
1

ECS 120 Lecture Notes
Phillip Rogaway

• Started: Fall 2012 (a TR class), based on notes from many prior years
• Last Revised: Spring 2023 (a MWF class)

Lecture 1.M

Today
 o General comments
 o Three example problems
 o Formal-language theory [which we didn’t get to]

Announcements
 o Course information is on the WWW (not Canvas)
 o Quiz 1 on Friday
 o First non-homework not-due on Friday

General comments

Introduce the TAs: Fatima and Sasha

Running class differently from the way I have in past years:
 No graded homeworks.
Discuss why I made this choice, and that fact that there will be homeworks distributed (or should
I say non-homeworks?), which the TAs will discuss.

For your grades, I am replacing homeworks and the midterm(s) with
 Friday quizzes
About 10 mins. Probably 9 of them.

Read the course-information sheet!

Also different from usual:
 Probably the last time I will teach this class
(or, for that matter, teach any class at UCD). Feels sad.
Associated to this, I hope to teach a somewhat more relaxed, less frenetically paced class than I
usually do. Ask me lots of questions to ensure that that happens.

Three example problems

1) GENERAL DIOPHANTINE EQUATION – Hilbert’s 10th question
Does a polynomial P(x1, …, xn) / Z have an integer zero? Find it, or say that there is none.

2

Eg: 9x2 + 12x3 = 1000 no, 3 divides LHS, not RHS
 x2 + 2xy - x3 = 13 no, factor out an x to give x(x+2y-x2) = 13,
 whence x must be ±1 or ±13 (we are working over Z), all of which
 force non-integral values for y,
 x2 + 2xy - x3 = 8 yes, x=2, y=3

 Impossible: [Yuri Matiyasevich 1970] (PhD thesis) (age 22)

Yuri Matiyasevich utilized a method involving Fibonacci numbers in order to show that
solutions to Diophantine equations may grow exponentially. Earlier work by Julia Robinson,
Martin Davis and Hilary Putnam had shown that this sufficed to show that every computably
enumerable set is Diophantine.

2) PERFECT MATCHING

Given a graph of who likes whom, can we match people up into two-people per dorm room such
that everyone likes their roommate? Assumes, however unrealistically, the “liking” is
symmetric.

Yes No

Easy: [Jack Edmonds, 1965]. Problem is in P (it has a polynomial-time solution). The Blossom
algorithm O(n2 m). Improved to O(n0.5 m) by [Micali, Vazirani (1980)

3) PARTITION INTO TRIANGLES

Same as above – but now the graph represents who likes whom, and we ask if we can find an
assignment of people to dorm rooms where everyone likes their roommates.

Answer is No in both examples above – see why. Then make up an example where the answer is
Yes, by starting with a union of distinct triangles and then adding in some extra ages.

3

All of the above phrased as decision questions. We could also have phrased them as search (or
compute-the-right-value) questions: find an integer root or determine that none exists; find a
perfect matching or determine that non exists; find a partition into triangles or determine that
none exists. It doesn’t much matter; the problem have essentially the same difficulty.

 Search: Compute a “best” solution to some problem
 Decision: Just yes/no

We will usually focus on decision. Why?

1) Simplifies things
2) Often (but not always), the search question reduces to the decision questions (explored in a

homework)

That’s all we got to. Some comments that I don’t think I got to make follow:

How we will proceed:

- Define some sort of model of computation
- Investigate it
- Repeat

Models should be technology-independent

 Necessary to make a “robust” theory

Topics
 0. Automata Theory (warms us up for (1) and (2))
 1. Computability (what separates Problem #1 from problems #2 and #3)
 2. Complexity theory (what separates Problem #2 and Problem #3)

Lecture 1.W

Today
 o Language-theoretic vocabulary
 o Operations on strings and languages (except we didn’t actually get to languages)

Announcements
 o Quiz 1 on Friday
 o First non-homework not-due on Friday

Language-theoretic vocabulary

Def: An alphabet is a finite nonempty set.
Its elements are called characters, or symbols.

4

Usually denote an alphabet using symbols Σ or Γ.

Eg:

• Σ = {0,1}
• Σ = {1}
• Σ = {a, b}
• Σ = {0,1,…,9}
• Σ = {a,…,z}
• Σ = ASCII, |Σ|=128

Νο:

Σ = N
Σ = ∅

Def: A string is a finite sequence of characters drawn from some alphabet Σ.
 (more formally, a string x can be regarded as a pair
 (n, f) where n ≥ 0 is a number and a function f:[1..n] Σ names the characters.

Ex: x=010
 x=abbabab
 x = hello there
 x=ε (the empty string – the unique string of length 0)

Can you tell what is Σ from looking at the string? NO. You only know that it contains at least
the characters used in the string.

Strings and decision questions:

 +-------+
 | | / accept
 x --------> | M |+
 | | \ reject
 +-------+

• Strings are how we ask our questions – we encode them as strings.
• Strings are one way of returning answers – say YES or NO …. Or respond with a

string that gives more information, like encoding an integer or an approximation of
a real number

• Strings are also how we code our programs – a program can be considered a big
long string.

• To a computer scientist … the book you are reading is a string
• The DVD you just watched is a string
• The contents of my computer can be encoded in a big long string
• Your genotype is a string – a sequence of characters from a 4-letter alphabet.

5

Not really an exaggeration to say that theoretical computer scientists think of everything of
interest as being encoded as a string. But are there important things that can’t be encodes as a
string??

Operations on strings

Strings:

- concatenation. Forms a monoid (operator; associative & unit. But no inverse)
 Write as °, but often suppress.

- Squaring, raising to the n. What should we define x0 to be? Want xa+b=xa xb
- Equality testing
- Length, | . |
- Substring extraction. Beware of different conventions.

 x[a..b] means, for me, the a-th character until the b-th, inclusive,
 with indexing starting at 1. So abcdefg[1..3] = abc
 But in Python, say, a different convention is used for substrings, with
 abcdefg[1:3] = bc (note: not quite legal python; you would need quotes around
 abcdefg to make it a string an not a variable)

- Reversal, xR

Lecture 1.F

Today:
 o Quiz 1
 o Languages and operations on them

Announcements
 o Quiz 1:10 – 1:20 pm. Clear your desk of stuff. Don’t sit next to someone you know.

 F r o n t o f c l a s s

 * * * defn of “next to”

 * You *

Def: A language is a set of strings, each drawn from the same underlying alphabet Σ.

L = {big, black, dog}
L = {1, 111, 11111, …} = {1n: is odd} Not closed under concatenation. It grows
L = {ε, 11, 1111, …} = {1n: is even}. Closed under concatenation
L = {ε} not the same as:
L = ∅
PRIMES = {1p: p is prime}
PRIMES10 = {2,3,5,7,11,13,17,…}
L = {all English sentences} I don’t like this one – not a precise enough description
Lw = {all strings that ChatGPT could respond when asked question w.

6

L = {d: d is the millionth digit of the decimal expansion of π
 (digit 1000000 of 314159…)} I don’t mind this
L = {d: d is a digit that appears infinitely often in the decimal representation of pi}

Not langugaes:
ε {{ε}} N (the set of natural numbers)

Languages can be finite or infinite (the more “interesting” ones for us are infinite).

Describe the relationship between languages and decision procedures

 +-------+
 | | / accept
 x --------> | M |+
 | | \ reject
 +-------+

 L = L(M) = the set of all strings that M “accepts”

Describe M as partitioning the world into two sorts of strings – those that it accepts, and the rest.

THESIS: By understanding languages we understand (a lot about) computation.

Operations on languages

Languages

- Concatenation, A B = {xy: x ∈ A, y ∈ B}, What is L ∅ ? What is L {ε}
- L2 = L L
- Raise to the n. Definite it recursively: Ln = L Ln-1

 What should we define L0 to be?
- Do we have La+b=La Lb
- LR.

 w is a palindrome if w=wR.
 L is a palindromic1 if L = LR.
 L is a palindromic2 if it contains only palindromes
 same?

-
- More generally, if f is a map from strings to strings,

we can extend it pointwise to languages,
f (L) = { f(x): x∈L}

- L+
- L* Kleene closure, *. Definite it both recursively and iteratively.

We didn’t actually get to this on Friday; first thing Monday, I suppose

7

Lecture 2.M

Today
 o Finish operations on languages, including Kleene closure
 o Defining the regular languages

If L is a language then

 L+ = {x1

… xn: xi ∈L, n >0
 = L ∪ L2 ∪ L3 ∪ ...
where
 : n = L Ln−1 for n>0.
 L1 = L
so L+ = ∪n ≥1 Ln

 L+ = The smallest language that contains L and is closed under concatenation

If L is a language then
 L*={x1… xn: xi ∈L, n >=0}. When n=0 we mean ε
 = L0 ∪L1 ∪ L2 ∪ L3 ∪ ...
 = The smallest language that contains ε and L and is closed under concatenation

where Ln = L Ln−1 for n>0.
 L0 = {ε}
so L* = ∪n ≥0 Ln

T/F: L* contains ε, but L+ does not. False.
T/F: ∅ *=∅ . False: ∅ *= {ε} .
T/F: L* is infinite. False. What are the exceptions?

Def: A class is a collection of languages.

Eg: the finite languages.
 Formally specified programming languages
 And the regular languages, which we are abut to define.

Regular languages

8

Definition. Let Σ be an alphabet.
The regular languages over Σ are the following:

1) {ε}, ∅, and {a}, where a∈Σ are all regular languages;
2) If Α and Β are regular languages, then so are

a. A B
b. A ∪ B
c. Α∗

Said compactly: “the smallest set of languages containing {ε}, ∅, and {a} and closed under
concatenation, union, and star.

Regular languages are conveniently denoted by regular expressions:

Def: The regular expressions over Σ are the following:

1) ε, ∅, and a∈Σ are all regular expressions;
2) If α and β are regular expressions, then so are

a. (α o β)
b. (α ∪ β)
c. (α∗)

Example: {a, ab} is regular. Explain why.
Example: Every finite language is regular. Explain why

Lecture 2.W

Today:
 o The language of a regular expression
 o DFAs

Announcements: - Regrades for Q1 open
 - Q2 on Friday

Review definition of regular expressions. Then define the language of a regular expression:

Def: Fix an alphabet Σ.

