
ECS 120: Theory of Computation ps4-soln
UC Davis — Phillip Rogaway April 24, 2015

Problem Set 4 Solutions

Problem 1.

(a) Using the procedure shown in class, convert NFA into a regular expression for the same language.

0 1

b,c

a

c

b

2

c

(b) Using the procedure shown in class, convert the regular expression (ab∗ ∪ c)∗ into an NFA for the
same language.

(c) Suppose that a (fully parenthesized) regular expression α over the alphabet Σ has length n. Convert
it to a DFA M for the same language using the procedures seen in class. Show that will M have at most
22n states. (A tighter bound is possible, but harder.)

Parts (a) and (b) are straightforward; I’m not going to draw the pictures (but you should certainly be able
to). For part (c), think about the method for converting a regular expression over Σ into an NFA. Each
character a ∈ Σ∪ {∅, ε} of the NFA contributes at most 2 states to the NFA. Each three characters (∪)
contributes one state to the NFA; each three characters (∗) contributes one state to the NFA; and
each three characters (◦) contributes zero states to the NFA. Summarizing, each character of the NFA
contributes at most 2 states to the NFA. So our NFA will have at most 2n states and we will get at most
22n states when we convert it to a DFA. A tighter bound is possible, but requires more work.

Problem 2. Use the pumping lemma to prove that the following languages are not regular.

(a) L = {x ∈ {a, b}∗ : x is not a palindrome}.
Suppose for contradiction that L is regular. Then its complement L̄ = {x ∈ {a, b}∗ : x is a palindrome}
is also regular. Let p be the pumping length for this language and consider the string s = apbap. By the
strong form of the pumping lemma s can be partitioned into s = xyz where y lives within the initial run
of zeros, |xy| ≤ p, |y| ≥ 1, and such that xyiz ∈ L for all i ≥ 0. But xy0z will then be a string of the
form ap−δbap with δ ≥ 1, which is not a palindrome. This is a contradiction.

(b) L = {w=w : w ∈ {0, 1}∗}. (The second = is a character from the alphabet {0, 1,=} that L is over.)

Assume for contradiction that L were regular. Let p be the pumping length, as guaranteed by the
pumping lemma. Let s be the string 1p = 1p. By the strong form of the pumping lemma s can be
partitioned into s = xyz where |xy| ≤ p, |y| ≥ 1, and xyiz ∈ L for all i ≥ 0. With y living inside the
initial run of 1, pumping up (i > 1) or down (i = 0) gives a string xyiz �∈ L.

(c) L = {a2n : n ≥ 0}.
Assume for contradiction that L were regular. Let p be the pumping length, as guaranteed by the
pumping lemma. Let s = a2

p

. Then s ∈ L and |s| ≥ p so, by the pumping lemma, there exists x, y, z
such that s = xyz and y �= ε and xyiz ∈ L for all i ≥ 0. In particular, for some α ≥ 1 (namely, α = |y|),
we have that a2

p+iα ∈ L for all i ≥ 0, which means that 2p + iα is always a power of two, for any i ≥ 0.
Thus (looking at i = 1) we have that 2p+α is a power of two, and (looking at i = 2) we have that 2p+2α
is a bigger power of two, so it must be at least twice 2p + α; that is, 2p + 2α ≥ 2(2p + α), which means
that 2p + 2α ≥ 2p + 2p + 2α, so 0 ≥ 2p, which is impossible.

2 ECS 120 ps4-soln: Problem Set 4 Solutions

Problem 3. Let L = {xxR : x ∈ {a, b}+}. Use the Myhill-Nerode theorem to prove that L is not regular.

Let ∼ be the equivalence relation associated to L by the Myhill-Nerode theorem. We need to identify
infinitely many inequivalent strings. Consider the set of strings {anb : n ≥ 1}. We claim that no two
of these can be ∼ equivalent. Fix n �= N and observe that anb ban ∈ L while, on the other hand,
aNb ban �∈ L. Note: I had previously listed the language L = {xxRy : x, y ∈ {a, b}+}. That one is
considerably harder.

Problem 4. Define A = {x ∈ {a, b, �}∗ : x contains an equal number of a’s and b’s or x contains
consecutive �s or consecutive letters}.

(a) Can you use the pumping lemma to prove that A is not regular? Explain.

No, the pumping lemma won’t work to show that A is not regular. It won’t work because, whatever
string s ∈ L you choose, the string will pump. In particular, the portion we usually denote “y” might
be a single � symbol or a single letter, and repeating that character, or excising it, will continue to give
strings in A.

