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INTRODUCTION: Cascading failures in power
grids are inherently network processes, inwhich
an initially small perturbation leads to a se-
quence of failures that spread through the
connections between system components. An
unresolved problem in preventingmajor black-
outs has been to distinguish disturbances that
cause large cascades from seemingly identical
ones that have onlymild effects. Modeling and
analyzing such processes are challenging when
the system is large and its operating condition
varies widely across different years, seasons, and
power demand levels.

RATIONALE: Multicondition analysis of cas-
cade vulnerability is needed to answer several

key questions: Under what conditions would
an initial disturbance remain localized rather
than cascade through the network? Which
network components are most vulnerable
to failures across various conditions? What is
the role of the network structure in determin-
ing component vulnerability and cascade sizes?
To address these questions and differentiate
cascading-causing disturbances, we formu-
lated an electrical-circuit network representa-
tion of the U.S.–South Canada power grid—a
large-scale network with more than 100,000
transmission lines—for a wide range of op-
erating conditions. We simulated cascades in
this system by means of a dynamical model
that accounts for transmission line failures

due to overloads and the resulting power
flow reconfigurations.

RESULTS: To quantify cascade vulnerability,
we estimated the probability that each trans-
mission line fails in a cascade. Aggregating the
results from multiple conditions into a single
network representation, we created a sys-
temwide vulnerability map, which exhibits
relatively homogeneous geographical distri-

bution of power outages
but highly heterogeneous
distribution of the under-
lying overload failures.
Topological analysis of
the network representa-
tion revealed that the

transmission lines vulnerable to overload fail-
ures tend to occupy the network’s core, char-
acterized by links between highly connected
nodes. We found that only a small fraction of
the transmission lines in the network (well
below 1% on average) are vulnerable under a
given condition. When measured in terms of
node-to-node distance and geographical dis-
tance, individual cascades often propagate
far from the triggering failures, but the set
of lines vulnerable to these cascades tend to
be limited to the region in which the cas-
cades are triggered. Moreover, large cascades

are disproportionately more likely
to be triggered by initial failures
close to the vulnerable set.

CONCLUSION: Our results imply
that the same disturbance in a
given power grid can lead to dis-
parate outcomes under different
conditions—ranging from no dam-
age to a large-scale cascade. The as-
sociation between large cascades
and the triggering failures’ proximity
to the vulnerable set indicates that
the topological and geographical
properties of the vulnerable set is
a major factor determining whether
the failures spread widely. Because
the vulnerable set is small, failures
would often repeat on the same lines
in the absence of interventions. Al-
though the power grid represents a
complex system in which changes
can have unanticipated effects, our
analysis suggests failure-based al-
location of resources as a strategy
in upgrading the system for improved
resilience against large cascades.▪
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Cascade-resistant portion of the U.S.–South Canada power grid.The network is visualized on a
cartogram that equalizes the density of nodes. (Top) Power lines that never underwent outage in our simulations
under any grid condition are shown in green, whereas all the other lines—whose vulnerability varies widely—are
in gray. (Bottom) Spreading of a cascade triggered by three failures at time t = 0 (arrows), which resulted in
254 failures at t = 100 (the end of the cascade in linearly rescaled time).
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Yang Yang,1 Takashi Nishikawa,1,2* Adilson E. Motter1,2

The understanding of cascading failures in complex systems has been hindered by the lack of
realistic large-scale modeling and analysis that can account for variable system conditions.
Using the North American power grid, we identified, quantified, and analyzed the set of
network components that are vulnerable to cascading failures under any out of multiple
conditions. We show that the vulnerable set consists of a small but topologically central
portion of the network and that large cascades are disproportionately more likely to be
triggered by initial failures close to this set. These results elucidate aspects of the origins and
causes of cascading failures relevant for grid design and operation and demonstrate
vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.