1) L(ε)={ε}, L(∅)=∅, and L(a) = {a} for all a∈Σ
2) If α and β are regular expressions, then so are

a. L((α o β)) = L(α) L(β)
b. L((α∪β)) = L(α) ∪ L(β)
c. L((α∗)) = (L(α))*

Examples:
 (1∪2) ((1∪2)*) ((1∪2)*) o (1*) (∅∪ε)o (∅*)

9

Not regular expressions as defined above:
 1* (0∪1)* apple ∪ fig ∪ adam

We establish conventions so that the above are regarded as regular expressions: add parenthesis
only “as needed”, grouping left to right. To resolve ambiguity: group left-to-right;
 * binds more strongly than concatenation;
 Concatenation binds more strongly than union;

That is, the understood precedence is * then o then ∪

Concatenation symbol routinely omitted.

The L(.) is also routinely omitted, eg, L = (0∪1)*

01* = {0,01,011,…}
apple* ∪ fig* = {fig, figg, apple, figgg, applee, …}

Exampled:

1. All strings over {0,1}
 {0,1}* or (0 ∪ 1)

2. Strings that have three consecutive a’s over an alphabet of a’s and b’s

 (a ∪ b)* aaa (a ∪ b)*

3. Strings that start and end with the same bit – over the binary alphabet
 0(0 ∪ 1)* 0 ∪ 1(0 ∪ 1)* 1
Hmm, that’s not right, need to include 0 and 1:
 0(0 ∪ 1)* 0 ∪ 1(0 ∪ 1)* 1 ∪ 0 ∪ 1

Do we need to include ε? Not clear: does the empty string start and stop with the same
character? One might say that the English is ambiguous on that.

One approach to defining interesting classes of languages: explain some sort of machine, and
consider the languages accepted by that machine.

DFAs

 x BOX M 1 (if x in L) or
 for deciding L 0 (if x not in L)

Example of a first kind of machine – a DFA.
Deterministic Finite Automata (singular: automaton).

10

Describe the “meaning” of each state – “I’ve just seen a …”
Introduce L(M) notation.

L = {w∈{0,1}*: w contains a “111”}
 = {0,1}*{111}{0,1}|*
 = (0∪1)*111(0∪1)*

00
0, 1

0

1 11

L = {0,1}*{111}{0,1}*

Can we make due with fewer than four states?

L (M) = {w∈{0,1}*: w is a binary string containing an odd number of 1’s}

1

1

0 0

Lecture 2.F

Today: o Q2
 o More practice with DFAs and regular expressions
 o Formal definition for DFAs and their language
Announcements:

- Drop deadline is today

Different ways to look at L(M):

1. Decision making device
2. Generating device
3. Not a device—just talk about the existence of paths

L(M) = {w∈{a,b}*: w ends in an “a”}

a

b

b a

L(M) = {w∈{a,b}*: w starts and ends with the same character}. What about ε ?? Say it doesn’t
start and end with the same character.

11

b

a

a b

a

b

b a
a

b

L(M)= {1n: 6|n}. Assume an alphabet of {1}. Assume an alphabet of {0,1}.

1

1

1

1

1

1

0
0

0

0
0

0

0,1

We did this with 7 states. Is it possible to do it with 6?

L(M)= {1n: n is dividible by 6 or 7}. Assume an alphabet of {1}. How many states will you
need?

Getting formal:

Def: A DFA is a 5-tuple M=(Q, Σ, δ, q0, F) is a five-tuple where
 - Q is a finite non-empty set (“states”)

- Σ is an alphabet (“input alphabet”)
- δ: Q × Σ → Q is a function (“the transition function”)
- q0 ∈ Q is a state (“the start state”)
- F ⊆ Q (“the accept states”)

How to define if M accepts x?
Def: M accepts x if δ*(q0 x) ∈ F
Where we define δ* : Q × Σ∗ → Q by extending δ to all strings as follow

δ*(q, ε) = q
δ*(q, ax) = δ*(δ (q , a), x)

Can you think of a different way to do it? Draw picture.

 a x
 q ---> r ------->s

12

Proposition: δ*(q, xy) = δ*(δ*(q, x), y)

Proof: by induction on |x|. Omit, or HW exercise.

Basis: x=ε: δ*(q, y) = ? δ*(δ*(q, ε), y) = δ*(q, y)
Inductive step: Suppose δ*(q, x y) = δ*(δ*(q, x), y) if |x|=n. Show it’s true if |x|=n+1. Write
x=aw where |w|=n:
δ*(q, x y) = δ*(q, aw y)
 = δ*(δ (q , a), w y)
 = δ*(δ∗ (δ(q , a), w), y) inductive step
 = δ*(δ∗ (δ(q , a), w), y)
 = δ*(δ∗ (δ(q , a), w), y)
 = δ*(δ∗ (q , a w), y)
 = δ*(δ∗ (q , x), y)

Lecture 3.M

Today
 o Review definition of a DFA
 o Some closure properties of DFA-acceptable languages

Announcements:
 o This week’s quiz will be online – available Thursday noon to Friday noon

DFA definition
 Repeat the definition of a DFA as a 5-tuple M=(Q, Σ, δ, q0, F), and review definition of L(M)
for a DFA M. Language is DFA-acceptable if there is a DFA for which it is the language.

The sort-of-arbitrariness of definitional choices: suppose we make the state set [0..n-1]. State 0
is the start state. Then a DFA would be a machine M = (n, Σ, δ, F) with δ: [n] × Σ [n]. We
would define L(M) with little change, and the DFA-acceptable languages wouldn’t change at all.
You could summarize and say that there is very little significance as to whether we make Q an
arbitrary set or a specific set associated to the size of the machine. On the other hand: suppose
we allowed the state set to be infinite. Then everything changes! Now there will be a DFA for
any language. Changes everything … and in a way that makes the notion nearly meaningless.

Sometimes not clear at all. Like suppose I let the machine eat the input by going left or right,
backing up. Doesn’t change anything, but not at all obvious.

Closure Properties

13

Def: A language L is DFA-acceptable if there exists a DFA M s.t. L=L(M)
Def: A class is a set of languages
Write DFA for the class of DFA-acceptable languages.

We want to understand this class.

Closed under

 DFA Regular
complement yes ?
union yes yes
intersection yes ?
symmetric difference yes ?
concatenation ? yes
Kleene closure (*) ? yes
Reversal ? Yes

Fill in table.
 For union: do the product construction. First an informal description, then a formal

description. Then an example, maybe L(M)= { 1n: 3|n or 5|n }. Assume an alphabet of
{1}.

 For intersection: modify construction.
 Alternative for intersection (A ∩ B)c = (Ac ∪ Bc)c
 Difference A ⊕ B = (A − B) ∪ (B − A)

Lecture 3.W

Today
 o NFAs: notion/definition, closure properties, and the subset construction

 Announcements
 - Q3 to open tomorrow at noon

NFAs as machines with “defects” – either multiple outgoing arrows labelled by a given character
… or no outgoing arrows labelled by a given character. Also, epsilon-arrows.

What language should we say this accepts?

a a a

14

Say the alphabet is {a,b}. Asymmetry of definition: accepts when there exists an accepting path;
reject when there is no accepting path. More examples:

a a a

a, b

a

b

b

a

After introducing machines, reopen closure properties. Concatenation closure property. What
would be cool: Could do concatenation by just “concatenating” the machines, union by just
“unioning” them, star with back arrows and a new state to handle the epsilon-arrows. Described
all of these constructions and argue correctness. All before giving a formal definition.

 DFA Regular NFA
complement yes ? ?
union yes yes yes
intersection yes ? ?
concatenation ? yes yes
Kleene closure (*) ? yes yes
Reversal ? yes yes

If you want to understand something,
find multiple different-looking ways to characterize it.
 Works quite generally across math and CS …

Show constructions for all of the new yes entries in the table:
 Union, concatenation, *.
For *, maybe do it incorrectly first, letting students discover the problem.

15

ε

ε

If we had such ε-arrows, Iwe could show closure under concatenation and *, too.
Why don’t we just define a new kind of machine that permits such arrows.
As long as we’re relaxing things like this, let’s drop the “exactly one symbol from each element
of Σ, too” rule, allowing multiple arcs out of a state with a given label – or no arcs out of state
with a given label.

Example: Let’s do one more design, but with these new rules
 L(M) = { x∈{a,b}*: x ends in ‘aabbaab’}
 L(M) = { 1n: 3|n or 5|n }. Assume an alphabet of {1}.
 Now assume an alphabet of {0,1}.
 L(M)= {w∈{a,b}*: |w|≥4 and w starts and ends with the same pair of characters}

Lecture 3.F

Today
 o NFAs: formal definition
 o The subset construction (DFAs and NFAs accept the same languages)
 o Regular languages are again one in the same

 Announcements
 - Q3 over. Wow, you all do stuff last minute!

Formalization:
Def: An NFA M = (Q, Σ, δ, q0, F) is … where

δ: Q × (Σ ∪{ε}) → 𝒫𝒫 (Q)
 Book writes this Σε

Definition:
 An NFA M = (Q, Σ, δ, q0, F) accepts x
 if ∃ a1, …, an ∈Σ ∪{ε} and ∃ q1, …, qn ∈Q where

x = a1… an and
 qi ∈ δ(qi−1, ai) for all 1 ≤ i ≤ n and
 qn ∈ F.

M accepts x if δ*(q0, x) ∩ F ≠ ∅

16

L(M) = {x∈Σ*: M accepts x}

A language L is NFA-acceptable if there exists an NFA that accepts it

NFA = all the NFA-acceptable languages.

