ECS 120 Final — Spring 2014

First name		LAST NAME:	
Seat row:	Seat #:	Student ID #:	
Signature:			

I solemnly swear that I am the above student, and that the work of this exam is entirely my own.

Hints for success:

Fill out everything on this page except for the scores. Read the questions carefully; they might not ask what you expect. If you don't understand what a question means, please ask. Make your writing legible, logical, and succinct. Write in grammatical English. Be mathematically rigorous. If a definition is requested, use the definition given in class or your text, not something equivalent. Some abbreviations:

$A_{\text{TM}} = \{ \langle M, w \rangle : \text{TM } M \text{ accepts } w \}$
CFG = context free grammar
CFL = context free language
CNF = Chomsky normal form
DFA = deterministic finite automaton
NFA = nondeterministic finite automaton
NTM = nondeterministic Turing machine
PDA = pushdown automaton
TM = Turing machine
r.e. = recursively enumerable = Turing Acceptable
co-r.e. = the class of languages with r.e. complements
rec = recursive = decidable

Who	is	Kim	Kard	ashian?

Who is Edward Snowden?

Who is **Stephen Hawking**?

Yes, you really do need to answer the three questions above (or say "I don't know").

On page	you got	out of
1-2		60
3		25
4		30
5		30
6		30
Σ		175

1 True or False

Indicate if the following statements are true or false, by **filling in** (darkening) the correct box. Do not provide any justification. If in doubt, **guess**; missing answers will be treated as wrong.

1.	True False	Every set is a language.
2.	True False	The union of infinitely many regular languages is decidable.
3.	True False	If L is regular then so is $\{xx: x \in L\}$.
4.	True False	If L is regular then so is $\{xy: x, y \in L\}$.
5.	True False	The Myhill-Nerode Theorem can be used to show a language not regular.
6.	True False	Let $A = \{1^{2^i}: i \ge 0\}$. Then A^* is regular.
7.	True False	$\{w \in \{0,1\}^*: w \text{ has an equal number of 01's and 10's} \}$ is regular.
8.	True False	For every number n, the language $L_n = \{0^i 1^i : i \leq n\}$ is regular.
9.	True False	If some 10-state NFA accepts L then some 100-state DFA accepts $L.$
10.	True False	If $L_1 \cup L_2$ is regular then L_1 and L_2 are regular.
11.	True False	If A is regular and B is context free then $A \cap B$ is context free.
12.	True False	Every subset of a context free language is regular.
13.	True False	If L is context free then L^* is context free.
14.	True False	If a CFG G is in CNF, then G is <i>not</i> ambiguous.
15.	True False context free.	If A and B are regular then $\{xy \mid x \in A \text{ and } y \in B \text{ and } x = y \}$ is
16.	True False regular expressi	There exists an algorithm to decide if a regular expression α is a shortest on for $L(\alpha)$.
17.	True False language.	There's a polynomial time algorithm to decide if two DFAs accept the same
18.	True False	The pumping lemma for CFLs is useful for showing languages context free.
19.	True False of the infinite set	The rules (productions) of a CFG $G = (V, \Sigma, R, S)$ are an <i>arbitrary</i> subset et $V \times (V \cup \Sigma)^*$.
20.	$\begin{tabular}{ c c c c }\hline True & False \\ L is context free \\ \hline \end{tabular}$	Given $h: \Sigma \to \{0, 1\}^*$, define $h(L) = \{h(a_1) \cdots h(a_n): a_1 \cdots a_n \in L\}$. Then e if and only if $h(L)$ is context free.

- 21. **True False** The intersection of CFLs is a CFL.
- 22. |**True** | **False** | There's a polynomial time algorithm to decide if a string w is in the language of a CNF CFG G.
- 23. **True False** There's a polynomial time algorithm to decide if two CFGs generate the same language.
- 24. **True False** If L^* is recursive then L is recursive.
- 25. |**True**||**False**| A language *L* is either r.e. or co-r.e..
- 26. **True False** The decidable languages are closed under complement.
- 27. **True False** The r.e. languages are closed under complement.
- 28. **True False** Exploiting the power of guessing, nondeterministic Turing machines can decide language A_{TM} .
- 29. **True False** A Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, as defined in class, can output a uniformly random bit $b \in \{0, 1\}$ and then halt.
- 30. **True False** A Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, as defined in class, can be designed such that it visits every tape cell infinitely often.
- 31. |**True**||**False**| If $A \leq_{m} B$ and $B \leq_{P} C$ then $A \leq_{m} C$.
- 32. **True False** If $A \leq_{\mathrm{m}} B$ and A is decidable then B is decidable.
- 33. |**True**||**False**| If A is decidable then $A \leq_{\mathrm{m}} \{1\}$.
- 34. **True** False If $L_1 \in \mathbf{P}$ and $L_2 \in \mathbf{P}$ then $L_1 L_2 \in \mathbf{P}$.
- 35. |**True**|**False**| A polynomial-time algorithm is known to decide if a graph G has a clique of size k.
- 36. **True False** Every language in NP is decidable.
- 37. |**True**||**False**| If $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{NP}$ then $L_1 \cup L_2 \in \mathbf{NP}$.
- 38. **True False** NP stands for *non-polynomial time*; it contains all the decidable languages outside of **P**.
- 39. |**True**||**False**| Suppose $A \leq_{\mathbf{P}} B$ and $A \in P$. Then $B \in \mathbf{P}$.
- 40. **True False** If there's a polynomial time algorithm to decide if a boolean formula ϕ is satisfiable then there's a polynomial time algorithm to decide if a graph G has a 3-coloring.

