Problem Set 3 Solutions

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language.

The problem is pretty mechanical—I'm not going to draw out the solution—hopefully you didn't have trouble doing so.

Problem 2. Using the procedure shown in class, eliminate all ε -arrows from the following NFA.

The problem too is mechanical. States 1, 2, and 3 all become final (so all states are now final), since they can reach final states along ε -paths. Now we add in "bypass arcs." The approach I explained in class for doing this: for each state p of the NFA, in parallel: find all all states q reachable from p along ε -paths; find each transition to a state r labeled by a character $a \in \Sigma$; add in a direct connection, if needed, from p to r labeled by a. After all this is done, eliminate all ε -transitions.

Problem 3. Let $L_1, L_2, L_3 \subseteq \Sigma^*$ be languages and let $Most(L_1, L_2, L_3)$ be the set of all $x \in \Sigma^*$ that are in at least two of L_1, L_2, L_3 . Prove: if L_1, L_2 , and L_3 are DFA-acceptable then so is $Most(L_1, L_2, L_3)$.

Solution 1: Extend the product construction. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, and $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ be DFAs for L_1, L_2 , and L_3 , respectively. Form a new DFA $M = (Q, \Sigma, \delta, s, F)$ for $Most(L_1, L_2, L_3)$ be defining $Q = Q_1 \times Q_2 \times Q_3, s = (q_1, q_2, q_3), \delta((p, q, r), a) = (\delta_1(p, a), \delta_2(q, a), \delta_3(r, a))$, and $F = \{(p, q, r) \in Q_1 \times Q_2 \times Q_3: \text{ at least two of the following three things are true: } p \in F_1, q \in F_2, r \in F_3\}$. It is easy to see that $L(M) = Most(L_1, L_2, L_3)$.

Solution 2: Use closure properties. Note that $Most(L_1, L_2, L_3) = (L_1 \cap L_2) \cup (L_2 \cap L_3) \cup (L_1 \cap L_3)$. The regular languages are closed under \cap and \cup and so they are closed under *Most*.

Problem 4 Let $Stutter(L) = \{a_1a_1 \ a_2a_2 \ \cdots \ a_na_n \in \Sigma^* : a_1a_2 \ \cdots \ a_n \in L\}$. (A) Prove that the DFAacceptable languages are closed under Stutter. (B) Then, having proved it once, give another, entirely different proof. Here three different proofs:

(1) Consider the map $h: \Sigma \to \Sigma^*$ defined by h(a) = aa for all $a \in \Sigma$. Then Stutter(L) = h(L). We know that the DFA/NFA-acceptable languages are closed under homomorphism (from a previous problem set), so we are done.

(2) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting L. To make an NFA accepting Stutter(L), add a state "in the middle of each arrow" to ensure that a symbol $a \in \Sigma$ is always followed by a symbol a, and the same destination is then reached. This would give an NFA for Stutter(L). You could, if desired, make it into a DFA by the addition of a dead state that was connected up to the rest of the machine in the natural way.

(3) Use the regular-expression characterization of the DFA-acceptable languages. Let α be a regular expression over Σ . Construct from α a new regular expression β by replacing each character $a \in \Sigma$ that occurs in α by $(a \circ a)$. What results is a new regular expression β where $L(\beta) = Stutter(L(\alpha))$.

Problem 5. How many states are in the smallest possible DFA for $\{0,1\}^* \{1^{10}\}$? Prove your result.

First, 11 states are sufficient: there is a DFA M_{11} that accepts $L = \{0, 1\}^* \{1^{10}\}$ and has 11 states. The machine has states $Q = \{q_0, q_1, \ldots, q_{10}\}$ with q_0 the start state, $F = \{q_{10}\}$ the final states, $\delta(q, 0) = q_0$ for all states $q \in Q$, while $\delta(q_i, 1) = q_{i+1}$ for i < 10 and $\delta(q_{10}, 1) = q_{10}$.

Second, 11 states are *necessary*. Suppose for contradiction that there exists a 10-state DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts L. Consider the 11 strings 1^i for $0 \le i \le 10$. By the pigeonhole principle we know that $\delta^*(q_0, 1^i) = \delta^*(q_0, 1^I)$ for $0 \le i < I \le 10$. But then $\delta^*(q_0, 1^{i_1 10-I}) = \delta^*(q_0, 1^{I_1 10-I})$, so $\delta^*(q_0, 1^{10-j}) = \delta^*(q_0, 1^{10})$ for some $j \ge 1$. But the lefthand state must be outside F and the righthand states must be in F, a contradiction.

One could use the DFA minimization procedure to prove this, establishing that M_{11} is already a minimalsize DFA. Here one shows that no two states are *equivalent*, which follows, we have claimed, by showing that the algorithm of class discovers no *in*equivalence when looking at 0-and 1-character extensions.

Problem 6 Let L_n (for $n \ge 1$) be $\{0,1\}^*\{1\}\{0,1\}^n$. Prove that there is an NFA for L_n having n+2 states, but that there is no DFA for L_n having $2^n - 1$ or fewer states. In a well written English sentence or two, give a high-level interpretation of your result.

As with the last problem, the first part is constructive; just draw the needed machine. For the second part, assume for contradiction that there is a $(2^n - 1)$ -state DFA $M = (Q, \Sigma, \delta, q_0, F)$. By the pigeonhole principle, we know that some two distinct strings $x, x' \in \{0, 1\}^n$ satisfy $\delta(q_0, x) = \delta(q_0, x')$. Since x and x' differ, they do so at some particular bit position $\ell \in [1..n]$ (numbering from 1, starting on the left). Let x_0 be the one of x, x' with $x_0[\ell] = 0$ and let x_1 be the one of x, x' with $x_1[\ell] = 1$. Now consider the strings $y_0 = x_0 \ 0^\ell$ and $y_1 = x_1 \ 0^\ell$. The second is in L_n ; the first is not. But we know that $\delta^*(q_0, y_0) = \delta^*(q_0, y_1)$, getting us our contradiction: this state cannot be both final and nonfinal.

Interpretation of the result: There can be an exponential gap between the size of the smallest NFA for a language and the size of the smallest DFA for it. Or, said differently, Some languages can be represented **much** more efficiently with an NFA than a DFA.