Alternative: define δ*: Q × Σ∗ → 𝒫𝒫 (Q)

• For S ⊆ Q, let E(S) = the smallest set containing S such that q∈S δ(q,ε) ∈ S.
• Allow δ to act on sets instead of states by saying that δ’(S, a) = ∪q∈S δ(q,a)
• Define

 / E({q}) if x = ε
 δ*(q, x) = |
 \ E(δ’(E({q}), a)) if x = ay for some a∈Σ, y∈Σ*

1

1

1

1

1

1

1

1

1

ε
ε

How to think about nondeterministic computation?

1. Existence of paths. Think in terms of paths: if there exists an x-labeled path from the
start state to a final state, you accept. If there exists no such paths, you reject. This
view isn’t very procedural. Could you actually fashion an NFA and run it on a string?

2. LEDs Given M, Could you build an NFA, of about the same size as M, from flip
flops and LEDs that would take an x and decide if x∈L(M)? YES Proof associated to
the subset construction.

T/F: If there exists a path from the start state to a non-final state, you reject.

17

Can you “run” an NFA?

Theorem: DFA = NFA That is, every NFA-acceptable language is DFA-acceptable.

Step 1: get rid of e-transitions. Illustrate how.
 (What does it mean no ε-arrows? δ(q, ε)=∅ for all q ∈ Q.)

Step 2: subset construction. Describe using LED-model. Product construction needs two fingers,
but subset construction needs an unbounded number of fingers which you can spread across the
board …) Figure out the correct final-state

Do example of subset construction

1

2

a

b

0
b

a

Maybe illustrate subset construction with
 (a,b)* ab
 L(M)= {1n: 2|n or 3|n }. Assume an alphabet of {0,1}.

 Convert this to a DFA. Represent as a table and then draw what the table
indicates as a DFA.

Now: what to do about ε-arrows?
Let’s eliminate them before we do the subset construction as defined above.
Example:

1

1

1

1

1

1

1

1

1

ε

ε1

1

18

More generally,

1) exhaustively add shortcuts:
2) Eliminate the ε-arrows

3) Adjust the final states:

a εε

a

 Finalize any state if there is a ε-path from it to a final state in the original NFA

In this way, no more ε-arrows.

How to write this down formally? Many students have problems with this sort of thing. Here,
we need a way to capture the set of states reachable from q by ε-arrows. This can be done as
follows:

• Given a DFA M = (Q,Σ,δ,q0,F) and a state q∈Q, let E(q) be the smallest subset of Q
such that (1) q ∈ E(q), and (2) if s ∈ E(q) then δ(s, ε) ⊆ E(q).

• Now, for (3): Let the new final states F’ of the machine M’ = (Q,Σ,δ,q0,F’) we are
constructing from M = (Q,Σ,δ,q0,F’) be F’ = {q∈Q: E(q) ∩ F ≠ ∅}.

• Extend E and δ to sets: E(S) = ∪s∈S E(s), δ(S,a) = ∪s∈S δ(s,a),
• For (1): δ(q,a) = E(δ(E(q),a))

Lecture 4.M

Today
 o Go over Q3
 o Regular languages are the DFA/NFA-acceptable languages
 o Proving that a language is not minimal … or not reguar

Are the regular languages NFA-acceptable? YES,
Answer (1): describe two proofs: (a) how to convert a regular expression into an NFA
acceptable languages. (b) Or the more abstract proof that the NFA-acceptable languages include
∅, {ε},{a} and are closed under union, concatenation, and *. The regular languages are the
smallest such set.

Are the NFA-acceptable languages regular? Also YES

Theorem: Every NFA-acceptable language is regular.

Hardest theorem so far. Really the first tricky proof. Show how to do it, by example, on

19

 L = {binary encoding of numbers divisible by 3}

 Conversion procedure:

1. First eliminate all e-arrows by protocol already described. Henceforth assume none.
2. Add new start state (no arrows into it) and new final state (no arrows out of it) and

definalize every other final state.
3. Repeatedly: select a state q other than the newly added start and final state, and

KILL(q)
4. Whenever you create parallel arcs with labels x and y, combine them to (x u y)
To KILL(q):

 For each pair p to q to r with the pq transition alpha, and q q labeled
beta and q r labelled gamma, make a pr arrow (alpha)(beta *)(gamma). When all
such shortcuts added, eliminate state q.

Big parentheses -- not to be covered this year: Minimizing DFAs and Myhill-Nerode

Remember PS1:

20

A
B

C
E

B C E F
≠

≠

≠
≠≠≠

G H

F
G

≠ ≠ ≠≠
≠ ≠≠

≠ ≠
≠

≠

≠≠

Another example (if needed):

A

D

B
C

E

B C D E F
≠ ≠

≠ ≠ ≠
≠

≠
≠

B

E

C

F

A

D

0 0

0

0

1
1

0
0

1
1

11

ACDF BE
1

1
0

0
And more examples:

0
q0

0

q2 q3
1

0
1

0, 1

1

q1 {0,1}* − {0,01}* q1

q0 q2

0

1

1

0,1

Every DFA partitions the universe of strings into L and its complement…

21

L

L

L2

L1

L3

Lp

Ls

Lr

Lq

Partition 2 Partition MPartition L

Let M = (Q,Σ,δ,q0,F) be a DFA. For simplicity, assume it has no unreachable states.
DFA M partitions Σ* into two sets: L(M) and its complement (Partition 2).
It also partitions it into n=|Q| sets – strings that take you to each state q ∈ Q: Lq={x∈Σ*:
δ*(q0,x)=q}.
Partition M. How do these two partitions related to one another? The second is a refinement of
the first.
Block L is just the union of blocks Lq where q is final; block LC is the union of blocks Lq where q
is nonfinal.

End of class last time was explaining something about regular languages

L

L

L2

L1

L3

Lp

Ls

Lr

Lq

Partition 2 Partition MPartition L

Let M = (Q,Σ,δ,q0,F) be a DFA. For simplicity, assume it has no unreachable states.
DFA M partitions Σ* into two sets: L(M) and its complement (Partition 2).
It also partitions it into n=|Q| sets – strings that take you to each state q ∈ Q: Lq={x∈Σ*:
δ*(q0,x)=q}.
Partition M. How do these two partitions related to one another? The second is a refinement of
the first.
Block L is just the union of blocks Lq where q is final; block LC is the union of blocks Lq where q
is nonfinal.
Finally, M – indeed L=L(M) – partition Σ* in the following interesting way:
 For any language L, define ~ by x ~ y iff ∀z, xz ∈L iff yz ∈L.
 Proposition: ~ is an equivalence relation.
How does partition L related to partition M? Partition M is a refinement of Partition L.

What is happening in our minimization procedure is to combine all the blocks of Partition M
until each of these is a block of partition L. The resulting DFA is the unique. What’s the DFA
corresponding to partition L?

22

Writing M = (Q,Σ,δ,q0,F) we have

 Q = [x]
 δ([x], a) = [xa]
 q0 = [ε]
 F = {[x]: x∈L}

Forced to define things this way. Must check that it is actually well-defined.

Myhill-Nerode Theorem (1958): L is regular iff ~ has a finite number of equivalence classes.
This number of equivalence classes is the number of states in a smallest DFA for L.
The structure of that DFA is unique (that is, the minimum-state DFA is unique up to the naming
of states).

Gives one way of showing that a language L is not regular: show that ~L has infinitely many blocks.
L = {anbn: n ≥0}. Claim: [an] and [am] are distinct if n ≠m. Why? Let z=bn. Then an z∈L but
am z ∉L.

Another way to say essentially the same thing: consider the infinitely many strings si = ai.
If, for any two of them, δ*(q0,a i)= δ*(q0,a j), i ≠j, then we have a problem: δ*(q0,a i b i) = δ*(q0,
a j b i), but one is in L and the other is not. This can be generalized:

Proposition: Suppose L is a language and s1, s2,… are distinct strings. Suppose for all si, sj there
exists x such that one of si x, sj x is in L and the other is not. Then L is not regular.

End Parentheses.

Lecture 4.W

Today:
 o Proving DFAs minimal
 o Proving languages not-regular
Announcements:
 - Dog day?

- Q4 on Friday. Back to in-class, is my assumption. Preferences?
- One more day on regular languages

Minimality of DFAs
Consider the language L = {16n: n >= 1}. Unary alphabets. What’s the smallest DFA (= fewest
states) accepting this? Draw the 6-state DFA that does. Claim: there is no smaller DFA that
accepts the same language.

Proof. Suppose for contradiction that some 5-state DFA accepted L. Consider the 6 strings
ε, 1, 11, 111, 1111, 11111, and the 6 corresponding states
δ∗(q0 ,ε), δ∗(q0 ,1), δ∗(q0 ,11), δ∗(q0 ,111), δ∗(q0,1111), δ∗(q0 ,111111).
By the PHP, some two of these must coincide. Do example of possibilities, like

23

 δ∗(q0 ,12) = δ∗(q0 ,14). Add two more 1s to each
 How many cases? C(6,2) = 6*5/2=15. But can do it systematically. If
 δ∗(q0,1a) = δ∗(q0 ,1b) for some 0 <= a < b <=5 then look at
 δ∗(q0,1a16-n) = δ∗(q0 ,1b16-b) = δ∗(q0 ,16)
 not in F in F

The existence of not-regular langauges

Some languages are not regular:
 L = {an bn: n >= 0}

Another approach, have seen before: pigeonhole principle. Review how it works. Now generalize:

The pumping lemma

Let L be a regular language. Then there exists a number p (“the pumping length”) such that
∀s ∈ L, |s|≥p,
 ∃ xyz, s = xyz, |y|≥1,
 ∀i |≥0, x yi z∈ L.

Give the usual proof …

Lecture 4.F

Today:
 o Q4
 o Practice showing languages not regular
 o Maybe start decision procedures involving regular languages

Announcements:
 - Dog day next Wednesday!