C
ascading failures are inherently large-scale
network processes that cannot be satisfac-
torily understood from a local or small-scale
perspective. In blackouts caused by cascad-
ing failures in the power grid, a relatively

small local disturbance triggers a sequence of
grid component failures, causing potentially large
portions of the network to become inactive, with
costly outcomes. In the North American power
grid (1), for instance, a single widespread power
outage can inflict tens of billions of dollars in
losses (2), and smaller but more frequent outages
can amount to a yearly combined impact com-
parable with that of the largest blackouts (3). Yet,
not much is known about what distinguishes
disturbances that cause cascades from seemingly
identical ones that do not. Despite the substantial
advances made through conceptual modeling of
general cascades (4–10) and physics-based model-
ing of power-grid–specific cascades (11–14), a major
obstacle still remains: the lack of realistic large-
scale models and a framework for analyzing
cascade vulnerability under variable system con-
ditions. Developing such a framework is challeng-

ing for three reasons: (i) Detailed data combining
both structural and dynamical parameters are
scarce, (ii) the system condition varies on a wide
range of time scales, and (iii) computational re-
sources required for modeling grow combina-
torially with system size (15). These challenges
have limited the applicability of most previous
studies to vulnerability under a single condition
and either to smaller scales than those required
to describe large cascades or to models that are
not constrained by real data. Similar hurdles exist
in studying large-scale failures in the broader con-
text of complex networks (16–18), including ex-
tinction cascades in ecological systems (19–21) and
contagion dynamics in financial systems (22, 23).
Here, we focus on the U.S.–South Canada

power grid, which is the largest contiguous power
grid amenable to modeling. This system is com-
posed of three interconnections (Texas, Western,
andEastern) (Fig. 1A),which are separatenetworks
of alternating current generators and power con-
sumers connected by transmission lines (network
components are illustrated in Fig. 1B). To study
this system, we used the data reported in the

Federal Energy Regulatory Commission (FERC)
Form 715. For each interconnection, the data rep-
resent various snapshots of the system, spanning
the years 2008 to 2013 and covering multiple
seasons as well as both on- and off-peak demand
levels, which correspond to different operating
conditions. Basic properties of the 46 snapshots
we used are listed in table S1. A representation of
each snapshot was constructed by processing the
parameters of individual power-grid components,
including power generation and demand as well
as the capacity of transmission lines. Central to
the analysis of cascade vulnerability in this system
is that our approach distinguishes (i) transmission
lines (or simply lines) that have become out of
service anddonot carry flowbecause of protective
relay actions, equipmentmalfunctions, operational
errors, or physical damages (“primary failures”);
and (ii) lines that do not carry flow at the end of
the cascades because they are de-electrified owing
to the outage of other lines (“secondary failures”).

Geographic layout of vulnerabilities

The vulnerability of a given transmission line ‘
can be quantified by the probability p‘ that the
line fails in a cascade event triggered by a ran-
dom perturbation to a given snapshot of a given
interconnection. To estimate p‘, we used a cascade
dynamics model that combines key elements from
previous models (12, 24, 25) to suitably account for
the physics of cascading failures. In this model, the
initial state of the system for the given snapshot
is determined by computing the power flow over
all transmission lines and transformers from the
power flow equation (supplementary materials,
materials and methods). The triggering pertur-
bation was implemented through the removal
of a set of nt lines, representing line outages due
to unforeseen events, such as damage to power
lines caused by extreme weather and unplanned
line shutdowns caused by operational errors. After
this initial removal, a cascade event was modeled
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Fig. 1. The U.S.–South Canada power transmission network. (A) System
map showing the Texas,Western, and Eastern interconnections, as well as the
eight NERC regions (acronyms are defined in table S2). (B) Schematic diagramof
a portion of a transmission network.The vertical lines and pink circles represent

