Problem Set 4 Solutions

Problem 1.

(a) Using the procedure shown in class, convert NFA into a regular expression for the same language.

(b) Using the procedure shown in class, convert the regular expression $\left(a b^{*} \cup c\right)^{*}$ into an NFA for the same language.
(c) Suppose that a (fully parenthesized) regular expression α over the alphabet Σ has length n. Convert it to a DFA M for the same language using the procedures seen in class. Show that will M have at most $2^{2 n}$ states. (A tighter bound is possible, but harder.)

Parts (a) and (b) are straightforward; I'm not going to draw the pictures (but you should certainly be able to). For part (c), think about the method for converting a regular expression over Σ into an NFA. Each character $a \in \Sigma \cup\{\emptyset, \varepsilon\}$ of the NFA contributes at most 2 states to the NFA. Each three characters (\cup) contributes one state to the NFA; each three characters (${ }^{*}$) contributes one state to the NFA; and each three characters (\circ) contributes zero states to the NFA. Summarizing, each character of the NFA contributes at most 2 states to the NFA. So our NFA will have at most $2 n$ states and we will get at most $2^{2 n}$ states when we convert it to a DFA. A tighter bound is possible, but requires more work.

Problem 2. Use the pumping lemma to prove that the following languages are not regular.
(a) $L=\left\{x \in\{a, b\}^{*}: x\right.$ is not a palindrome $\}$.

Suppose for contradiction that L is regular. Then its complement $\bar{L}=\left\{x \in\{a, b\}^{*}: x\right.$ is a palindrome $\}$ is also regular. Let p be the pumping length for this language and consider the string $s=a^{p} b a^{p}$. By the strong form of the pumping lemma s can be partitioned into $s=x y z$ where y lives within the initial run of zeros, $|x y| \leq p,|y| \geq 1$, and such that $x y^{i} z \in L$ for all $i \geq 0$. But $x y^{0} z$ will then be a string of the form $a^{p-\delta} b a^{p}$ with $\delta \geq 1$, which is not a palindrome. This is a contradiction.
(b) $L=\left\{w=w: w \in\{0,1\}^{*}\right\}$. (The second $=$ is a character from the alphabet $\{0,1,=\}$ that L is over.)

Assume for contradiction that L were regular. Let p be the pumping length, as guaranteed by the pumping lemma. Let s be the string $1^{p}=1^{p}$. By the strong form of the pumping lemma s can be partitioned into $s=x y z$ where $|x y| \leq p,|y| \geq 1$, and $x y^{i} z \in L$ for all $i \geq 0$. With y living inside the initial run of 1 , pumping up $(i>1)$ or down $(i=0)$ gives a string $x y^{i} z \notin L$.
(c) $L=\left\{a^{2^{n}}: n \geq 0\right\}$.

Assume for contradiction that L were regular. Let p be the pumping length, as guaranteed by the pumping lemma. Let $s=a^{2^{p}}$. Then $s \in L$ and $|s| \geq p$ so, by the pumping lemma, there exists x, y, z such that $s=x y z$ and $y \neq \varepsilon$ and $x y^{i} z \in L$ for all $i \geq 0$. In particular, for some $\alpha \geq 1$ (namely, $\left.\alpha=|y|\right)$, we have that $a^{2^{p}+i \alpha} \in L$ for all $i \geq 0$, which means that $2^{p}+i \alpha$ is always a power of two, for any $i \geq 0$. Thus (looking at $i=1$) we have that $2^{p}+\alpha$ is a power of two, and (looking at $i=2$) we have that $2^{p}+2 \alpha$ is a bigger power of two, so it must be at least twice $2^{p}+\alpha$; that is, $2^{p}+2 \alpha \geq 2\left(2^{p}+\alpha\right)$, which means that $2^{p}+2 \alpha \geq 2^{p}+2^{p}+2 \alpha$, so $0 \geq 2^{p}$, which is impossible.

Problem 3. Let $L=\left\{x x^{R}: x \in\{a, b\}^{+}\right\}$. Use the Myhill-Nerode theorem to prove that L is not regular.

Let \sim be the equivalence relation associated to L by the Myhill-Nerode theorem. We need to identify infinitely many inequivalent strings. Consider the set of strings $\left\{a^{n} b: n \geq 1\right\}$. We claim that no two of these can be \sim equivalent. Fix $n \neq N$ and observe that $a^{n} b b a^{n} \in L$ while, on the other hand, $a^{N} b b a^{n} \notin L$. Note: I had previously listed the language $L=\left\{x x^{R} y: x, y \in\{a, b\}^{+}\right\}$. That one is considerably harder.

Problem 4. Define $A=\left\{x \in\{a, b, \sharp\}^{*}: x\right.$ contains an equal number of a 's and b 's or x contains consecutive $\sharp s$ or consecutive letters $\}$.
(a) Can you use the pumping lemma to prove that A is not regular? Explain.

No, the pumping lemma won't work to show that A is not regular. It won't work because, whatever string $s \in L$ you choose, the string will pump. In particular, the portion we usually denote " y " might be a single \sharp symbol or a single letter, and repeating that character, or excising it, will continue to give strings in A.
(b) Prove that A is not regular.