Pumping Lemma from last time
 (∀ L, regular)
 (∃ N)
 (∀ s ∈ L, |s| ≥ N)
 (∃ x, y, z s.t. s = xyz, y ≠ ε, |xy| ≤ N)
 // Add this side condition later, but then strengthen it as below
 (∀ i ≥ 0)
 x yi z ∈ L

24

Strong form of PL (stronger still than Sipser’s version)

(∀ L, regular)
 (∃ N)
 (∀ s1 s s2 ∈ L, |s| ≥ N)
 (∃ x, y, z s.t. s = s1 xyz s2, y ≠ ε)
 (∀ i ≥ 0)
 x yi z ∈ L

Gives you complete control of what “window” gets pumped: choose any string in L and choose
any length-N windows within that string, and you can be sure that the y-portion lives within that
window.

0) L = {an bn: n≥ 0}. Prove by PL. Use to motivate strengthened form of PL.
1) L = {x∈{a, b}*: x has an equal number of a’s and b’s} Then give a totally different proof,

using closeure properties.
2) L = {ww: w∈{a, b}*}. Let s = apb apb. (Show too that choices like ap don’t work)
3) L = {xy: x,y∈{a,b}*, |x|=|y|}. is regular
4) L = {x#y∈{0,1}*: x and y encode binary numbers with y one more than x}. No leading 0’s.

{0#1,1#10, 10#11, 11#100,…}. Pumping lemma.

Lecture 5.M

Today:
 o Some more practice with showing languages NOT regular
 o Decision procedures involving regular languages

Announcements:
 - Dog day on Wednesday.

- Last lecture on regular languages
-

A. Go over pumping lemma statement – basic form and then strengthened form
Emphasize use is for showing languages NOT regular, not for showing languages regular.
Because it gives a property of regular languages, not a characterization of them.

 If L is regular then L has property P
 The “pumping property” – a sort of periodicity property.
This periodicity property of a language: “all sufficiently long strings pump”.
When does a string s “pump”? It pumps if s can be partitioned into pieces s = xyz , |y|>0,
and all “pumped up” x y something z remain in L – and x z is in L, too.

T/F: if L has property P, the pumping property, it is regular.

25

Not the only way to show a language is not regular. Let’s revisit
L = {x∈{a, b}*: x has an equal number of a’s and b’s}
We proved it not-regular using the PL. Now do it from closure properties. Assume for
contradiction that L is regular. Then L ∩ a*b* would be, too, because regular languages are closed
under intersection. But this is just {an bn: n ≥ 0}, which we know to be not-regular.

How about

More examples:

• L = {x∈{a,b}*: x has an equal number of a’s and b’s} Prove by intersecting with a*b*.
• L = {ai bI: i ≤ I }. 1) PL: s= ap bp. Pump up within the a-portion. 2) Closure

properties: LR = {bI ai: i ≤ I }. Homomorphism: LH = {aI bi: i ≤ I }. Intersect L and
LH: L∩ = {ai bi: i ≥ 0}.

• L = {w ∈ {0,1} : w is not a palindrome }. Use closure under regular languages. hen what
we did last time.

• L = {w ∈ {0,1}: w has an equal number of 01’s and 10’s}. NO! 0* ∪ 1* ∪ (0+1+0+1+)+
∪ (1+0+1+0+)+

• L = {w ∈ {0,1,2}: ∗: w has an equal number of 01’s and 10’s}. First, intersect with
(012)*, leaving

 L’ = {(012)n (012) n: n ≥ 0). Now use PL on the string s = (012)p (012)p.
• L = {xy: x,y∈{a,b}*, |x|=|y|}. is regular
• L = {x#y∈{0,1}*: x and y encode binary numbers with y one more than x}. No leading 0’s.

{0#1,1#10, 10#11, 11#100,…}. Le

Decision questions:

1) Given a DFA M, is L(M)= ∅?
2) Given a DFA M, L(M)=Σ*?
3) Given an NFA M, L(M)=Σ*?
4) Given a regular expression α, is L(α)=Σ*?
5) Given a DFA M and a word w, is w∈L(M)?
6) Given a DFA M, is L(M) infinite? Same question for regular expressions.

26

Lecture 5W

 Dog Day!!

Today:
 o A couple more decision procedures
 o A whirlwind look at grammars

Decision procedures

A. Given DFA M1 and M2, is L(M1)=L(M2)?
B. Not a decision procedure: given two DFA, either determine that they accept the same

language or find a string that distinguishes them: it is in the language of one but not the
other.

C. Given regular expressions α1 and α2, is L(α1) = L(α2)?

Grammar-based characterization of the regular languages

S A 11

0

B 2S 0
0

1 0

1

S → 0S Variables (or symbols or non-terminals): S, A, B. Start symbol: S Terminals: 0, 1
S → 1A Rules (or productions) : 7 listed.
A → 0B Each has a left-hand-side and a right-hand side
A → 1S Whole thing is called a grammar G = (V, Σ, R, S)
B → 0A If we’re being totally general, R is any finite subset of (V ∪Σ) × (V ∪Σ)
B → 1B This grammar very simple: for each rule, the LHS
S → ε is a variable and the RHS a terminal and then a variable; or ε
 Such a grammar is called a right-linear grammar
Or, a bit more compactly:
S → 0S | 1A | ε
A → 0B | 1S
B → 0A | 1B

Proposition: The regular languages are exactly the languages that have right-linear grammars.

In a context-free grammar (CFG) the right-hand side can mix terminals and variables arbitrarily.
The left-hand side is still a variable.

27

Lecture 5F
Today:
 o go over Q5
 o finish grammars

Announcements:
 o Please indulge my curiosity & sign the attendance sheet today

Last time: described (general, unrestricted) grammars. Looked at a special kind of grammar, a
right-linear grammar, and we explained why they exactly characterize the regular languages.
 Given a DFA we turned it into a right-linear grammar
 Given a right-linear grammar, easy to turn it into an NFA

Definition: An (unrestricted) grammar is a 4-tuple G = (V,Σ,R,S) where

• V is a finite set (“variables”)
• Σ is an alphabet (“terminals”)
• R is a finite subset of (V ∪ Σ)* V (V ∪ Σ)* × (V ∪ Σ)* (“rules” or “productions”)
• S ∈V (the “start symbol”)

For prettier discourse, we write A α ∈R , or just A α, to mean that (A, α) ∈R.

Right-linear grammar: LHS: variable RHS: terminal variable or emptystring
CFG: LHS: variable RHS: string of terminals and variables
Unrestricted grammar: LHS & RHS are strings of terminals and non-terminals.
 But LHS should contain at least one non-terminal

S ε
S a S b

Show how to derive strings with this grammar, and that its language is

L(G) = {anbn: n ≥0}

• Another example: L(G) = {anbN: N > n ≥0}

S A B
A a A b | ε
B b | bB

Show derivations for strings, and corresponding parse trees.

Conventions: A,B,C,S,T … variables
 a, b, c, …, 0, 1, #, (,), … terminals
 x, y, α, β, strings of variables and terminal – sentential forms

28

Given a CFG G= (V,Σ,R,S), define a relation ⇒ on (V ∪ Σ)* (sentential forms), the yields, or
yields in one step, relation:

 x A y ⇒ x α y if A α ∈R

Let ⇒∗ Let (* over the ⇒; can’t do in word; henceforth be the reflexive-transitive closure of
⇒. (Formally define this.

L(G) = {x∈Σ∗: S ⇒∗ x} – the language of the CFG G.

L is context free if L=L(G) for some CFG G.

A string w is ambiguously derived if there are two parse trees (or two leftmost derivations) for it.
A CFG G is ambiguous if it there is some string that is ambiguously derived.

Ambiguity usually regarded as a “bad” property of a CFG (and a worse property of a CFL).
Dangling if-then-else problem.
A grammar being ambiguous is usually consider a defect of the grammar. Dangling if problem:

if B then if B’ then S1 else S2

A grammar being ambiguous is usually consider a defect of the grammar. Dangling if problem:

if B then if B’ then S1 else S2

Make two parse trees for this.

Exercise: design a CFG for

• L(G) = {anbN: N > n ≥0}

S A B
A a A b | ε
B b | bB

Exercise: What is the language of the following CFG:

S ε | AA
A AAA | a | b A | A b

Claim: it’s {w ∈{a,b}*: w has an even # of a’s}

L is context free if L=L(G) for some CFG G.

A machine characterization of CFLs: PDAs:

Draw a picture: stacks grow “up”.
Formal definition: M = (Q,Σ,Γ,δ,q0,F) where Q is a finite set, Σ,Γ are alphabets, q0∈Q, F⊆Q, and

29

 δ: Q × Σε × Γε → P(Q × Γε)
Informally describe operation of machine for L = {0n1n: n ≥0}. Then draw the picture.

Theorem: The PDAs accept exactly the context-free languages.

Proof. We will do only one direction: every CFL G = (V,Σ,R,S) has a PDA M = (Q, Σ, Γ ,δ, q0, F)
that accepts it.

Example: Convert the grammar you came up with for

L(G) = {anbN: N > n ≥0}

S A B
A a A B | ε
B b | bB

into an equivalent PDA.

Thm: There exists an efficient algorithm to decide if a string x in in the language of a CFG G.

 Called the CYK (Cocke–Younger–Kasami (CYK) algorithm, circa 1965-1970). A lovely dynamic
programming algorithm. Not going to cover this year.

30

The pumping lemma

A tool for showing a grammar not context free.

∀ CFLs L
 ∃ a number p
 ∀ s ∈L, |s| ≥ p
 ∃ u,v,x,y,z s=uvxyz, |vy|≥1, |vxy|≤ p,
 ∀ i ∈N, uvixyiz ∈ L.

Example:

• L = {ai bi ci: i≥ 0} is not context free. Draw picture, work out cases.

Corollary: the context free languages are not closed under complement.
Reason: Lc is context-free.

• L = {ww: w∈{a,b}*} is not context free. Draw picture, work out cases.
Here, try s = 0p1 0p1 and explain that it does not work.
Then use s = 0p1p 0p1p

More closure properties:

 Reg CFL
complement yes no
union yes yes
intersection yes no
concatenation yes yes
Kleene closure (*) yes yes
Reversal yes yes

• Counterexample to closure under intersection: {ai bi ci: i≥ 0} = {ai bi cj: i,j≥ 0 }∩ {ai bj

cj: i,j≥ 0 }

Prop: the intersection of a regular language and a context-free language is context free.