buses and nodes, respectively. As indicated by the blue arrows, power injected by
the generators flows through this network of transmission lines and is eventually
consumed at other points (where the thickness of the arrow represents the
amount of power flow).
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as an iterative process, with each step consisting
of a single power line outage due to overheating
(primary failure), followed by the redistribution
of power flow in the network to compensate for
the lost flow over the failed line. Line overheating
was modeled with a temperature evolution equa-
tion (12), and flow redistribution was determined
by solving the power flow equation again; if a
primary line failure disconnects the network into
multiple parts with unbalanced supply and de-
mand, the power generation and consumption
in each part are adjusted (similarly to how gen-
eration reserves and power shedding are used in
grid operation) to allow for the subsequent power
flow calculation. The failure probability p‘ was
estimated fromK such simulated cascade events,
including those with no subsequent failures. Fur-
ther details on the triggering perturbations and
cascade dynamics model can be found in the sup-
plementary materials, materials and methods.

We validated the model against historical line
outage data available from the Bonneville Power
Administration (BPA) with respect to the distri-
bution of cascade sizes measured by the number
of (primary) line failures Nf (supplementary ma-
terials, materials and methods, and fig. S1A). We
also validated the extremal cascade size mea-
sured by Nf and power shed Ps (defined as the
reduction in the amount of power delivered to
the consumers) against the BPA data and grid
disturbance data from the North American Elec-
tric Reliability Corporation (NERC), respectively
(supplementary materials, materials and methods,
and fig. S1, B and C). All simulations were per-
formed with nt = 3 because the cascade size dis-
tribution for a given snapshot did not differ
appreciably for other choices of nt (fig. S2). How-
ever, the distribution exhibited considerable varia-
tion across different snapshots, both when cascade
size was measured by the power shed Ps (fig. S3)

andwhenmeasured by the number of line failures
Nf (fig. S4).
To aggregate results over different snapshots,

we used a node to represent the set of all buses
associated with the same geographic location
across all snapshots in our data set, where the
term “bus” refers to a connection point between
components of a power grid, such as transmis-
sion lines, transformers, and generators (Fig. 1B).
This definition of a node typically corresponds
to a substation and can include generators at
a nearby power plant and/or an electrical load
representing local power consumption. We used
a link between a pair of nodes to represent the
set of all (parallel) transmission lines directly
connecting the same pair of nodes in at least one
snapshot, where each of these transmission lines
connects two different buses (one from each node
in the pair). In this network, the aggregated vul-
nerability pl :¼ hp ‘i of a link l, which we refer to
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Fig. 2. Vulnerability map of the U.S.–South Canada power grid.
(A) Averaged failure probability of transmission lines, including primary
and secondary failures, expressed as the total A-vulnerability of links hp‘i.
Because the structure of the power grid varies slightly from one snapshot
to another, we visualize the A-vulnerability using a single network
constructed to represent all snapshots of each interconnection by regarding
the set of all buses at a given geographical location as a node and all
transmission lines connecting two nodes as a single link. Each link is color-
coded by the failure probability hp‘i estimated as a weighted average over
all lines in all snapshots, where gray indicates links whose estimated
probability is zero. (B and C) Same as in (A), but color-coded separately

for (B) the A-vulnerability to primary failures hpðpÞ
‘ i and (C) the A-vulnerability

to secondary failures hpðsÞ
‘ i. (A), (B), and (C) correspond to the same

unidentified portion of the U.S.–South Canada map. (D) Histogram of the
A-vulnerability pl ¼ hp‘i and the curve for f(p) := S′pl/Sl pl, where S′ denotes
the sum over all links l satisfying pl ≥ p. The function f(p) thus represents
the fraction of all failures that are associated with links of A-vulnerability
p or larger. (E and F) Same as in (D), but with hp‘i replaced by hpðpÞ

‘ i and hpðsÞ
‘ i,

respectively. In (D), (E), and (F), the vertical and horizontal dashed lines
indicate, respectively, the minimum A-vulnerability p* among the most
vulnerable 20% of all failing links and the fraction f(p*) of failures accounted
for by these links.

