Problem Set 2 Solutions

Problem 1 Draw DFAs for the following languages:
(a) $A=\left\{x \in\{a, b\}^{*}:|x| \geq 3\right\}$
(b) $B=$ the binary encodings of numbers divisible by 7 . Allow leading zeros and the empty string as alternate names of 0 . Thus $B=\{\varepsilon, 0,00,000,111,0000,1110, \ldots\}$
(c) $C=$ the binary encodings of numbers divisible by 7 . Don't allow leading zeros or the empty string. Thus $C=\{0,111,1110, \ldots\}$.
(d) $D=$ binary strings that contain the same number of 01 's as 10 's.

Problem 2. Let $\mathcal{E}(L)=\left\{x \in L\right.$: there exists a $y \in \Sigma^{+}$for which $\left.x y \in L\right\}$. (By Σ^{+}we mean Σ^{*}.)
Part A. What is $\mathcal{E}\left(\{0,1\}^{*}\right)$? What is $\mathcal{E}(\{\varepsilon, 0,1,00,01,111,1110,1111\})$?
$\mathcal{E}\left(\{0,1\}^{*}\right)=\{0,1\}^{*}$, while $\mathcal{E}(\{\varepsilon, 0,1,00,01,111,1110,1111\})=\{\varepsilon, 0,1,111\}$.
Part B. Prove that if L is DFA-acceptable then $\mathcal{E}(L)$ is, too.
Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for L, a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ is constructed for $\mathcal{E}(L)$ by "pruning" the final state set; we define F^{\prime} to be the set of all states $q \in F$ such that there exists some nontrivial path from q to some final state of M. Then $x \in L\left(M^{\prime}\right)$ iff $x \in L$ and there is some $y \in \Sigma^{+}$such that $x y \in L(M)$.

Problem 3 State whether the following propositions are true or false, proving each answer.
(a) Every DFA-acceptable language can be accepted by a DFA with an odd number of states.

True. The idea is to add a "dummy state" in the case that the machine has an even number of states. Formally, given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, if $|Q|$ is odd set $M^{\prime}=M$ and if $|Q|$ is even then let $M^{\prime}=\left(Q \cup\{s\}, \Sigma, \delta^{\prime}, q_{0}, F\right)$ (where $s \notin Q$) and let $\delta^{\prime}(q, a)=\delta(q, a)$ for $q \in Q, a \in \Sigma$ and $\delta^{\prime}(s, a)=s$ (say) for $a \in \Sigma$. Clearly $L(M)=L\left(M^{\prime}\right)$ and M^{\prime} has an odd number of states.
(b) Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.

True. Add a new start state and connect it up to all the states that the old start state was connected to, in the same way. Formally, given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ construct a DFA $M^{\prime}=\left(Q \cup\{s\}, \Sigma, \delta^{\prime}, s, F^{\prime}\right)$ (for $s \notin Q$) by saying $\delta^{\prime}(q, a)=\delta(q, a)$ for $q \in Q, a \in \Sigma$, and $\delta^{\prime}(s, a)=\delta\left(q_{0}, a\right)$ for $a \in \Sigma$, and $F^{\prime}=F$ if $q_{0} \notin F$ and $F=F \cup\{s\}$ if $q_{0} \in F$.
(c) Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.

False. Only finite languages can be accepted by such a machine, and some DFA-acceptable languages are infinite.
(d) The language $L=\left\{x \in\{a, b\}^{*}: x\right.$ starts and ends with the same character $\}$ can be accepted by a $D F A M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for which $\delta^{*}\left(q_{0}, w\right)=q_{0}$ for some $w \neq \varepsilon$. Assume an alphabet of $\Sigma=\{a, b\}$.
False. Since $a \in L$ and $b \in L$ we know that $\delta\left(q_{0}, a\right) \in F$ and $\delta\left(q_{0}, b\right) \in F$. If w begins with an a then $\delta^{*}\left(q_{0}, w b\right)=\delta^{*}\left(q_{0}, b\right) \in F$, but $w b \notin L$. If w begins with a b then $\delta^{*}\left(q_{0}, w a\right)=\delta^{*}\left(q_{0}, a\right) \in F$, but $w a \notin L$.

Problem 4 A homomorphism is a function $h: \Sigma \rightarrow \Gamma^{*}$ for alphabets Σ, Γ. Given a homomorphism h, extend it to strings and then languages by asserting that $h(\varepsilon)=\varepsilon, h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)$ (for $a_{1}, \ldots, a_{n} \in \Sigma$), and $h(L)=\{h(x): x \in L\}$.
(a) Prove: for any homomorphism h, if L is DFA-acceptable, then so is $h(L)$.

Given a DFA M, replace each a-labeled transition by an $h(a)$-labeled one. For arcs now bearing multicharacter labels $a_{1} \cdots a_{m}$, add $m-1$ intermediate states connected by arcs labeled by a_{1}, \ldots, a_{m}. In this way we get an NFA for $h(L)$. The equivalence of the DFA and NFA acceptable languages establishes the result.
(b) Disprove: for any homomorphism h, if $h(L)$ is $D F A$-acceptable, then so is L. For this you may assume that there's a language L that is not DFA-acceptable.
Let $L \subseteq \Sigma^{*}$ be any language that is not DFA-acceptable. Let $h(a)=\varepsilon$ for all $a \in \Sigma$. Then $h(L)=\{\varepsilon\}$ is DFA-acceptable even though L is not.

Problem 5. Fix a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. For any two states $q, q^{\prime} \in Q$, let us say that q and q^{\prime} are equivalent, written $q \sim q^{\prime}$, if, for all $w \in \Sigma^{*}$ we have that $\delta^{*}(q, w) \in F \Leftrightarrow \delta^{*}\left(q^{\prime}, w\right) \in F$. Here δ^{*} is the extension of δ to Σ^{*} defined by $\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, a x)=\delta^{*}(\delta(q, a), x)$.
(a) Prove that \sim is an equivalence relation.

This is immediate from the definition. Reflexive: $q \sim q$ because $\delta^{*}(q, w) \in F$ iff $\delta^{*}(q, w) \in F$. Symmetric: If $q \sim q^{\prime}$ then, for all $w \in \Sigma^{*}, \delta^{*}(q, w) \in F$ iff $\delta^{*}\left(q^{\prime}, w\right) \in F$. Thus $q^{\prime} \sim q$. Transitive: If $q \sim q^{\prime}$ and $q^{\prime} \sim q^{\prime \prime}$ then, for all $w \in \Sigma^{*}, \delta^{*}(q, w) \in F$ iff $\delta^{*}\left(q^{\prime}, w\right) \in F$ iff $\delta^{*}\left(q^{\prime \prime}, w\right) \in F$.
(b) Suppose that $q \sim q^{\prime}$ for distinct q, q^{\prime}. Describe, first in plain English and then in precise mathematical terms, how to construct a smaller (=fewer state) DFA M^{\prime} that accepts the same language as M.
Create M^{\prime} by eliminating q^{\prime} and redirecting all arcs into it into state q, instead. Formally, assuming $q^{\prime} \neq q_{0}$, let $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right)$ where $Q^{\prime}=Q-\left\{q^{\prime}\right\}, F^{\prime}=F-\left\{q^{\prime}\right\}$, and $\delta^{\prime}(p, a)=q$ when $\delta(p, a)=q^{\prime}$, and $\delta^{\prime}(p, a)=\delta(p, a)$ otherwise. If $q^{\prime}=q_{0}$ then swap the roles of q and q^{\prime} (or change the start state to q).