31

Lecture 6M
 o Review of Grammars
 o Turing machines

Review of grammars: A grammar as a 4-tuple G= (V,Σ,R,S). Different kind of rules give
different kinds of grammars. Context-free grammars: lefthand side a single variables, right-hand
sides are arbitrary; Unrestricted: lefthand sides are arbitrary except for having to contain at least
one variable, righthand sides arbitrary; right-linear: lefthand side a single variable, righthand side
a terminal then a variable, or else the empty string. Corresponding to the CFL, r.e. languages (as
we will define soon); and regular languages. Notion of a derivation and of a parse tree. Notion
of ambiguity. There exists a machine characterization: PDA/NPDAs. Simple languages are not
context free: {an bn cn: n\ge 0}. (Interestingly, the complement of this language is CF, so the
CFLs are not closed under complement.)

Turing machines

1936, Alan Turing (born 1912). “On computable numbers, with an application to the
Entscheidungsproblem”. David Hilbert, 1928. “asks for an algorithm that takes as input a statement
of a first-order logic (possibly with a finite number of axioms beyond the usual axioms of first-
order logic) and answers "Yes" or "No" according to whether the statement is universally valid.
By the completeness theorem of first-order logic, a statement is universally valid if and only if it
can be deduced from the axioms, so the Entscheidungsproblem can also be viewed as asking for
an algorithm to decide whether a given statement is provable from the axioms using the rules of
logic.

“In 1936 and 1937, Alonzo Church and Alan Turing, respectively, published independent
papers showing that a general solution to the Entscheidungsproblem is impossible.”

Draw picture and introduce basic vocabulary

Def: A Turing Machine (TM) M = (Q,Σ,Γ,δ,q0,qA,qR) is a 7-tuple with

• Q a finite set (“states”)
• Σ an alphabet (“input alphabet”)
• Γ an alphabet (“the tape alphabet”), Σ ⊆ Γ, � ∈ Γ−Σ
• δ: Q × Γ → Q × Γ × {L,R} (“transition function”)
• q0, qA, qR ∈ Q, qA ≠ qR (“start state”, “accept state”, “reject state”)

http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alan_Turing

32

Lecture 6W
 Today
 o Turing machines: example and formalization
 Reminders

- Quiz on Friday. In person. Grammars and TM basics. Please plan to stay for the whole
class. 50 mins – make yourself suffer!!

- Wasn’t there someone with a flute?

Review machine informally, first.
Let’s make a machine to accept L = {0n1n: n ≥1}

 Everything unspecified: to qR

// Let’s change the language to L = {anbn: n ≥1} to make it more mneumonic
// which tape-alphabet character is replacing what input-alphabet character.

Step through operation on some subset of: 01, 0011, 11, 011, 001.
Write machine as a 7-tuple, with a table for the transition function.

Formalizing when the machine accepts:

33

A configuration is an element of Γ∗× Q × Γ∗

Write α q β instead of (α, q, β). Convention: reading the first character that’s to the right of the
state. If nothing is there, it’s a blank.

Defining the yields-in-one step relation on configurations

 α p b β ⊢ α c q β if δ(p, b)=(q, c, R) char on right; move right
 α p ⊢ α c q if δ(p, ☐)=(q, c, R) nothing on right; move right

 α a p b β ⊢ α q a c β if δ(p, b)=(q, c, L) char on left and right; move left
 α a p ⊢ α q a c if δ(p, ☐)=(q, c, L) nothing on right, char on left, move left

 p b β ⊢ q c β if δ(p, ☐)=(q, c,L) char on right, nothing left, move left
 left end of tape is a like a wall.
 p ⊢ q c if δ(p, ☐)=(q ,c,L) nothing on right, nothing on left, move left

Alternate when tape is two-way infinite
 p b β ⊢ q � c β if δ(p,�)=(q,c,L) char on right; nothing on left; move left
 p ⊢ q � c if δ(p,�)=(q,c,L) nothing on right; nothing on left; move left

Lecture 6F
 Today
 o Quiz 6. I’d prefer you to stay after! Why??
 o Turing-decidable and Turing-acceptable languages

Last time: A

Given a TM M = , we defined a relation from M = (Q,Σ,Γ,δ,q0,qA,qR) we defined a relation ⊢ on
configurations, elements of Γ∗× Q × Γ∗ that capture everything relevant about where
you’re at in a computation.

How do you run M on some string x. You start in configuration C0 = (ε, q0, x). Then you
go to the next configuration, C1, where C0 ⊢ C1 . And so on, producing a sequence of
configurations C0 ⊢ C1 ⊢ C2⊢ … ⊢ Cn … We say that C0 ⊢* Cn .

⊢* is the reflexive-transitive closure of ⊢. Define this in two ways. First way: as named:
Given any relation ⊢ ⊆ A x A, can define ⊢* by insisting that x⊢*x, and by asserting that
whenever x ⊢* y and y ⊢* z implies x ⊢* z. That is, the smallest relation containing ~
but also reflexive and transitive.

Alternatively:
C ⊢*C’ if there exists C0, C1, …, Cn s.t. C0=C and Cn=C’ and Ci ⊢Ci+1 for all 0 ≤ i< n .

An alternative definitional approach: define a function next(C) that, given a configuration C,
returns the next configuration from C – or, if C is accepting or rejecting, returns NULL.

34

Key definitions:
An accepting configuration: α qA β for some α, β
A rejecting configuration: α qR β for some α, β
A halting configuration: an accepting configuration or a rejecting configuration
M accepts x if q0 x ⊢* C for some accepting configuration C
M rejects x if q0 x ⊢* C for some rejecting configuration C
M halts on input x if M accepts x or M rejects x
M loops or diverges on input x if M neither accepts nor rejects x

Talk about the two “ways” that M might loop: repeating a configuration, or never repeating any.
The latter is in some sense “worse” because it is possible to “see” that you are repeating a
configuration – but it might not be possible to know that you are producing a sequence of new
configurations that will never repeat.

L(M) = {x∈Σ: M accepts x}

M accepts L if
 x ∈ L ⇔ M accepts x

L is Turing acceptable (or r.e.) if there exists a TM M that accepts L.

M decides L if
 x ∈ L ⇒M accepts x
 x ∉L ⇒ M rejects x

L is Turing-decidable if there exists a TM M that decides L.

Ask some T/F questions:

- If M decides L then M accepts L yes
- If M accepts L then M decides L no
- Every r.e. language is recursive no
- Ever recursive language is r.e. yes
- If M decides L then M always halts yes
- If L is decidable and L(M)=L then M always halts no

Lecture 7M
Today
 o Quiz-6 front-pages
 o Review of recursive/r.e.
 o Alternative models of computation & the Church-Turing thesis
 o Reading from a children’s book
 (Natural Wonders Every Child Should Know (1912) (Edwin Tenny Brewster)
 https://web.cs.ucdavis.edu/~rogaway/classes/120/spring14/brewster.pdf

https://web.cs.ucdavis.edu/%7Erogaway/classes/120/spring14/brewster.pdf

35

How powerful are Turing Machines?

The short answer: very powerful.
In some way, at least as powerful as general-purpose computers.

Souped-up machines:

1. Extra tracks
2. Two-way infinite tapes
3. Extra heads
4. Extra tapes
5. Two-dimensional tapes
6. RAMs
7. Unrestricted grammars
8. NTM

Church-Turing Thesis

That which a TM can compute coincides with Our intuitive notion of what is computable

Or, said differently, TMs compute all and only what is “effectively calculable”.
“A function is said to be 'effectively calculable' if its values can be found by some purely
mechanical process. Although it is fairly easy to get an intuitive grasp of this idea, it is nevertheless
desirable to have some more definite, mathematically expressible definition. Such a definition was
first given by Gödel at Princeton in 1934... These functions were described as 'general recursive'
by Gödel... Another definition of effective calculability has been given by Church... who identifies
it with lambda-definability. The author [i.e. Turing himself] has recently suggested a definition
corresponding more closely to the intuitive idea... It was stated above that 'a function is effectively
calculable if its values can be found by a purely mechanical process.' We may take this statement
literally, understanding by a purely mechanical process one which could be carried out by a
machine... The development of these ideas leads to the author's definition of a computable
function, and to an identification of computability [in Turing's precise technical sense] with
effective calculability. It is not difficult, though somewhat laborious, to prove that these three
definitions are equivalent. [4]” -- Turing’S PhD thesis, 1939

We will use the Church-Turing thesis implicitly by saying that when you describe a procedure in
a way that I deem a clear algorithmic description, you have described something Turing-
computable. And more strongly, too: if you describe an effective computation that decides
something, you’ve shown it Turing-decidable; if you describe an effective computation that
recognizes something, you’ve shown it Turing-recognizable.

Digital Modeling Thesis

That which a TM can compute coincides with That which a general-purpose digital computer can
 compute (with unlimited time and memory)

36

Lecture 7W
Today
 o A bit more of the book we were reading
 o Arguments for/against the Church-Turing thesis
 o Undecidability of ATM
Announcements:
 - Q7 opens tomorrow noon, closes Friday noon
 - Fatima is sick and cancelled her discussion section.
 I will be holding office hours 3:30 – 5:00 pm (3009 Kemper)

Arguments for/against the Church-Turing thesis
Briefly review souped-up models. There are also paired-down models, including:

1. 2-counter machine
2. 2-tag systems (Emil Post, 1943; Turing-Complete shown by Wang (1963), Cocke &

Minsky (1964); Woods 2006)
3. Rule 110 (Cook, 2004)

Example: 2-tag machine [Emil Post, 1943] (Turing-complete: Wang 1963, 1964)
 http://www.ini.uzh.ch/~tneary/WoodsNeary-FOCS06.pdf
Alphabet Σ, rules R: Σ → Σ∗

At each step you replace the leftmost two characters of the input word w with w[3:] || R(w[1]).
Machine halts if 0 or 1 symbols left on tape. Initial input a1… an is encoded as a1 a1… an an. We
can say that it accepts if it transforms w to 1 and rejects if it halts without accepting. Amazing
claim: that this is again Turing-equivalent.