Proof 1. Assume for contradiction that A were regular. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that accepts A. Consider the infinitely many strings $x_{n}=(a \sharp)^{n}$, for all $n \geq 0$. Because Q is finite, the pigeonhole principle tells us there will be distinct values i, j for which $\delta^{*}\left(q_{0}, x_{i}\right)=\delta^{*}\left(q_{0}, x_{j}\right)$. But then $\delta^{*}\left(q_{0}, x_{i}(b \sharp)^{i}\right)=$ $\left.\delta^{*}\left(q_{0}, x_{j}(b \sharp)^{i}\right)\right)$. But the LHS must be a state in F while the RHS must be a state outside of F, a contradiction.

Proof 2. Same as above, but cast in the language of the Myhill-Nerode theorem. Let $x_{n}=(a \sharp)^{n}$. Let \sim be the equivalence relation defined by $x \sim y \operatorname{iff}(\forall z)(x z \in A \Leftrightarrow y z \in A)$. Let $[x]$ be the equivalence class of string x with respect to this equivalence relation. I claim that $\left[x_{i}\right] \neq\left[x_{j}\right]$ for all $i \neq j$. The reason is simple: $x_{i}(b \sharp)^{i} \in A$, but $x_{j}(b \sharp)^{i} \notin A$. So there are infinitely many blocks, so Myhill-Nerode says that A is not regular.

Proof 3. Finally, a proof based on closure properties. Let $L=\left\{x \in\{a, b, \sharp\}^{*}: x\right.$ contains an equal number of a 's and b 's and every other character of x is a $\sharp\}$. Let $R=(a \cup b \cup \sharp)^{*}((a \cup b)(a \cup b) \cup \sharp \sharp)(a \cup b \cup \sharp)^{*}$. Then R is regular, L and R are disjoint, and $L \cup R=A$, so, by problem 4(e) of this problem set, to show that A is not regular it is enough to show that L is not regular.

Recall that the regular languages are closed under homomorphisms: let $h: \Sigma \rightarrow \Gamma^{*}$ and extend h character-wise to strings (ie, $\left.h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)\right)$ and string-wise to languages (ie, $h(L)=$ $\{h(x): x \in L\}$). We claim that if a language L is regular then so is $h(L)$. For if we are given a regular expression α for L then (the properly parenthesized version of) $h(\alpha)$ is a regular expression for $h(L(\alpha))$.

Now consider the specific map h where $h(a)=a, h(b)=b$, and $h(\sharp)=\varepsilon$. Then $h(L)$, for the L we specified above, is the set L^{\prime} of all strings over $\{a, b\}$ with an equal number of a 's and b 's. We know this language to be not regular (we showed it in class, or you can show it with the pumping lemma, or you can show it with closure properties). So L is not regular, and so A is not regular.

Problem 5. Are the following statements true or false? Either prove the statement or give a counterexample.
(a) If $L \cup L^{\prime}$ is regular then L and L^{\prime} are regular.

False. $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ and $L=\{a, b\}^{*}$.
(b) If L^{*} is regular then L is regular.

False. $L=\left\{1^{2^{i}}: i \geq 0\right\}$.
(c) If $L L^{\prime}$ is regular then L and L^{\prime} are regular.

False. $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ and $L^{\prime}=\emptyset$.
(d) If L and L^{\prime} agree on all but a finite number of strings, then one is regular iff the other is regular.

True. $L \oplus R=L^{\prime}$ and for some finite, and therefore regular, R. But the regular languages are closed under symmetric difference.
(e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.

True. Suppose instead that $L \cup R$ were regular. Then $(L \cup R) \backslash R=L$ by disjointedness, and the regular languages are closed under difference, so L would be regular.
(f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular. True. If L were regular then $A=L \oplus F$ would be regular, too, by closure under \oplus.

Problem 6. Specify an algorithm to answer the following question: given a regular expression α, is $L(\alpha)=(L(\alpha))^{R}$? Upperbound the running time of your algorithm.

The NFA-acceptable languages are closed under reversal: the proof is to take an NFA M and convert it to an NFA M^{R}, where $L\left(M^{R}\right)=(L(M))^{R}$, by adding a new start state, connecting it to all the old final states, definalizing those final states, and finalizing the start state. Thus an algorithm to answer this question is as follows: convert α into an NFA M; construct the NFA M^{R} as above; and apply the procedure we did (convert to a DFA and use the product construction for symmetric difference, then DFS to decide emptiness)
How long will this take? If the regular expression α has length $|\alpha|=n$ then its NFA will have at most $2 n$ states by our solution to 1 (c); the NFA for α^{R} will thus have at most $2 n+1$ states; the corresponding DFAs will thus have at most $2^{2 n}$ and $2^{2 n+1}$ states; the size of the DFA constructed by the product construction will then have at most $2^{4 n+1}$ states; and DFS on this will take $O\left(2^{4 n}\right)$ time. A tighter bound is possible,

