Problem Set 3 Solutions

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language.

The problem is pretty mechanical-I'm not going to draw out the solution-hopefully you didn't have trouble doing so.

Problem 2. Using the procedure shown in class, eliminate all ε-arrows from the following $N F A$.

The problem too is mechanical. States 1,2 , and 3 all become final (so all states are now final), since they can reach final states along ε-paths. Now we add in "bypass arcs." The approach I explained in class for doing this: for each state p of the NFA, in parallel: find all all states q reachable from p along ε-paths; find each transition to a state r labeled by a character $a \in \Sigma$; add in a direct connection, if needed, from p to r labeled by a. After all this is done, eliminate all ε-transitions.

Problem 3. Let $L_{1}, L_{2}, L_{3} \subseteq \Sigma^{*}$ be languages and let $\operatorname{Most}\left(L_{1}, L_{2}, L_{3}\right)$ be the set of all $x \in \Sigma^{*}$ that are in at least two of L_{1}, L_{2}, L_{3}. Prove: if L_{1}, L_{2}, and L_{3} are DFA-acceptable then so is $\operatorname{Most}\left(L_{1}, L_{2}, L_{3}\right)$.

Solution 1: Extend the product construction. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, and $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$ be DFAs for L_{1}, L_{2}, and L_{3}, respectively. Form a new DFA $M=(Q, \Sigma, \delta, s, F)$ for $\operatorname{Most}\left(L_{1}, L_{2}, L_{3}\right)$ be defining $Q=Q_{1} \times Q_{2} \times Q_{3}, s=\left(q_{1}, q_{2}, q_{3}\right), \delta((p, q, r), a)=\left(\delta_{1}(p, a), \delta_{2}(q, a), \delta_{3}(r, a)\right)$, and $F=\left\{(p, q, r) \in Q_{1} \times Q_{2} \times Q_{3}\right.$: at least two of the following three things are true: $p \in F_{1}, q \in F_{2}$, $\left.r \in F_{3}\right\}$. It is easy to see that $L(M)=\operatorname{Most}\left(L_{1}, L_{2}, L_{3}\right)$.
Solution 2: Use closure properties. Note that $\operatorname{Most}\left(L_{1}, L_{2}, L_{3}\right)=\left(L_{1} \cap L_{2}\right) \cup\left(L_{2} \cap L_{3}\right) \cup\left(L_{1} \cap L_{3}\right)$. The regular languages are closed under \cap and \cup and so they are closed under Most.

Problem 4 Let Stutter $(L)=\left\{a_{1} a_{1} a_{2} a_{2} \cdots a_{n} a_{n} \in \Sigma^{*}: a_{1} a_{2} \cdots a_{n} \in L\right\}$. (A) Prove that the DFAacceptable languages are closed under Stutter. (B) Then, having proved it once, give another, entirely different proof.

Here three different proofs:
(1) Consider the map $h: \Sigma \rightarrow \Sigma^{*}$ defined by $h(a)=a a$ for all $a \in \Sigma$. Then $\operatorname{Stutter}(L)=h(L)$. We know that the DFA/NFA-acceptable languages are closed under homomorphism (from a previous problem set), so we are done.
(2) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting L. To make an NFA accepting $\operatorname{Stutter}(L)$, add a state "in the middle of each arrow" to ensure that a symbol $a \in \Sigma$ is always followed by a symbol a, and the same destination is then reached. This would give an NFA for $\operatorname{Stutter}(L)$. You could, if desired, make it into a DFA by the addition of a dead state that was connected up to the rest of the machine in the natural way.
(3) Use the regular-expression characterization of the DFA-acceptable languages. Let α be a regular expression over Σ. Construct from α a new regular expression β by replacing each character $a \in \Sigma$ that occurs in α by $(a \circ a)$. What results is a new regular expression β where $L(\beta)=\operatorname{Stutter}(L(\alpha))$.

Problem 5. How many states are in the smallest possible DFA for $\{0,1\}^{*}\left\{1^{10}\right\}$? Prove your result.

First, 11 states are sufficient: there is a DFA M_{11} that accepts $L=\{0,1\}^{*}\left\{1^{10}\right\}$ and has 11 states. The machine has states $Q=\left\{q_{0}, q_{1}, \ldots, q_{10}\right\}$ with q_{0} the start state, $F=\left\{q_{10}\right\}$ the final states, $\delta(q, 0)=q_{0}$ for all states $q \in Q$, while $\delta\left(q_{i}, 1\right)=q_{i+1}$ for $i<10$ and $\delta\left(q_{10}, 1\right)=q_{10}$.
Second, 11 states are necessary. Suppose for contradiction that there exists a 10 -state DFA $M=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L. Consider the 11 strings 1^{i} for $0 \leq i \leq 10$. By the pigeonhole principle we know that $\delta^{*}\left(q_{0}, 1^{i}\right)=\delta^{*}\left(q_{0}, 1^{I}\right)$ for $0 \leq i<I \leq 10$. But then $\delta^{*}\left(q_{0}, 1^{i} 1^{10-I}\right)=\delta^{*}\left(q_{0}, 1^{I} 1^{10-I}\right)$, so $\delta^{*}\left(q_{0}, 1^{10-j}\right)=\delta^{*}\left(q_{0}, 1^{10}\right)$ for some $j \geq 1$. But the lefthand state must be outside F and the righthand states must be in F, a contradiction.
One could use the DFA minimization procedure to prove this, establishing that M_{11} is already a minimalsize DFA. Here one shows that no two states are equivalent, which follows, we have claimed, by showing that the algorithm of class discovers no inequivalence when looking at 0-and 1-character extensions.

Problem 6 Let $L_{n}($ for $n \geq 1)$ be $\{0,1\}^{*}\{1\}\{0,1\}^{n}$. Prove that there is an NFA for L_{n} having $n+2$ states, but that there is no DFA for L_{n} having $2^{n}-1$ or fewer states. In a well written English sentence or two, give a high-level interpretation of your result.

As with the last problem, the first part is constructive; just draw the needed machine. For the second part, assume for contradiction that there is a $\left(2^{n}-1\right)$-state DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. By the pigeonhole principle, we know that some two distinct strings $x, x^{\prime} \in\{0,1\}^{n}$ satisfy $\delta\left(q_{0}, x\right)=\delta\left(q_{0}, x^{\prime}\right)$. Since x and x^{\prime} differ, they do so at some particular bit position $\ell \in[1 . . n]$ (numbering from 1 , starting on the left). Let x_{0} be the one of x, x^{\prime} with $x_{0}[\ell]=0$ and let x_{1} be the one of x, x^{\prime} with $x_{1}[\ell]=1$. Now consider the strings $y_{0}=x_{0} 0^{\ell}$ and $y_{1}=x_{1} 0^{\ell}$. The second is in L_{n}; the first is not. But we know that $\delta^{*}\left(q_{0}, y_{0}\right)=\delta^{*}\left(q_{0}, y_{1}\right)$, getting us our contradiction: this state cannot be both final and nonfinal.
Interpretation of the result: There can be an exponential gap between the size of the smallest NFA for a language and the size of the smallest DFA for it. Or, said differently, Some languages can be represented much more efficiently with an NFA than a DFA.