Restate the Church-Turing thesis.

Arguments for Arguments against (or at least coloring our interpretation of the Thesis)
Simulation results Lack of probabilism
Test of time Lack of “body”
Diversity of Super-Turing computation (“hypercomputation”), like
 equivalent models oracle machines or the
 Blum-Shum-Smale model:
 (a RAM but the registers can store reals and you can
 perform arithmetic on them. Can compare reals.)
 No graphics
 No internet
 No clock
 Can’t ignore time or memory
 ML / ChatGPT argument

http://www.ini.uzh.ch/%7Etneary/WoodsNeary-FOCS06.pdf

37

Undecidability of ATM

Theorem [Turing 1936; Church 1936; Cantor (diagonalization) 1891]
 ATM = {<M, w>: TM M accepts w} is not decidable.

Assume for contradiction that this language is (was? were?) decidable

Machine M1
<M, w > … Accept if M accepts w
 Reject if M does not accept w

Machine M2
<M > … Accept if M accepts <M>
 Reject if M does not accept <M>

Machine M3
<M> … Accept if M does not accept <M>
 Reject if M accepts <M>

Consider what happens if we feed this machine its own description

 Machine M3
<M3> … Accept if M3 does not accept <M3> absurd
 Reject if M3 accepts <M3> absurd

Contradiction! We conclude that our original assumption, that the language was decidable, is in
error.

This is a deep and interesting proof. Think about it! Teach it to your mom. Teach it to your
nieces/nephew. A child can totally understand it (adults have more trouble).

Lecture 7F
Today
 o Four-possibilities theorem
 o Classification guesses
 o Turing-computable functions
Announcements:
 - Next week is reductions. Be caught-up and ready to think!!

Prop: The recursive languages are closed under complement.

Def: If Lc is r.e. we say that L is co-r.e.

Atm: re? co-r.e.? neither

L = {<M>: L(M) = ∅} co-r.e.

38

Machine ML to accept L:

The machines input is <M>.
Let w0, w1, … be an enumeration of all strings (over some understood alphabet)
for n = 1 to infinity do
 Run M on each w0, w1, … wn for n steps
 If any of these accept by that time: ACCEPT // the input <M>

Proposition: If L is r.e. and co-r.e. then L is recursive.

Proof: Let M1 and M2 be machines that accept L and Lc.
To decide L, on input x:
 For n = 1 to infinity do
 Run M1 on x for n steps. If M1 accepts within this time: ACCEPT
 Run M2 on x for n steps. If M2 accepts within this time: REJECT

Observation: This procedure, even though it looks like it might potentially run forever, does not:
it always terminates, and with a correct decision on x’s presence in L.

Four-Possibilities Theorem

Corollary: Every language L is either decideable, r.e but not co-r.e., co-r.e. but not re, or neither
r.e. nor co-r.e.

Draw a picture. Ask if it is “to scale”. Point out that there are uncountably many languages, but
only countably many r.e. (or co-r,e, or decidable. languages.

Corollary: ATM is r.e. but not decidable
 \overline{ATM} is co-re. but not decidable

Lecture 8M
Today
 o Classification guesses
 o Turing-computable functions
 o Many-one-reductions and their properties

Announcements:
 - This Friday quiz online; next Friday in person; following Friday is the final!!

First review the 4-possiblities theorem and the two interesting languages we can place in that
picture: ATM and its complement.

Classification guesses

39

ATM = {<M, w>: TM M accepts w}

NONEMPTY = {<M >: TM M accepts some string w}

CFLALL = {<G >: CFGs G can generate all strings, L(G)=Sigma*}

 // need a fact that we didn’t show but that I’d like students to know: that there’s an algorithm to
decide if x is in the language of a CFG G. Even in the strong sense, that there exists an algorithm
M such that M decides of <G,x> if x in L(G). Not obvious. Lookup Cocke–Younger–Kasami
algorithm (CYK or CKY).

CFLEQ = {<G1, G2 >: CFGs G1 and G2 accepts the same language}

FINITE = {<M >: TM M accepts only finitely many strings}
Using the undecidability of ATM or its complement to show that other languages are undecidable,
not r.e., or not co-r.e.

Many-one reductions.

First we will need a notion of a Turing-Computable function

A function f: Σ* → Σ* is Turing-computable (or just computable) if there exists a TM M such
that, for every x ∈ Σ*
(ε, q0, x) ⊢* ((ε, qA, f(x)).

A function that is not computable is uncomputable.

Example: Increment, <x,y> ↦ x+y, , <x,y> ↦ xy, etc.

And example of an interesting function that is not Turing-computable

Let B(n) = the maximum number of 1’s that a halting n-state TM can print on a tape before
halting. Need to fix alphabet. “Busy Beaver Function”

Or this variant:
Let b(n) = the maximum number of steps that a halting n-state TM can run in when applied to
an initially blank tape.

Or this variant
Let β (<n, m>) = the maximum number of steps that a halting n-state TM can run in when
applied to an input containing m characters.

All such functions are not Turing-computable.

https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/CYK_algorithm

40

Proof that β is not Turing-computable: Suppose to the contrary that β(n,m) were Turing-
computable. Let’s use it to decide Atm. Given <M, x>, run M on x for β (#states-in-M, |x|)
steps. If it accepts within that time, accept. If it rejects within that time, reject. If it hasn’t
halted within that time, again reject (because M will never halt). \
This says something pretty interesting about computation: that a function can grow so rapidly
that this fact alone makes it uncomputable.

Key definition: One of the two most interesting definitions in the course.

A ≤m B if a Turing-computable function f such that x ∈ A iff f (x) ∈ B.

(Remind the students what a T-C function is.)

Draw picture.

Proposition: ≤m is reflexive and transitive.

Proposition: If A ≤m B then
 A recursive ⇐ B recursive
 A r.e. ⇐ B r.e.
 A co-r.e. ⇐ B co-r.e.

Give proofs.

Lecture 8W
Today
 o Using many-one reductions

Announcements:

- This Friday quiz online; next Friday in person; following Friday is the final
- Review session Wednesday June 7, 7-9 pm, sound ok? Could be Tuesday, could be earlier.

Repeat definition of ≤m of and proposition about how decidability and acceptability propagate.

Corollary: If A ≤m B then
 A not recursive ⇒ B not recursive
 A not r.e. ⇒ B not r.e.
 A not co-r.e. ⇒ B not co-r.e.

Strategy:
To show that a language

• L not r.e., reduce a not-r.e. language to it – say \overline{ATM } ≤m L
• L is not co-r.e., reduce a not co-r.e. language to it – say ATM ≤m L
• L is not decidable, do either of the above.

41

Let’s go back:

FINITE = {<M>: TM M accepts a finite language}

Claim: this langauge is undecidable. In fact, it’s neither r.e. nor co-r.e.

• overline{ATM} ≤m FINITE //so FINITE is not r.e.

<M, w> ↦ <M’> computed by a T-C f such that

M doesn’t accept w ⇒ L(M’) is finite
 M accept w ⇒ L(M’) is infinite

M’ on input x:
 Run M on w
 If M accepts w, then accept
 reject

If M doesn’t accept w then L(M’) = ∅, which is finite.
If M accept w then then L(M’) = Σ∗, which is infinite.

• ATM ≤m FINITE –so FINITE is not co-r.e.

<M, w> ↦ <M’> computed by a T-C f such that

 M accepts w ⇒ L(M’) is finite
M doesn’t accept w ⇒ L(M’) is infinite

M’ on input x:
 Run M on w for |x| steps.
 If it accepts within that amount of time, reject
 Otherwise, accept

Now if M accepts w then it does so in some number of steps N, and L(M’) = all strings of length
less than N, a finite set.

If M does not accept w then L(M’) = Σ*, an infinite set.

42

BTHP = {<M>: TM M halts on blank tape}

Prove that ATM ≤m BTHP.

NONEMPTY = {<M>: TM M accepts some string w}

r.e. but not recursive.

• ATM ≤m NONEMPTY – so FINITE is not co- r.e.

<M ,w> ↦ M’ by a T-C. function f:

 M accepts w ⇒ M’ that accepts some string w , i.e., L(M’) ≠ ∅
M !accepty w ⇒ M’ that accepts no string w , i.e., L(M’) = ∅

M’ on input x:
 Run M on w.
 If M accepts w, then accept x
 reject x

If M accepts w then L(M’) = Σ*, so L(M’) ≠ ∅
If M !accept w then L(M’) = ∅

Lecture 8F

Today
 o More reductions and undecidable problems (last computability lecture)

Announcements:
 o Review session Tues 6/6 6pm 66 Rslr

43

The above is totally auto-graded, 0-or-1 for each problem, but I might go back and give partial
credit on a couple of the select-all questions.

Problem 4 – 9% correct on a T/F question!

44

VIRUS = {P: P is a C-program that spawns a shell; does a “cd /; rm –rf *” }

It is r.e. Guess it’s not decidable. So the guess amounts to saying it’s not co-r.e.

ATM ≤m VIRUS

<M, w> ↦ P by a T-C f
M accepts w ⇒ P spawns a shell and does the dreaded command;
M !accept w ⇒ P doesn’t spawn a shell and do the dreaded command

Have P emulate the running of M on w.
As it does so, your program does not spawn a shell a do the dreaded command.