(b) Prove that A is not regular.

Proof 1. Assume for contradiction that A were regular. Let M = (Q,Σ, δ, q0, F) be a DFA that accepts A.
Consider the infinitely many strings xn = (a�)n, for all n ≥ 0. Because Q is finite, the pigeonhole principle
tells us there will be distinct values i, j for which δ∗(q0, xi) = δ∗(q0, xj). But then δ∗(q0, xi(b�)

i) =
δ∗(q0, xj(b�)

i)). But the LHS must be a state in F while the RHS must be a state outside of F , a
contradiction.

Proof 2. Same as above, but cast in the language of the Myhill-Nerode theorem. Let xn = (a�)n. Let ∼
be the equivalence relation defined by x ∼ y iff (∀z) (xz ∈ A ⇔ yz ∈ A). Let [x] be the equivalence class
of string x with respect to this equivalence relation. I claim that [xi] �= [xj] for all i �= j. The reason is
simple: xi(b�)

i ∈ A, but xj(b�)
i �∈ A. So there are infinitely many blocks, so Myhill-Nerode says that A

is not regular.

Proof 3. Finally, a proof based on closure properties. Let L={x∈{a, b, �}∗ : x contains an equal number
of a’s and b’s and every other character of x is a �}. Let R = (a ∪ b ∪ �)∗ ((a ∪ b)(a ∪ b) ∪ ��) (a ∪ b ∪ �)∗.
Then R is regular, L and R are disjoint, and L∪R = A, so, by problem 4(e) of this problem set, to show
that A is not regular it is enough to show that L is not regular.

Recall that the regular languages are closed under homomorphisms: let h : Σ → Γ∗ and extend h
character-wise to strings (ie, h(a1 · · · an) = h(a1) · · ·h(an)) and string-wise to languages (ie, h(L) =
{h(x) : x ∈ L}). We claim that if a language L is regular then so is h(L). For if we are given a regular
expression α for L then (the properly parenthesized version of) h(α) is a regular expression for h(L(α)).

Now consider the specific map h where h(a) = a, h(b) = b, and h(�) = ε. Then h(L), for the L we
specified above, is the set L′ of all strings over {a, b} with an equal number of a’s and b’s. We know this
language to be not regular (we showed it in class, or you can show it with the pumping lemma, or you
can show it with closure properties). So L is not regular, and so A is not regular.

Problem 5. Are the following statements true or false? Either prove the statement or give a counter-
example.

ECS 120 ps4-soln: Problem Set 4 Solutions 3

(a) If L ∪ L′ is regular then L and L′ are regular.

False. L = {anbn : n ≥ 0} and L = {a, b}∗.
(b) If L∗ is regular then L is regular.

False. L = {12i : i ≥ 0}.
(c) If LL′ is regular then L and L′ are regular.

False. L = {anbn : n ≥ 0} and L′ = ∅.
(d) If L and L′ agree on all but a finite number of strings, then one is regular iff the other is regular.

True. L ⊕ R = L′ and for some finite, and therefore regular, R. But the regular languages are closed
under symmetric difference.

(e) If R is regular, L is not regular, and L and R are disjoint, then L ∪R is not regular.

True. Suppose instead that L∪R were regular. Then (L∪R) \R = L by disjointedness, and the regular
languages are closed under difference, so L would be regular.

(f) If L differs from a non-regular language A by a finite number of strings F , then L itself is not regular.

True. If L were regular then A = L⊕ F would be regular, too, by closure under ⊕.

Problem 6. Specify an algorithm to answer the following question: given a regular expression α, is
L(α) = (L(α))R? Upperbound the running time of your algorithm.

The NFA-acceptable languages are closed under reversal: the proof is to take an NFA M and convert
it to an NFA MR, where L(MR) = (L(M))R, by adding a new start state, connecting it to all the old
final states, definalizing those final states, and finalizing the start state. Thus an algorithm to answer
this question is as follows: convert α into an NFA M ; construct the NFA MR as above; and apply the
procedure we did (convert to a DFA and use the product construction for symmetric difference, then
DFS to decide emptiness)

How long will this take? If the regular expression α has length |α| = n then its NFA will have at most
2n states by our solution to 1(c); the NFA for αR will thus have at most 2n+1 states; the corresponding
DFAs will thus have at most 22n and 22n+1 states; the size of the DFA constructed by the product
construction will then have at most 24n+1 states; and DFS on this will take O(24n) time. A tighter
bound is possible,