RESEARCH | RESEARCH ARTICLE
on M

ay 9, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


as the A-vulnerability, is a weighted average of the
failure probabilities over the lines represented by
the link l and over the various snapshots and can
be expressed as

hp‘i ¼ ScS‘p‘;cwc

ScS‘wc
ð1Þ

where c indexes the different snapshot condi-
tions simulated, and the sum over ‘ is limited to
the set of transmission lines defining the link
‘ for the given c. Here, p‘;c is the probability of
line failure in the simulated perturbations of the
system (the values of K we used are given in table
S1 and justified in fig. S5), and wc represents the
weight assigned to each snapshot (table S1). In
our analyses, we present the A-vulnerability sep-

arately for primary failures (denoted by
D
pðpÞ
‘

E
),

secondary failures (denoted by
D
pðsÞ
‘

E
), and the

combination of both primary and secondary fail-
ures (denoted by hp‘i itself).
We constructed the A-vulnerability map of

the U.S.–South Canada power grid (shown in
Fig. 2, A to C, for a portion of the grid). Over
the entire network, we found that only 10.8% of
all links ever underwent a primary failure in our
simulations and that secondary failures were on
average 3.77 times more prevalent than primary
ones (table S3). We also found that A-vulnerability
was very unevenly distributed among the links,
with 20% of the failing links (which in the case
of primary failures correspond to only 2.16% of
all links) accounting for about 85, 66, and 69%
of the primary failures, secondary failures, and
combined set of all failures, respectively (Fig. 2,
D to F). Also uneven was the geographical dis-
tribution of links with nonzero A-vulnerability
(Fig. 2, A to C), whose density was correlated
positively with population density. This correla-
tion was mainly due to the bias toward higher
density of links in more densely populated areas
because it disappeared when A-vulnerability was
averaged over the links in each geographical area
to control for this bias. However, substantial geo-

graphical heterogeneity still remained for the
averaged A-vulnerability, ranging over several
orders of magnitude when calculated for in-
dividual U.S. counties. These observations were
validated with the U.S. county population data
from the 2010 census and the geographic co-
ordinates of county boundaries (fig. S6). Among
the 48 states and the District of Columbia re-
presented in the U.S. portion of the network, the
three least vulnerable ones were West Virginia
(average hp‘ iof 3:2� 10�5), Tennessee (average
hp‘ iof 3:5� 10�5), and Mississippi (averagehp‘ iof
3:8� 10�5), all in the middle third of the pop-
ulation density ranking. However, some states
among the least vulnerable did have relatively
high or low population density, such as Illinois
and Nebraska, which ranked 13th and 43rd in
population density while having the 5th and
6th lowest A-vulnerability, respectively. The het-
erogeneity of A-vulnerability is visualized in Fig.
3A, with a map representation that equalizes
the density of nodes. The breakdown of this
representation into primary and secondary fail-
ures, presented in Fig. 3, B and C, shows that A-
vulnerability to primary failures was more
heterogeneously distributed than A-vulnerability
to secondary failures. Over all pixels with non-
zero A-vulnerability, the standard deviation of

log hp‘ i was 0.48 (89.2%), of log
D
pðpÞ
‘

E
was

0.58 (57.5%), and of log
D
pðsÞ
‘

E
was 0.41 (87.0%),

where the number in parentheses represents
the fraction of such pixels. The homogeneity
in the distribution of secondary failures, which
were several times more numerous than primary
failures, underlies the relatively homogeneous
aggregated distribution of the resulting power
outages observed in Fig. 3A.