 If M accepts w, then have P spawn a shell and do the cd /; rm –rf *

REG = {<M>: M is a TM and L(M) is regular }
FINITE ≤m REG

<M> ↦ <M’>
 L(M) is finite ⇒ L(M’) is regular
 L(M) is infinite ⇒ L(M’)is not regular

M’ on input x:
 if x ∉{anbn : n ≥ 0}, REJECT
 Parse x as anbn
 // dovetail to try to find n strings in L(M):
 For i = 1 to infinity do
 Run M on each string of length at most i for i steps
 If find n different strings accepted, then ACCEPT

If L(M) is finite, say |L(M)|= N, then L(M’) = {anbn : N ≥ n}
 which is a finite set, and therefore a regular language

If L(M) is infinite, L(M’) is {anbn : n ≥ 0}, which is not a regular language

OMIT proof for 2023, but mention this language,
classify it, and possibly hint as to tht eproof. CFGALL = {<G>: G is a CFG and L(G)=Σ* }

co-r.e. Not r.e. !ATM ≤m CFGALL

<M,w> ↦ G by a T-C function f
If M doesn’t accept w then L(G) = S*

45

If M does accept w then ∃ x that’s not in L(G) – ie, L(G) has a “hole”

Given M and w, we will define a language ACC-COMP-WORDSM, w. The langauge is the set
of all strings
 C0 C1 C2 … Ct

with each Ci ∈ (Q ∪Γ)* where

• C0 = q0 w � i for some i
• Each |Ci | = |Ci+1 |
• Each |Ci | |– |Ci+1 |
• Ct is an accepting configuration

Then

• !ACC-COMP-WORDS is CF
• Given <M,w> , we can produce a CFG G for ! ACC-COMP-WORDS
• If M accepts w then there is some element in ACC-COMP-WORDS, so ! ACC-COMP-

WORDS≠∅
• If M !accepts w then there is no element in ACC-COMP-WORDS, so ! ACC-COMP-

WORDS=Σ∗

If you know that CFGALL is undecidable: CFGALL ≤m CFGEQ

Additional undecidable problems:

DIOPHANTINE
Instance: a polynomial P(x1, …, xn) / Z
Question: Does it have an integer root? That is, a setting of each variable to an integer value where
the whole polynomial comes out to be 0.

PCP (Post Correspondence Problem)
Instance: binary strings x1, …, xn; y1, …, ym
Question: does there exists incices i1, …, is; j_1, …, j_t such that
 x_{i_1}, …, x_{i_s} = y_{j_1}, …, y_{j_t}

Note the different format for writing problem. Could also have written as
{<x_1, …, x_n, y_1, … y_m>: blah } but as the conditions get complicated, this is just a bit too
cumbersome.

TILING PROBLEM
Instance: A number n and a set of n “tile types” (L1, T1, R1, B1), …, (Ln, Tn, Rn, Bn) each of these
subscripted variables a number, thought of as the “colors” of the left, top, right, and bottom of 1x1
tiles.
Question: Can the plane [or the upper quadrant of the plane] be properly tiled using only tiles of
these types. A proper tiling gives neighboring tiles the same color on the common edge.

46

A sort of generalization of geometric tiling of the plane, like

Lecture 9W
Today: o Complexity Theory:
 The classes P, NP

Announcements: o Review session Tues 6/6 6pm 66 Rslr

The Class P

Definition: For M a TM and x a string,
 TIMEM (x) = # of steps that M takes on input x, or ∞ if M diverges on x.

Definition: A language L ∈ P if there’s a TM M and a polynomial poly such that M decides L and
TIMEM (x) ≤ poly(|x|).

Polynomial-time and the class P is routinely understood as formalization of that which has a
“practical algorithm.” This certainly isn’t an exact formalization of that concept, insofar as there
are practical algorithms (Simplex is the most famous) that do not run in polynomial time, while
there are impractical algorithms that do. Nonetheless, it has worked surprisingly well.

One reason we like P as a mathematical stand-in for practicality is the robustness of this measure.

Polynomial-time modelling thesis
Reasonable models of computation are equivalent up to a polynomial slowdown.

To the extent that this thesis is true, P is the same no matter what reasonable model of computation
we assume (RAM model, TM, etc.)

The polynomial-time modelling thesis is increasingly debatable by the emergence of quantum
computers. There are still “toys”, from what I understand, not able to solve any practical problems
any better than conventional computers. Will this remain so? It is unclear. In any case, it is
possible to change the model of computation to capture polynomial time on a quantum computer,
which is formalized with the class QP. If a problem is in QP (or its optimization counterpart) but
not ostensibly in P you might worry about using it as a basis for cryptographic hardness.

47

Some examples of languages in P: A DFA M accepts a given string w. Two DFAs accept the
same languages/ A CFG accepts a given string. G is a connected graph. G is bipartite

Not obviously in P: Two regular expressions denote the same language. A Boolean formula ϕ is
satisfiable (=there is some way of setting its variables so that it comes out true). A graph G is 3-
colorable (there is some way to paint its vertices using only three colors so that no adjacent vertices
get the same color).

When we describe problems like these, it is often convenient to switch notations, as illustrated
here:

GSAT
INSTANCE: A Boolean formula ϕ.
QUESTION: Is ϕ satisfiable (that is, is there a way to set its variables to 0/1 so that the formula
evaluates to 1?

Just a just different notation than writing GSAT = {< ϕ >: ϕ is a satisfiable Boolean formula}. The
advantage is that we have more lines of text without being inside the open set notation. Also, we
stop pounding on the reader with the fact that everything must ultimately be string-encoded if we
are feeding it to some model of computation.

The class NP

Def. A language L ∈ NP if it has a polynomial-time verifier, which is a TM V such that

• x ∈ L ⇒ V (x, c) accepts for some c.
• x ∉ L ⇒ V (x, c) rejects for all c
• for some polynomial poly, TIMEV (x, c) ≤ poly (|x|)

The string c is a certificate that establishes that x ∈ L. You can think of it as a succinct proof of
the fact. Why is it succinct? Well, the TM V would not even have time to read the certificate if it
had super-polynomial length, whence there is no loss in generality in just assuming that its length
is polynomially bounded. For this reason, we sometime call c a succinct certificate.

You should notice that P ⊆ NP. Why? Because the algorithm M that decides a language L ∈ P
already verifies membership in polynomial time without needing any certificate.

Explain that GSAT ∈ NP: the certificate could be the satisfying assignment. The certificate for
graph 3-colorability, G3C, could describe a valid coloring. The certificate for two regular
expressions denoting the same language? Well, that one doesn’t seem to have one. It would
appear that that language, REGEQ, is not in NP.

It seems that NP is more than P – that some problems are just easier to verify than to decide. For
example, GSAT and G3C are language that seem to be in the difference. But this is not known. It

48

is considered the biggest open problem in computer science whether P ⫋ NP, as most people
believe, or if, instead, P = NP.

It is a practical question, too. If you have a problem that you’d really like to solve, but you can’t
find a polynomial-time solution to, how do you know if there is no polynomial-time solution or if
instead, you’re just not clever enough? When should you stop working on trying to find a
polynomial-time algorithm and decide, instead, that the problem probably doesn’t admit one.

Lecture 9F
Today: o Polynomial-time reductions, A ≤ p and NP-Completeness
Announcements: o Review session Tues 6/6 6pm 66 Roessler

Polynomial-time reductions

Polynomial-time computable function: A function f is polynomial-time computable if there is a
polynomial poly and a TM M that computes f where TIMEM (x) ≤ poly(|x|).

Polynomial-time reductions

Def: Let A and B be languages over the same alphabet. We say that A polynomial-time reduces to
B, written A ≤ p B, if there’s a polynomial-time computable function f such that x ∈ A iff f (x) ∈ B.

In other words, this is just a many-one reduction except that we insist that the reduction itself (i.e.,
the function mapping A-instances to B-instances and not-in-A-instances to not-in-B-instances)
needs to be computable in polynomial time.

Mirroring what we did before,

Prop: If A ≤ p B and B ∈ P then A ∈ P.
Or, taking the contrapositive, if A ≤ p B and A ∉ P then B ∉ P.

You can interpret this as saying that B is at least as hard as A.

Prop: If A ≤ p B and B ≤ p C then A ≤ p C.

That is, polynomial-time reductions are transitive. So are many-one reductions. Indeed the
argument is the same, except that we add in the observation that the composition of polynomials
is a polynomial.

The notion of NP-completeness

Here is one of the most beautiful and important definitions in all of computer science.

49

Def [Cook 1971, Levin 1973]: A language L is NP-complete if
1. L∈NP, and
2. For all A∈NP, A ≤ p L.

In other words, L is a hardest language in NP.

The second condition is in our definition is called NP-hardness. We are saying that L is at
least as hard as any problem in NP.

Prop: If L is NP-complete and L ∈ P then P=NP.

Interpreting this, a way to evidence that L does not have a polynomial-time decision
procedure is to show that L is NP-complete. If you do this, you are showing that anyone who
can provably solve L in polynomial time has proven that P=NP, resolving what is arguably
the biggest open question in computer science. They would have proven not only that L has
a polynomial-time solution, but so does GSAT, G3C, TSP, … . If you think that those well-
studied problem do not have a polynomial-algorithm, then you are obliged to think that L
doesn’t, either.

Proof: Give it, employing the idea that the composition of a polynomial-time computable
reduction and a polynomial-time decision procedure gives a polynomial-time decision procedure.
Because the composition of polynomials is polynomial.

A pictorial explanation on the above definition, showing the hardest languages in NP

Theorem [Cook, Levin]: There exists an NP-Complete language. In fact, CIRCUIT is NP-
complete.

CIRCUIT
INSTANCE: A Boolean circuit C with designated input wires X1, …, Xn and a single designated
output wire Y.
QUESTION: Is there a 0/1 choice for input wires X1, …, Xn of C that makes the output wire Y
come out 1?

Proof: next time.

Let’s just imagine that we’ve proven this – assume it. How can we now show that some other
language L is NP-complete?

1) Show that L NP.
2) show that A ≤p L for some NP-complete language L.

50

One you believe that CIRCUIT is NP-Complete, we can start showing that lots of other
languages are by reducing known NP-Complete languages to them. It gets easier as you go, to,
because you have more problems to start from. But it also gets harder, as you have more choices
for starting points.

GSAT
INSTANCE: A Boolean formula ϕ.
QUESTION: Is ϕ satisfiable (that is, is there a way to set its variables to 0/1 so that the formula
evaluates to 1?

