far, N is fixed and
the graph evolves via edge arrival. In a seminal study appearing
in 2001, the impact of node arrival on the Erdős–Rényi process
was analysed70. Starting from a few seed nodes, a new node arrives
at each discrete time step and, with probability δ ≤ 1, an edge
selected uniformly at random is added to the graph. This leads
to an infinite-order percolation transition70. Following the same
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procedure, but using the ‘adjacent edge’ Achlioptas process24 for
edge addition, considerably delays the onset of the percolation
transition, but retains the smooth, infinite-order transition71. Thus,
network growth via node arrival allows a significantly delayed
percolation transition yet can mitigate the abrupt, explosive nature
that typically results from delay interventions71,72.

Also shown recently is that microscopic patterns in the early
evolution of percolation processes can be used to predict the
location of the critical point73. In particular, the generalized BFW
process exhibits peaks in relative variance at well-defined values of
ti (with i an integer), which survive in the thermodynamic limit
(see Fig. 4c). The positions of the peaks ti obey a discrete scale
invariance74 (meaning that scale invariance holds only for a discrete
set of magnification factors).We can predict the critical point ti→ tc
from the discrete scaling relation73. Non-self-averaging behaviours
can thus provide a powerful predictive tool.

Very recently a strict scaling theory for a wide class of Achlioptas
processes was developed using the cluster-aggregation approach,
which produces the full set of scaling functions and critical
exponents75. Even more recently, the necessary conditions that a
cluster-merging process must satisfy to produce a discontinuous
percolation transition were established, both for transitions of the
type shown in Fig. 2b and c (ref. 47). The key ingredient involves
whether symmetry is preserved or broken during cluster merging.
Finally, we note that novel approaches to traditional percolation
based on analysing the matrix describing non-backtracking walks
on graphs have recently proved helpful in determining the position
of the percolation point, the size of the percolating cluster, and the
average cluster size76–78. Such approaches may become useful for
arbitrarily complex percolation models in the future, including for
explosive models.

Future directions. There aremany directions for futurework on the
topic of explosive percolation, ranging from theoretical considera-
tions to more practical aspects of how these processes can help us
model, control and understand real-world systems. One direction
is how explosive percolation processes can be used for creating
and analysing modular networks, furthering the initial studies44,64.
Ordinary percolation on hierarchical lattices leads to an explosive
percolation transition53 and may also show interesting connections
to community structures and clustering phenomena. There is also
very limited work concerning explosive percolation on directed net-
works, withwork thus far focused onm-edgeAchlioptas processes79.

A more novel consideration is the range of supercritical
properties observed in explosive percolation processes, such
as multiple giant components and stochastic staircases. Some
mechanisms that yield explosive percolation (growth by overtaking,
for example) lead to one phase transition and stable coexisting giant
components. Othermechanisms result in unstable coexistence and a
family of discontinuous, supercritical transitions. Moreover, the fact
that multiple giant components arise in percolation is surprising80,
given the multiplicative coalescence underlying classic processes
such as the Erdős–Rényi model. Understanding which mechanisms
lead to stable and unstable coexisting giants may provide insight
into the evolution of modular networks, such as social networks,
and also provide a potential mechanism for controlling gel sizes
during polymerization when multiple disconnected polymer gels
can be desirable81. Other real-world systems that may benefit
from, and contribute to, deeper understanding of explosive
percolation processes include diffusion-limited cluster aggregation
and properties of nanotubes and nanowires. The lack of self-
averaging throughout the process and non-convergence in the
supercritical regime that is observed for many explosive percolation
processes challenges our current notions of percolation. Even
for the basic product rule process, there remain many open
questions40,82. Additional references and challenges for the field of

percolation, including explosive percolation, are discussed in other
recent reviews27,83,84.

From a conceptual perspective, the insights gained from
explosive percolation processes may help us understand how to
better manage and control networks. With our increasing reliance
on interdependent systems of networks, fromelectric power grids, to
computer networks, to transportation networks and global financial
networks, there is increasing need to understand the systemic risk
underlying these engineered networks. Often human operators or
regulators intervene with a network’s functions or structure in an
attempt to delay an undesirable outcome, such as a leak in a damor a
crash in a financial market. Such delay interventions can sometimes
be successful, yet at other times lead to unanticipated and disastrous
failures. Explosive percolation processes provide a new paradigm
for modelling the consequences of repeated, small interventions
intended to delay a catastrophe, such as in modern engineered and
financial systems85. We expect that more exciting behaviours and
applications of explosive percolation will continue to be discovered.
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