Network characterization of
vulnerabilites

Our characterization of A-vulnerability allows us
to study how the observed cascade dynamics de-
pend on the network structure and to identify
the topological centrality of individual links as a

determinant. Topological centrality can be quan-
tified through the concept of k-core (26–29),
which is defined as the largest subnetwork in
which every node has at least k links (that is, it
has degree k). The k-core of a given network
can be obtained by recursively removing all nodes
with degree <k until all nodes in the remaining
network have degree ≥k. Repeating this for k =
1, 2, ... determines the k-core decomposition of
the network. The coreness of a node is then de-
fined as the (unique) integer c for which this node
belongs to the c-core but not to the (c + 1)–core
(30). We further extend this concept to links by
defining a link’s coreness to be the smaller core-
ness of the two nodes it connects. A network
visualization based on this decomposition is
illustrated in Fig. 4A.
When this network decompositionwas applied

to the entire topology of the U.S.–South Canada
power system, we found that links of coreness
2 were dominant in all three interconnections
(with 81, 67, and 82% of all links in the Texas,
Western, and Eastern networks, respectively).
This dominance of coreness 2 links was also
observed for the cascade-prone portion of the
network and was further verified separately for
the set of links vulnerable to primary failures
ðhp‘ðpÞi > 0Þas well as the set of links vulnerable
to secondary failures ðhp‘ðsÞi > 0Þ. These results
are visualized in Fig. 4B for the case of the Eastern
interconnection.
Upon closer inspection, however, the vulner-

ability revealed a strong correlation with link
coreness beyond what can be inferred from the
availability of links of a given coreness in the
network. For primary failures, almost all links
of coreness 1 showed zero A-vulnerability in our
simulations, whereas 7 to 19% of higher coreness
links were vulnerable (Fig. 4C). The links of
coreness 1 are rarely vulnerable because each
belongs to a tree subnetwork connected to the
rest of the network through a single node, and
this protects the link from flow rerouting, which
is responsible for most primary failures (for ex-
ample, flow rerouting accounts for more than 98%
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Table 1. Subdivisions of the U.S.–South Canada power grid and its vulnerable sets. The rows represent the regions defined by NERC (Fig. 1A and

table S2), within which the simulated cascades are triggered. The columns represent the number of buses, number of transmission lines, and four measures

of the vulnerable sets: the number of vulnerable lines jVj, the relative number of lines that are vulnerable in multiple snapshots jV∩j, and the mean pairwise
normalized topological and geographical distances between vulnerable lines, dv‐v and gv‐v, respectively. These quantities are averaged over all snapshots (which is

indicated by the notation h�i). The normalized distances are defined in the supplementary materials, materials and methods.

Interconnections Vulnerable sets

hBusesi hLinesi hjVji jV∩j hd v‐vi hg v‐vi
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Texas 6161 7637 48 2.9 0.82 0.70
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Western 15,891 20,397 81 5.9 0.84 0.95
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Eastern 56,740 72,903
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

FRCC 37 1.1 0.69 0.70
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

MRO 32 3.4 0.79 0.97
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

NPCC 130 2.1 0.85 0.72
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

RFC 76 4.5 0.94 0.91
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

SERC 11 11.6 0.92 0.94
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

SPP 14 3.3 0.66 0.63
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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of primary failures in the 2010 spring
peak snapshot of theTexasnetwork, as
shown in the supplementarymaterials,
materials and methods). Among the
links that were vulnerable, the level of
A-vulnerability increasedmonotonically
with their coreness (Fig. 4D). This is
probably because there are more flow
paths (frompower generators to con-
sumers) that are parallel to a link of
higher coreness in general, making the
link more likely to be affected by flow
rerouted from a failure in these paths.
For secondary failures, the fraction