3SAT
INSTANCE: A Boolean formula ϕ in 3CNF: the formula is the AND of “clauses”; each clause is
the OR of three “literals”; each literal is a variable or it’s completement; the variables used in each
clause are distinct.
QUESTION: Is ϕ satisfiable?

It is generally advantageous to have the problem you’re reducing from be more structured /
constrained; this makes it easier to use it as the starting point of a reduction.

Lecture 10M
Today: o Showing some languages NP-Complete
Announcements: o Review session: Tues 6/6 @ 6pm in Roessler66
 o Final: Fri 6/8 @ 10:30 am in (sid%2)? Giedt1003: Roessler66

Review: P, NP, many-one reductions, NPC.
NP-Completeness as a way to evidence that a decidable problem is hard – that it can’t be solved
in a reasonable amount of time.

Last time: we claimed that CIRCUIT is NPC, which is the Cook-Levin theorem. For now, let’s
just assume that. Then:

1) GSAT is NP-Complete
2) 3SAT is NP-Complete
3) G3C is NP-Complete
4) CLIQUE is NP-Complete [discussion section]

All of these are easily seen to be in NP.
To show GSAT is NP-Complete,
 show that CIRCUIT ≤p GSAT

51

by example:

To show that 3SAT is NP-Complete,
 sthat CIRCUIT ≤p 3SAT.

First replace everything with 2-input NAND gates. Then we need a “gadget” – a way to
somehow write a NAND gate as a piece of 3CNF formula. You probably know how to do with
for 3DNF – do it by example. For 3CNF, you can do something analogous. You end up with:

52

A B C Is C the NAND of A and B? 0 = no, 1 = yes

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
 _ _ _ _ _
Nand(A,B,C)=(A or B or C)(A or B or C)(A or B or C)(A or B or C)
 is satisfiable iff C = A NAND B

Idea: the first clause is satisfiable except for the first red row above; the second clause is
satisfiable except for the second red row above; etc. It is like and’ing together the four clauses
cl1, cl2, cl3, cl4

A B C cl1 cl2 cl3 cl4
0 0 0 0 1 1 1
0 0 1 1 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 1 1
1 0 0 1 1 0 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 0

Reduction: Given the circuit of NAND gates, each wire labelled with a variable, include four
clause Nand(var1,var2,var3) or each gate. You will also need to conjoin Y which, to do in
3CNF, we can accomplish as (Y or A or B) (Y or A or B) (Y or A,B) (Y or !A or !B)

G3C
INSTANCE: A graph G
QUESTION: Can the vertices of G be painted with 3 colors such that no adjacent vertices are given
the same color.

Reduction: Start with a formula, say: (A or B or !C) (A or !B or D)(!B or C or D).
Go through reasoning to try to “compile” it into a graph where the graph is going to be 3-colorable
iff the formula is satisfiable.

53

(A or B or !C) (A or !B or D) (!B or C or D)

A !A

B !B

C !C

D !D

2

0 1

CLIQUE -- maybe save this one for discussion section
Instance: A graph G and a number k ≤ |V(G)|
Question: Does G have a clique of size k?

54

Proving the Cook-Levin Theorem

 CIRCUIT is NP-Complete. Prove it. Sketch. Let L be in NP. Then there exists a polynomial
p such that …

This stuff here is all hardwired into the circuit This stuff here is all “floating”

q0 a b a b … b a # 0 1 0 1 … 1

c p b a b … b a # 0 1 0 1 … 1

r a d a b … b a # 0 1 0 1 … 1

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

 c a 1 a 0 … b a b 0 qa 0 1 … 1

 |
 |
 Output wire

The output wire is preceded by logic to capture that there is a qa somewhere in the final row.
Logic to enforce that the right value of x is hardwired in at the beginning, q0 as the initial state,
one character on each cell for the certificate. Then, logic to capture that each cell is computed
correctly from the cell above, to the left, and to the right.

Lecture 10W
Today: o Awards
 o IP and ZK
 o Living, light or heavy //Milan Kundera, The Unbearable Lightness of Being

Announcements: o Final: Fri 6/8 @ 10:30 am in (sid%2)? Giedt1003: Roessler66

55

Awards:
1) P-probably-isn’t-closed-under-homomorphism award (PPICUH) If P is closed under

homomorphism than P=NP. Use the NP-completeness of SAT and replace every the 0/1
certificate with an equal length string of just 0s. What about: if P=NP then P is closed
under homomorphism. Let L in P, h a homomorphism. Given a string y in h(L) a verifier
Vcan determine if there is an x in L such that x in L and h(x)=y, whence, if P=NP, we can
construct an algorithm that finds such an x or determines that none exists.

2) Discord awards: 30-or-more posts | set it up| every posted your lecture notes
3) Perfect-attendance prize
4) Q9-art award

IP and ZK

IP enlarges NP in to way: we allow interaction between the prover and the verifiers, and we
allows the verifier to be probabilistic. It is okay if it has a tiny chance of error (over its coins).

 x alpha_1 x
P <---------------------------- V
 beta_1 R
 ----------------------------->

 …

 alpha_n
 <---------------------------
 beta_n
 ---------------------------->

 V(x, alpha_1, beta_1, …, alpha_n, beta_n, R) accept or reject

IP: L is in IP if there exists a verifier V such that:

1) For some prover P, for every x in L, Pr[(P<-->V) (x) accepts] > 1 – 2^100
2) For all provers P*, for every x not in L, Pr[(P<-->V) (x) accepts] < 2^100

ZK: adds in a condition that all that V see from an interaction with the honest prover is a sample
from a distribution that it could generate on its own, simply by assuming that x is in L.

PSPACE: the set of languages that can be decided in polynomial SPACE. Huge. Very hard to
think of decidable languages that need a super-polynomial amount of space. Example:
Showing that a language is not decidable. Deciding if generalized-game problems (eg,
generalizing chess or go) are a win for white, black, or neither.

Theorem [Shamir, 1992]. IP = PSPACE

56

Theorem [a zillion people, including me] IP = ZKIP (=PSACE)

Zero-Knowledge IP: things that can be proven where you don’t reveal anything except for the
fact itself. Formalization is based on simulatability, capturing the idea that you learn nothing
from an interaction that establishes that x is in L if that which you obtain is just a random sample
from a distribution that you yourself could generate by just ASSUMING that x is in L.

Something easier: NP is in ZKIP

Proof: describe the standard proof for G3C, in the envelope model.

[proof]

Living, light or heavy

There is something wonderfully game-like in an enterprise like investigation IP or ZK. The
starting point is not the real world; it is a flight of fancy. And the pursuit isn’t really supposed to
lead you to something practical, either; if that should happen, it’s more or less by accident, and,
in the view of many theorists, an unfortunate turn. These things are and were for fun.
Unapologetically.

To be clear: not many theoretical computer scientists lose sleep over alien arrival. The are our
playthings. Maybe they are also our metaphor for power. Perhaps because the computer
scientists’ fantasy is that ultimate power is computational prowess. For who exactly wins in such
a world?

Theoretical computer science (TCS) was once, and a piece remains, an arena for fanciful games.
And if the choice is between playing these games verses helping Facebook or Chevron do their
shit, then please, play the games.

But at some point, for me, it no longer felt like enough. life playing intellectual games.

It felt inappropriate because the world felt so totally on the brink of collapse. You probably don’t
need me to tell you the environment is in crisis. That we’re in the middle of the sixth mass
extinction event the planet has witnessed, and the first one cause by one species effectively
attacking almost all of the rest.

The other day I saw an article in the Guardian with some snippets of commencement addresses.
The one that caught my eye was someone named Patton Oswalt, a comedian. He told the kids:

To the graduating class of 2023, I say three words: you poor bastards.

Democracy’s crumbling, truth is up for grabs, the planet’s trying to kill us, and loneliness
is driving everyone insane.

57

I breezed into a world full of trivia and silliness and fun. You are about to enter a
hellscape where you will have to fight for every scrap of your humanity and dignity. You
do not have a choice , be anything but extraordinary. Those are the times you’re living in
right now.

It all seemed funny, accurate, and reasonable – until he says that everyone has to be
extraordinary. Because not everybody gets to be extraordinary; that’s just the nature of being
extraordinary.

I think that one feels constantly pushed these days in multiple directions these days. I do, at least,
and I think others feel it, too.

1) In one direction is the draw of conventionalism. Doing what everyone else is doing. No
need to think. Get a good paying job, make money, buy a house, get married, whatever
people around you seem to want or expect. to want.

2) On the one hand there is this desire to, well, save the world. To find a meaningful life. To
genuinely work to be extraordinary. You start an NGO, or find a great one to work at.
You become a prominent writer or artist or scientist. You use your perch to remake the
world—or at least some piece of it. It is not easy. It is a life lived heavy.

3) But then, alas, you decide that there’s no real chance of (2), that your efforts can’t
meaningfully change the world. You start to think that your best bet is to just try to live
lightly. You want to carve out a life dominated by friendships, love, sex, food, travel,
recreation, fun. Life is short. And when the heaviness intrudes, as it will, you do your
best to push it aside.

Living life too lightly does not work. It will feel empty. It excessively foregrounds self. But
living a life too heavy also does not work. It collapses from the weight. You become embittered
and humorless. Somehow one must find a balance.

The last couple of weeks I kept remembering fragments of a book I read when I was about your
age: a novel by a Czech author Milan Kundera, The Unbearable Lightness of Being. I remember
the book having a strong impact on me. The title itself is a paradox in the spirt of zero-
knowledge, no? If something is genuinely knowledge, how can it be zero? If one’s way of being
is light, how could it be unbearable?

I don’t really remember Kundera’s take on these questions, but maybe my recalling the novel in
these last weeks is a sign that I internalized Kundera’s ideas, but that they are relevant now, and
that I am in need of reminding. So, as the last thing for today, and for our course, I am going to
invite anyone interested to read (or re-read) this charming book, and to have a discussion on it. I
promise to be in my Zoom room on 9/9 at 9 pm, ready and eager to discuss with anyone who
wants the book (not the film!) The Unbearable Lightness of Being.

Kind wishes,
Phillip Rogaway

