Problem Set 10 Solutions

Note the unusual day for this (minimal) assignment being due.

Problem 1. Let SATZ0 $=\{\langle\phi\rangle: \phi$ has at least twenty different satisfying assignments $\}$. Show that SAT20 is NP-complete.

First, it is easy to see that SAT20 \in NP. On input of a Boolean formula ϕ, a verifier could guess twenty Boolean assignments, $t_{1}, t_{2}, t_{3}, \cdots, t_{20}$, and then verify that these assignments are different from one another and that each satisfies ϕ. In other words, the certificate consists of 20 distinct satisfying assignments t_{1} through t_{20}.

To show that SAT20 is NP-hard, we show that SAT \leq_{P} SAT20. The function f that maps an instance ϕ of SAT to an instance ϕ^{\prime} of SAT20 works as follows:

$$
\phi^{\prime}=\phi \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right)
$$

where each x_{i} is new variable (they don't occur in ϕ). This reduction is certainly polynomial time. Now if ϕ is unsatisfiable, certainly ϕ^{\prime} is, too, since we have only conjuncted an additional term. But if ϕ has some satisfying assignments t, than ϕ^{\prime} has at least 31 (and therefore at least 20) satisfying assignments, (corresponding to the 32 different ways of extending t to the new variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.

Problem 2. A graph $G=(V, E)$ is said to be k-colorable if there is a way to paint its vertices using colors in $\{1,2, \ldots, k\}$ such that no adjacent vertices are painted the same color. Let G3C denote the language of encodings of 3-colorable graphs. Let G4C denote the language of encodings of 4-colorable graphs. The language G3C is NP-Complete. (We will prove this on Monday.) Use this to prove that G4C is NP-Complete, too.

First, it is easy to see that G4C is in NP. Given a graph $G=(V, E)$ you need only guess a coloring $c: V \rightarrow\{1,2,3,4\}$ and then verify that $c(x) \neq x(y)$ for all $\{x, y\} \in E$ (as well as $c(x), c(y) \in\{1,2,3,4\}$.) Clearly this takes a polynomial amount of time.

Now we have to show $\mathrm{G} 3 \mathrm{C} \leq_{\mathrm{P}} \mathrm{G} 4 \mathrm{C}$. Given a graph $G=(V, E)$ (an instance of the G3C problem) we produce a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows: $V^{\prime}=V \cup\{z\}$, and $E^{\prime}=E \cup\{\{x, z\}: x \in V\}$, where z is a name for a vertex not in V. That is, G^{\prime} is constructed by adding a new vertex to G and connecting it to every node of G. Clearly if G is 3 -colorable then G^{\prime} will be 4-colorable; just use the new color for the newly-added vertex. Conversely, if G^{\prime} is 4-colorable then G must be 3 -colorable, since the color used for vertex z has to be different from the color used on every other vertex, and so restricting the coloring c^{\prime} of G^{\prime} to the nodes of G will immediately give a 3 -coloring of G, apart from the names of the colors used. Finally, observe that the reduction itself is polynomial-time computable.