of links that were vulnerable and the
A-vulnerability levels of these links fol-
lowed opposite trends. The decrease
in the fraction of vulnerable links
shown in Fig. 4E can be understood
by noting that a link can experience a
secondary failure only if all available
flow paths passing through that link
are disabled by primary failures. Be-
cause links of higher coreness gener-
ally have more such paths, they were
less likely to fail through this mecha-
nism. Among the vulnerable links, the
increase of the average A-vulnerability
with coreness shown in Fig. 4F likely
arose from the organization of the
nodes in each k-core into graph com-
ponents (maximal subsets of nodes
in which every node pair is connected
by a network path).Whereas the 2-core
formeda single graph component in all
three interconnections, the nodes in
the3-corewereorganized intomultiple
graph components (3, 11, and 52 com-
ponents for the Texas, the Western,
and theEasternnetwork, respectively),
which were connected sparsely with
each other by coreness 2 links. Because
of this structure, most secondary fail-
ures on links of coreness≥3were likely
caused by primary failures on the
surrounding links of coreness 2 that
disconnected a 3-core graph compo-
nentwithno internalpowergeneration
fromtheother3-core components.This
would make the links in these com-
ponents prone to repetitively undergo
secondary failures together. This ten-
dency of co-occurring failures (31) among vul-
nerable linkswould lead to higher A-vulnerability
for those links than for links with lower coreness.

Relating triggers and network states to
vulnerable lines

To characterize the lines at risk of primary fail-
ures, we now shift our attention back to indi-
vidual transmission lines connecting buses in each
snapshot, rather than their collective represen-
tation as links. For this purpose, we define a
“vulnerable” transmission line for a given snapshot
to be a line ‘ for whichpðpÞ‘ > 0:0005,with at least
95%Wilson’s confidence level (32) (which excludes
any line with a single failure in 1000 simulated

events). This approach for vulnerability analysis
is in contrast to previous studies on identifying
the line failure combinations that initiate large
cascading failures (25, 33). We then define the
vulnerable set V to be the set of all vulnerable
lines for the given snapshot. We found that
these vulnerable sets not only represented small
portions of the grid in each snapshot but also
exhibited considerable overlap across different
snapshots (although it was rare for the same line
to be vulnerable in all snapshots). These findings
are presented in Table 1 for each interconnection
using, respectively, the weighted average hjVji of
the number of vulnerable transmission lines over
all snapshots and the number jV∩j of lines that

were vulnerable in two ormore snap-
shots (relative to the number expected
if the vulnerable sets were randomly
distributed with no correlation). For
example, in the Texas interconnection,
hjVji ¼ 48 represents only about 0.6%
of all the transmission lines, and the
relative number of overlapping lines
jV∩j is 2.9 (details on the distribu-
tion of pðpÞ

‘ for individual snapshots
can be found in fig. S7).
Having a small portion of the grid

vulnerable to cascading failures does
not imply that these failures stayed
localized even for single snapshots.
To quantify the degree to which cas-
cades were localized, we used the
concepts of topological distance (the
number of links along the shortest
paths in the network) and geograph-
ical distance (the arc length along
the Earth’s surface), both normalized
by the size of the triggering region
measured by the respective distances
and thus are unitless (supplementary
materials, materials andmethods).
Specifically, the extent of the vulner-
able set was measured by d v‐v and
gv‐v, defined as the normalized topo-
logical and geographical distance, re-
spectively, between two transmission
lines, averaged over all pairs of lines
in the vulnerable set. We further
defined hd v‐vi and hg v‐vito be the
weighted average of d v‐v and g v‐v,
respectively, over all snapshots. As
shown in Table 1, for the Texas and
Western networks, both hd v‐vi and
hgv‐vi are comparable with the size
of the interconnection, revealing that
the spreading of cascades is nonlocal
[which is consistent with observa-
tions fromhistorical data (34), power
flow calculations (35), and abstract
models (36,37)]. Inall cases,hd v‐vi < 1
andhgv‐vi < 1 hold true in theEastern
interconnection, where cascades
were actually triggered in a local
region and could have, in principle,
spread widely to the other regions
within the interconnection, leading
to hd v‐vi > 1 or hg v‐vi > 1. This sug-

gests that there is also an aspect of the cascading
failures that is local: The propagation of failures in
general does not extend too far from the region
being perturbed.
The analysis of vulnerable sets provides relevant

insights not only into the origins of cascading
failures but also into the size of the damage
inflicted on the network by individual cascades.
In particular, what is the difference between the
perturbations that cause large cascades and those
that donot?Toanswer this questionquantitatively,
we categorized cascades according to their sizes
measured by the power shed Ps defined above:
small cascades (0.01 MW ≤ Ps < 300 MW) and
large cascades (Ps ≥ 300 MW). This choice of
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Fig. 3. Vulnerability of the power grid on a density-equalizing map.

