
ECS 120: Theory of Computation PS #10S
UC Davis — Phillip Rogaway June 3, 2014

Problem Set 10 Solutions

Note the unusual day for this (minimal) assignment being due.

Problem 1. Let SAT20 = {〈φ〉 : φ has at least twenty different satisfying assignments}. Show
that SAT20 is NP-complete.

First, it is easy to see that SAT20 ∈ NP. On input of a Boolean formula φ, a verifier could
guess twenty Boolean assignments, t1, t2, t3, · · · , t20, and then verify that these assignments are
different from one another and that each satisfies φ. In other words, the certificate consists of
20 distinct satisfying assignments t1 through t20.

To show that SAT20 is NP-hard, we show that SAT ≤P SAT20. The function f that maps an
instance φ of SAT to an instance φ′ of SAT20 works as follows:

φ′ = φ ∧ (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5),

where each xi is new variable (they don’t occur in φ). This reduction is certainly polynomial
time. Now if φ is unsatisfiable, certainly φ′ is, too, since we have only conjuncted an additional
term. But if φ has some satisfying assignments t, than φ′ has at least 31 (and therefore at least
20) satisfying assignments, (corresponding to the 32 different ways of extending t to the new
variables x1, x2, x3, x4, x5.

Problem 2. A graph G = (V,E) is said to be k-colorable if there is a way to paint its vertices
using colors in {1, 2, . . . , k} such that no adjacent vertices are painted the same color. Let
G3C denote the language of encodings of 3-colorable graphs. Let G4C denote the language
of encodings of 4-colorable graphs. The language G3C is NP-Complete. (We will prove
this on Monday.) Use this to prove that G4C is NP-Complete, too.

First, it is easy to see that G4C is in NP. Given a graph G = (V,E) you need only guess a
coloring c : V → {1, 2, 3, 4} and then verify that c(x) 6= x(y) for all {x, y} ∈ E (as well as
c(x), c(y) ∈ {1, 2, 3, 4}.) Clearly this takes a polynomial amount of time.

Now we have to show G3C≤PG4C. Given a graph G = (V,E) (an instance of the G3C problem)
we produce a graph G′ = (V ′, E′) as follows: V ′ = V ∪ {z}, and E′ = E ∪ {{x, z} : x ∈ V },
where z is a name for a vertex not in V . That is, G′ is constructed by adding a new vertex to
G and connecting it to every node of G. Clearly if G is 3-colorable then G′ will be 4-colorable;
just use the new color for the newly-added vertex. Conversely, if G′ is 4-colorable then G must
be 3-colorable, since the color used for vertex z has to be different from the color used on every
other vertex, and so restricting the coloring c′ of G′ to the nodes of G will immediately give a
3-coloring of G, apart from the names of the colors used. Finally, observe that the reduction
itself is polynomial-time computable.


