
ECS 120: Theory of Computation ps3-soln
UC Davis — Phillip Rogaway April 17, 2015

Problem Set 3 Solutions

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same
language.

0 1

b,c

a

c

b

2

c

The problem is pretty mechanical—I’m not going to draw out the solution—hopefully you didn’t have
trouble doing so.

Problem 2. Using the procedure shown in class, eliminate all ε-arrows from the following NFA.

3

21
b, ε

a

d

d

a,c

44

55

ε
b

d

b, ε

The problem too is mechanical. States 1, 2, and 3 all become final (so all states are now final), since
they can reach final states along ε-paths. Now we add in “bypass arcs.” The approach I explained in
class for doing this: for each state p of the NFA, in parallel: find all all states q reachable from p along
ε-paths; find each transition to a state r labeled by a character a ∈ Σ; add in a direct connection, if
needed, from p to r labeled by a. After all this is done, eliminate all ε-transitions.

Problem 3. Let L1, L2, L3 ⊆ Σ∗ be languages and let Most(L1, L2, L3) be the set of all x ∈ Σ∗ that are in
at least two of L1, L2, L3. Prove: if L1, L2, and L3 are DFA-acceptable then so is Most(L1, L2, L3).

Solution 1: Extend the product construction. Let M1 = (Q1,Σ, δ1, q1, F1), M2 = (Q2,Σ, δ2, q2, F2), and
M3 = (Q3,Σ, δ3, q3, F3) be DFAs for L1, L2, and L3, respectively. Form a new DFAM = (Q,Σ, δ, s, F ) for
Most(L1, L2, L3) be defining Q = Q1×Q2×Q3, s = (q1, q2, q3), δ((p, q, r), a) = (δ1(p, a), δ2(q, a), δ3(r, a)),
and F = {(p, q, r) ∈ Q1 × Q2 × Q3: at least two of the following three things are true: p ∈ F1, q ∈ F2,
r ∈ F3}. It is easy to see that L(M) = Most(L1, L2, L3).

Solution 2: Use closure properties. Note that Most(L1, L2, L3) = (L1 ∩L2)∪ (L2 ∩L3)∪ (L1 ∩L3).
The regular languages are closed under ∩ and ∪ and so they are closed under Most .

Problem 4 Let Stutter(L) = {a1a1 a2a2 · · · anan ∈ Σ∗ : a1a2 · · · an ∈ L}. (A) Prove that the DFA-
acceptable languages are closed under Stutter. (B) Then, having proved it once, give another,
entirely different proof.



2 ECS 120 ps3-soln: Problem Set 3 Solutions

Here three different proofs:

(1) Consider the map h : Σ → Σ∗ defined by h(a) = aa for all a ∈ Σ. Then Stutter(L) = h(L). We know
that the DFA/NFA-acceptable languages are closed under homomorphism (from a previous problem set),
so we are done.

(2) Let M = (Q,Σ, δ, q0, F ) be a DFA accepting L. To make an NFA accepting Stutter(L), add a state
“in the middle of each arrow” to ensure that a symbol a ∈ Σ is always followed by a symbol a, and the
same destination is then reached. This would give an NFA for Stutter(L). You could, if desired, make
it into a DFA by the addition of a dead state that was connected up to the rest of the machine in the
natural way.

(3) Use the regular-expression characterization of the DFA-acceptable languages. Let α be a regular
expression over Σ. Construct from α a new regular expression β by replacing each character a ∈ Σ that
occurs in α by (a ◦ a). What results is a new regular expression β where L(β) = Stutter(L(α)).

Problem 5. How many states are in the smallest possible DFA for {0, 1}∗{110}? Prove your result.

First, 11 states are sufficient : there is a DFA M11 that accepts L = {0, 1}∗{110} and has 11 states. The
machine has states Q = {q0, q1, . . . , q10} with q0 the start state, F = {q10} the final states, δ(q, 0) = q0
for all states q ∈ Q, while δ(qi, 1) = qi+1 for i < 10 and δ(q10, 1) = q10.

Second, 11 states are necessary. Suppose for contradiction that there exists a 10-state DFA M =
(Q,Σ, δ, q0, F ) that accepts L. Consider the 11 strings 1i for 0 ≤ i ≤ 10. By the pigeonhole princi-
ple we know that δ∗(q0, 1i) = δ∗(q0, 1I) for 0 ≤ i < I ≤ 10. But then δ∗(q0, 1i110−I) = δ∗(q0, 1I110−I), so
δ∗(q0, 110−j) = δ∗(q0, 110) for some j ≥ 1. But the lefthand state must be outside F and the righthand
states must be in F , a contradiction.

One could use the DFA minimization procedure to prove this, establishing that M11 is already a minimal-
size DFA. Here one shows that no two states are equivalent, which follows, we have claimed, by showing
that the algorithm of class discovers no inequivalence when looking at 0-and 1-character extensions.

Problem 6 Let Ln (for n ≥ 1) be {0, 1}∗{1}{0, 1}n. Prove that there is an NFA for Ln having n + 2
states, but that there is no DFA for Ln having 2n − 1 or fewer states. In a well written English
sentence or two, give a high-level interpretation of your result.

As with the last problem, the first part is constructive; just draw the needed machine. For the second
part, assume for contradiction that there is a (2n − 1)-state DFA M = (Q,Σ, δ, q0, F ). By the pigeonhole
principle, we know that some two distinct strings x, x′ ∈ {0, 1}n satisfy δ(q0, x) = δ(q0, x

′). Since x and
x′ differ, they do so at some particular bit position � ∈ [1..n] (numbering from 1, starting on the left). Let
x0 be the one of x, x′ with x0[�] = 0 and let x1 be the one of x, x′ with x1[�] = 1. Now consider the strings
y0 = x0 0� and y1 = x1 0�. The second is in Ln; the first is not. But we know that δ∗(q0, y0) = δ∗(q0, y1),
getting us our contradiction: this state cannot be both final and nonfinal.

Interpretation of the result: There can be an exponential gap between the size of the smallest NFA for a
language and the size of the smallest DFA for it. Or, said differently, Some languages can be represented
much more efficiently with an NFA than a DFA.