(A) Each pixel is color-coded by the average A-vulnerability hp‘ i, including
both primary and secondary failures, over all links connected to nodes
in the area of the pixel. The cartogram was generated by using the
diffusion-based method in (41) to equalize the density of nodes
(supplementary materials, materials and methods) and is limited to
the U.S. portion of the network. Color gray marks the pixels with zero
average A-vulnerability. (B and C) Same as in (A) but color-coded
separately for (B) the average A-vulnerability to primary failures hpðpÞ

‘ i
and (C) the average A-vulnerability to secondary failures hpðsÞ

‘ i.
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measure and threshold is based on the NERC
requirement that all blackouts causing more
than 300 MW of lost power be reported. We
characterized perturbations by three different
measures based on (normalized) distances: dt–t,
defined as the average pairwise distance among
the nt triggering line failures, as well as dt–v and
gt–v, defined as the minimum topological and
geographical distances, respectively, from one
triggering line failure to the vulnerable set V .
The average of these distances over cascades in
each size category (dt‐t,dt‐v, andgt‐v) is shown in
Fig. 5 for each region. Cascades resulting in
power shed Ps ≥ 300MWwere associatedwith a
set of triggering line failures that were topolog-
ically closer to each other (Fig. 5A), as well as
with triggering failures that occurred topolog-

ically and geographically closer to a vulnerable
line (Fig. 5, B and C).

Conclusions

Our vulnerability analysis of a continent-wide
power system distinguishes itself from most
previous studies by its scale but also by account-
ing for (i) the physics of cascading failures (dc-
approximated power flow redistribution and
heating of line conductors); (ii) grid operation
practices (generation reserves and power shed-
ding); and (iii) a wide range of conditions across
years, seasons, and power demand levels (over
which the average cascade size varies by one to
two orders of magnitude). A strength of our ap-
proach is that it consists of tools—the definition
of vulnerable sets, the method for aggreating

multiple network conditions, and the analysis
of coreness-vulnerability correlations—that are
applicable to any cascade-prone network.
Our analysis separates the set of all failures

occurring in cascade events into primary fail-
ures, which define the vulnerable set and account
for only 1/5 of all failures, and secondary fail-
ures, which are more uniformly distributed and,
albeit more numerous, are a mere consequence
of the primary ones. The vulnerable set is not
only surprisingly small but also highly skewed—
with few lines far more likely to undergo a pri-
mary failure than the others—and patchy even
when we control for the heterogeneity in the
geographic organization of the grid. Although
the vulnerable set is widespread through the
network, the portion of it recruited in each cas-
cade is not and is in fact strongly spatially cor-
related with the location of the triggering line
failures; this is counter to the perception that
cascades [for being nonlocal with respect to
both topological and geographical distances
(31, 38)] can spread essentially without spatial
constraints.
Our analysis also shows that larger cascades

are associated with co-occurring perturbations
that are closer both to each other and to the vul-
nerable set. This validates the existing hypothesis
that localized triggering failures amount to bigger
cascades (39) and reveals a striking relation to the
classic threshold model (4) used to describe be-
havioral cascades in social systems, in which large
cascades tend to be triggered by perturbations
adjacent to the set of “early adopters.” This set
corresponds to the nodes most susceptible to
change and thus plays a role similar to the one
the vulnerable set plays in our analysis. The net-
work topology emerged as a significant factor
in determining the risk of cascading failures in
our analysis based on the k-core decomposition,
which has also been used to characterize nodes
that serve as efficient spreaders in contact-based
processes (40).
There are never two identical cascades in a