2 Language Classification

No explanation is required. If in doubt, **guess**; missing answers will be treated as wrong.

1.	$\{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$	
2.	$\{\langle G \rangle : \ G = (V, \Sigma, R, S) \text{ is a CFG and } L(G) = \emptyset\}$	
3.	$\{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}$	
4.	$\{\langle G \rangle : G \text{ is a CFG and } L(G) \text{ is infinite}\}.$	
5.	$\{\langle M \rangle : M \text{ is an NFA and } L(M) = \{0,1\}^*\}$	
6.	$\{\langle M, w \rangle : M \text{ is a TM and } M \text{ rejects } w\}$	
7.	An undecidable language L for which $L \leq_{\rm m} A_{\rm TM}$.	
8.	{d: the digit $d \in \{0, 1,, 9\}$ appears infinitely often in the decimal real number π }.	epresentation of the
9.	$SAT = \{\phi: \phi \text{ is a satisfiable Boolean Formula}\}$	
10.	${p: p \text{ is a polynomial (with integer coefficients, in any number of variation integral root.}$	ables) and p has an

3 Short Answers

1. List, in order (a < b < c), the lexicographically first four strings in the language of the following NFA:

2. State the Cook-Levin Theorem.

- 3. A **PDA** $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ has |Q| = 10 states and $|\Sigma| = 2$ characters in the input alphabet and $|\Gamma| = 5$ characters in the tape alphabet. Then there are points in the domain of δ . (Answer is a number.)
- 4. Let $L = \{a, ab\}$. Let \sim_L be the equivalence relation associated to L by the Myhill-Nerode theorem. Then \sim_L has equivalence classes. (Answer is a number.) (No justification is required or will be looked at, but here is some space if you need it.)

5. If $G = (V, \Sigma, R, S)$ is a CNF (Chomsky Normal Form) CFG and hello $\in L(G)$, how many steps (rule applications) will it take to derive x from S? (Answer is a number.)

6. Complete the following definition: A context-free language L is **inherently ambiguous** if ... (Do not use the word "ambiguous" in your definition.)

7. Complete the following definition:

Given languages A and B, we say that $A \leq_{P} B$ if:

8. Complete the following definition:

A language L is in **NP-complete** if:

9. Let $L = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ contains a palindrome}\}$. (Recall that a string x is a palindrome if it reads the same forward and backward: $x = x^R$.) Use an NTM to explain why L is r.e..

10. When we define the language $A_{\text{TM}} = \{ \langle M, w \rangle : \text{TM } M \text{ accepts } w \}$, what is the purpose of the **angle brackets** (the $\langle \rangle$ symbols) that surround M, w?

11. Let $F = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite}\}$. Prove that $A_{\text{TM}} \leq_{\text{m}} F$. I'll start you out. We want to map $\langle M, w \rangle$ to $\langle M' \rangle$ by a Turing-computable function f in such a way that M accepts $w \Rightarrow L(M')$ is finite and M doesn't accept $w \Rightarrow L(M')$ is infinite. To accomplish this, we will have M', on input $x \in \Sigma^*$, behave as follows:

Now we need to show that the construction works. To do so, we observe that:

- If M accepts w then L(M') is
- If M doesn't accept w then L(M') is

where N is the number of steps it takes M to accept w. (Don't say "finite" or "infinite"; be specific.)

- 12. A graph G = (V, E) is *k*-colorable if there is a way to paint its vertices using colors in $\{1, 2, 3, ..., k\}$ such that no adjacent vertices are painted the same color. Let *k*COLOR be $\{\langle G \rangle: G \text{ is } k\text{-colorable}\}$. The language 3COLOR is NP-Complete. (You can assume this.) Use this to prove that 4COLOR is NP-Complete. I'll start you out:
 - First we must show the "easy" part, that $\$. This is true because one can guess the four coloring of G = (V, E) and then verify it's validity.
 - Now for the reduction: we must show $\[\] \leq_{\mathbb{P}} \[\] \leq_{\mathbb{P}} \[\] \]$. To show this, map G = (V, E) to G' = (V', E') = f(G) by saying that

To show this reduction correct, observe that:

- ٠
- ٠

and