network. It may thus come as a surprise that
(primary) failures in large cascades are constrained
to only a small subset of the network, which will
likely experience new failures in the absence of
remediating actions. This offers a scientific foun-
dation for failure-based allocation of resources,
which in the case of a power grid would be based
on prioritizing upgrades of the system on the
basis of previous observed failures (14)—but
only if those are the primary (as opposed to all)
failures (although upgrading transmission line
capacities in the vulnerable set could create new
vulnerable lines outside the set). Future work
will be needed to determine the extent to which
this applies to other flow networks that are sub-
ject to repeated failures, such as supply chains,
food webs, and traffic networks.

Methods summary

For each interconnection, the systemwasmodeled
as a network of buses connected by transmission
lines, given the parameters of individual network
components in a given snapshot. The triggering
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Fig. 4. Characterization of vulnerability through k-core decomposition. (A) Coreness-based
network visualization, where nodes with higher coreness are placed closer to the center. (B)
Visualization of the k-core decomposition of the Eastern interconnection, showing (left) all the links
in the network, (middle) only the links with nonzero A-vulnerability to primary failures (

�
pðpÞ
‘

�
> 0),

and (right) only the links with nonzero A-vulnerability to secondary failures (
�
pðsÞ
‘

�
> 0). The bars

underneath show the distribution of link coreness, color-coded as in (A). (C) Fraction of links with�
pðpÞ
‘

�
> 0 among all links of a given coreness. (D) Average of

�
pðpÞ
‘

�
over all links of a given coreness

with hpðpÞ
‘ i > 0. (E and F) Counterparts of (C) and (D), respectively, for secondary failures.
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perturbationswere chosenuniformly fromall lines
for the Texas andWestern networks, whereas for
the Eastern network, theywere chosen uniformly
within one of the six regions defined by NERC
(Fig. 1A and table S2). The initial state of the
network and the redistribution of power flow af-
ter a line removalwere both calculated by solving
an equation that expresses a balance between in-
coming and outgoing power flows at each bus.
Through a temperature-evolution equation, the
heating of a transmission line was modeled as
an exponential convergence to the equilibrium
temperature determined by the power flow over
that line.Mechanisms responsible for the primary
failures occurring in a given simulated cascade
were identified by using an algorithm we devel-
oped to determine the degree towhich the change
in each generator’s output contributes to changes
in individual line power flows.
The density-equalizing transformation used

to generate Fig. 3 was determined by estimating
the density function for the geographical distri-
bution of nodes and evolving it to a uniform-
density equilibrium through a linear diffusion
process (41). The topological and geographical
distances between two transmission lines are
defined based on the corresponding distances
between the buses they connect. Both distances
are thus zero between two lines that connect to a
common bus. Further details on the formulation
of the power flow equation, triggering perturba-
tions, temperature evolution equation, validation
of the cascade dynamics model against historical
data, calculation of the density-equalizing trans-
formation, algorithm for assigning power flow
changes to generators, and the definitions of bus-

to-bus distances are all given in the supplemen-
tary materials.
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Fig. 5. Cascade size and distances involving triggering line failures. (A to C) Three types of
(normalized) distances are shown for each NERC region (Fig. 1A and table S2): (A) the mean
pairwise topological distance between the triggering failures, (B) the topological distance between
the set of triggering failures and the vulnerable set, and (C) the geographical distance between
the set of triggering failures and the vulnerable set. The distances are averaged separately over
large cascades (blue, Ps ≥ 300 MW) and over small cascades (red, 0.01 MW ≤ Ps < 300 MW).
In each case, the distances are further averaged over all snapshots. Error bars mark the estimated
standard deviation.
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